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Abstract

The derivation of the Black-Scholes option pricing model, if covered in detail, is by far the
most complicated among all major models in the �nance curriculum. This paper presents
a pedagogic approach to solve the Black-Scholes partial di¤erential equation via the solution
method for a one-dimensional heat equation. It is intended to help �nance students with
backgrounds in traditional business disciplines strengthen their understanding of the model
derivation, without being distracted by the advanced mathematical requirements. Excel plays
an important pedagogic role in this paper. The Excel illustration here not only con�rms
numerically some key features of the model derivation, but also connects the derived Black-
Scholes formula and results from two key intermediate steps in the model derivation, thus
making the analytical materials involved much easier to follow.

Keywords: Black-Scholes Partial Di¤erential Equation; Black-Scholes Option Pricing Model;
Black-Scholes Formula; Heat Equation
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Solving the Black-Scholes Partial Di¤erential Equation

via the Solution Method for a One-Dimensional Heat Equation:

A Pedagogic Approach with a Spreadsheet-Based Illustration

1 Introduction

The impact of the option pricing model of Black and Scholes (1973) on the �nancial world has

been profound. Having inspired many �nancial innovations since its publication, it has ushered

in a new era of modern �nance. On the educational front, it has broadened students�knowledge

of modern investments and has also led to higher requirements in mathematics and statistics for

them. The derived Black-Scholes formula � which allows the price of a European call option

on a stock that pays no dividends to be determined for a given set of input parameters � is now

covered widely, even in introductory �nance textbooks, as part of the standard curriculum in

business education.1 To understand the computations involved, students are required to have

working knowledge of the cumulative normal distribution in statistics. Some textbook coverage

of the Black-Scholes model has included, for computational purposes, Excel�s statistical function

NORMDIST or NORMSDIST.2

The same model is also known as the Black-Scholes-Merton option pricing model, in recogni-

tion of the contributions of Merton (1973). Merton has devised a method that is very di¤erent

from the original Black-Scholes approach to derive the same model. As detailed and illustrated

in Hull (2018), which is the most authoritative textbook on the topic of derivative securities,

the Merton method has very wide applicability. Merton has also generalized the Black-Scholes

formula. For �nance textbooks, especially those at the introductory level, however, the usage

of the term Black-Scholes formula, as compared to the term Black-Scholes-Merton formula, is

much more common. As this paper uses a pedagogic approach to cover the original derivation

1A call option on a stock is a �nancial instrument that gives its holder the right, not the obligation, to
purchase from its seller (writer) one share of the underlying stock, at a predetermined price, at or before an
expiry date. American and European call options di¤er in that the latter can be exercised only at the expiry
date. In a market with zero transaction costs, as an American call option on a stock that pays no dividends will
not be exercised before the expiry date, its value is the same as that of the European call option with otherwise
identical features.

2See, for example, Ross, Wester�eld, Ja¤e, Roberts, and Driss (2019, Chapter 23) and Berk, DeMarzo, and
Stangeland (2019, Chapter 15) for textbook coverage of the Black-Scholes formula for call options. The latter
textbook also indicates the Excel functions involved in numerical illustrations.
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of the Black-Scholes model, it will stay with a shorter name for expositional convenience below.

The derivation of the Black-Scholes model � which, if covered in detail, is by far the most

complicated among all major models in the �nance curriculum � requires two distinct tasks

to be performed. The �rst task is to reach the Black-Scholes partial di¤erential equation,

by using stochastic calculus tools to implement analytically a crucial economic insight that

involves risk-free hedging under some simplifying assumptions. The second task, which has two

consecutive parts labeled as Part 1 and Part 2 in this paper, consists of the analytical steps

as needed to solve the Black-Scholes partial di¤erential equation. Speci�cally, Part 1 is to

transform the Black-Scholes partial di¤erential equation into a one-dimensional heat equation.

Heat equations, which are well-known in physical science and engineering �elds, describe how

temperature is distributed over space and time as heat spreads. Part 2 is to solve a speci�c

heat equation to reach the Black-Scholes formula.

For the �rst task, relevant materials from stochastic calculus, including geometric Brownian

motion and Itô�s lemma, are available in textbooks such as Hull (2018, Chapters 14 and 15)

and Wilmott, Howison, and Dewynne (1995, Chapters 2 and 3). An Excel-based illustration

of geometric Brownian motion and an informal derivation of Itô�s lemma, as applied to the

Black-Scholes model, is also available in Brewer, Feng, and Kwan (2012). In contrast, how the

second task can be performed has remained a mystery for many �nance students, as the corre-

sponding textbook coverage is primarily intended for students who have advanced mathematical

knowledge. See, for example, Wilmott, Howison, and Dewynne (1995, Chapters 4 and 5) for

the analytical details. Further, Hull (2018, Chapter 13) has opted instead for an approach �

known as risk-neutral valuation � that bypasses the Black-Scholes partial di¤erential equation

to derive the Black-Scholes formula.

Finance students with backgrounds in traditional business disciplines tend to have only rudi-

mentary knowledge of the topic of di¤erential equations. As the Black-Scholes partial di¤erential

equation is, by far, more complicated than any di¤erential equations that these students have

ever encountered in their calculus courses, there will inevitably be a huge knowledge gap to

bridge if the Black-Scholes model derivation in its entirety is covered in a �nance course. Thus,

it is challenging for the instructor to deliver the materials involved, without having to drag many

students along a burdensome path during a lengthy model derivation.

This paper, which has its focus on the aforementioned second task, is motivated by such
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a challenge. The materials in Part 1 � which are all about changes of variables � can

still be explained to students who have some knowledge of multivariate di¤erential calculus,

though unfamiliar with the topic of di¤erential equations. This basic requirement is expected

to be exceeded by many �nance students who have learned, for example, comparative statics,

portfolio investments, or market equilibrium in previous �nance and economics courses, given

that multivariate di¤erential calculus is deemed an essential mathematical tool for learning such

topics. However, students who do not meet this basic requirement may �nd the materials

involved too complicated to follow. To accommodate such students, the instructor may have to

provide them with guidance, in advance, for reviewing some relevant materials in multivariate

di¤erential calculus involving changes of variables.

The materials in Part 2 of the aforementioned second task, which have further mathematical

requirements for students, are even more challenging for the instructor to deliver. From a

pedagogic standpoint, the delivery of the materials there can be basic or thorough, depending

on the mathematical knowledge of the students involved. Here, a basic version is where one

accepts the solution method for a one-dimensional heat equation as given. In contrast, a

thorough version is where the heat equation must be solved as well; that is, without treating the

solution method available from science and engineering �elds as given. The level of thoroughness

also depends on how well the students involved are familiar with each required mathematical

tool.

This paper covers Part 1 and only a basic version of Part 2, in order to bypass various

advanced mathematical materials. For a thorough coverage of Part 2 based on a well-established

solution method, the materials involved include not only how to transform the heat equation into

an ordinary di¤erential equation, but also how to work with complex variables in the process.

The presence of complex variables is a direct result of the Fourier transform of a function of real

variables in the heat equation. To complete the derivation, the original function will have to

be brought back in the end via the inverse Fourier transform. An obvious bene�t of a thorough

version is that, once the task is completed, there will be no more gaps in students�understanding

of the Black-Scholes model derivation. To bene�t fully from a thorough derivation, �nance

students without prior knowledge of the Fourier transform will have to learn it �rst. A practical

concern, however, is that the learning process can be challenging for many �nance students.

For a basic version of Part 2 as covered in this paper, it is unimportant whether students
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have any prior experience in solving di¤erential equations. Nevertheless, they are still required

to have some knowledge of the normal distribution, as well as integral calculus including inte-

gration techniques in univariate settings, so that they can follow the materials involved to reach

the Black-Scholes formula. Although many �nance students with backgrounds in traditional

business disciplines have good knowledge of the normal distribution, even including the ana-

lytical expression of its probability density function, they have seldom encountered any �nance

topics that require the use of integration techniques in calculus. Notably, based on anecdotal

observations by the author of this paper, �nance students are seldom required to verify analyt-

ically that integrating any speci�c probability density function over all possible outcomes will

result in unity as expected. If such observations re�ect reality in general, then a basic version

of Part 2 may still be very di¢ cult for some �nance students.

To address the above concerns, this paper uses a pedagogic approach to cover the materials

involved. Speci�cally, Part 1 � which, as indicated earlier, is all about changes of variables

� is viewed as having two successive steps. The �rst step is for reducing the Black-Scholes

di¤erential equation to a more convenient form, in order to facilitate its eventual transformation

into a one-dimensional heat equation in the second step. Part 2 is viewed as having three

successive steps instead. The �rst step of Part 2 sets up two de�nite integrals for the next

step to commence by �rst reducing the boundary condition for a call option to an analytically

convenient form. This step is straightforward for students who are familiar with essential

properties of exponential functions of real variables. In the second step of Part 2, integration

techniques in calculus are used to reach an interim formula involving the cumulative standard

normal distribution. Such a formula will lead to the Black-Scholes formula in the third step

there, upon further changes of variables to bring back the original set of variables.

In order to reduce the reliance on integration techniques in calculus for students to under-

stand Part 2, this paper uses an Excel spreadsheet to illustrate numerically the equivalence of

the Black-Scholes formula and the result of each of the �rst two steps there during its derivation.

Speci�cally, it is shown in the �rst step of Part 2 that the analytical solution of the heat equa-

tion satisfying the boundary condition of a call option can be expressed as the di¤erence of two

de�nite integrals. Such an analytical feature is particularly useful for a numerical illustration,

because a de�nite integral in a univariate setting can be interpreted in terms of an enclosed

area.
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The use of Excel to perform numerical integration for �nding the enclosed area and then to

establish numerically the equivalence of the integration results and the corresponding analytical

results in the remaining steps is helpful for students. Each of the two de�nite integrals in the

�rst step of Part 2, once integrated analytically in the second step, can be expressed in terms

of a cumulative distribution of the standard normal distribution, thus revealing the same key

feature of the Black-Scholes formula even before the completion of its derivation. The numerical

equivalence of the corresponding results in the three steps of Part 2 will enable students to boost

their con�dence in following the analytical materials there, even if they are initially unfamiliar

with integration techniques in calculus.

As it will be clear later in the paper, some additional computations in the same Excel spread-

sheet will be bene�cial for students whose mathematical barriers include also their inadequate

knowledge of multivariate di¤erential calculus involving changes of variables. For example,

some materials in the �rst step of Part 2 are also illustrated numerically in the Excel spread-

sheet that accompanies this paper. Students can bene�t more fully from the illustration by

verifying numerically, on their own, the robustness of the results as described in detail later in

this paper, with di¤erent sets of the input parameters.

This paper is organized in the following manner: With the Black-Scholes partial di¤er-

ential equation being the starting point, Section 2 summarizes and explains pedagogically the

key features of the Black-Scholes model derivation. The corresponding analytical details are

provided in the two appendices at the end of this paper, which are based on Wilmott, Howison,

and Dewynne (1995, Chapter 5). Speci�cally, Appendix A covers Part 1 of the aforementioned

task: it shows all analytical steps as required to transform the Black-Scholes partial di¤erential

equation into a one-dimensional heat equation. Appendix B covers a basic version of Part 2

of the aforementioned task; by treating the solution method for the heat equation as given, it

shows the analytical steps leading to the Black-Scholes formula. Section 3 illustrates how Excel

can help in making the Black-Scholes model derivation easier to follow by �nance students with

backgrounds in traditional business disciplines. Finally, Section 4 provides some concluding

remarks.
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2 The Black-Scholes Model Derivation: Summary and
Pedagogic Explanations

The Black-Scholes partial di¤erential equation for a European call option on a stock that pays

no dividends is

@C(S; t)

@t
+
1

2
�2S2

@2C(S; t)

@S2
+ rS

@C(S; t)

@S
� rC(S; t) = 0; (1)

satisfying the boundary condition of

C(S; T ) = max(S �X; 0): (2)

Here, r is the continuously compounded annual risk-free interest rate, � � which is a standard

deviation of returns � captures the volatility of the underlying stock returns in annual terms,

X is the exercise price of the option, T is the time of expiry of the option, S is the price of the

underlying stock at time t; and C(S; t) is the price of the option at time t: Implicitly, r; T; �;

and X are constants, and t and T are measured in proportions of a year, for 0 � t � T: Notice
that the available correspondence between the equation numbers in the main text and those in

the two appendices is indicated at the end of Appendix B.

Appendix A shows that, after some changes of variables, equation (1) reduces to the following

form:
@�(x; �)

@�
=
@2�(x; �)

@x2
; (3)

where �(x; �) is a function of x and � to be solved. Equation (3) that satis�es the boundary

condition of

�(x; 0) = �0(x); (4)

where �0(x) is a known function of x; is a one-dimensional heat equation for �1 < x <1 and

� > 0: In physical science and engineering �elds, the solution is known to be

�(x; �) =
1

2
p
��

Z 1

w=�1
�0(w) exp

�
�(x� w)

2

4�

�
dw (5)

or its variant.

Subsequently, Appendix B shows the analytical details of how equation (5) leads to the Black-

Scholes formula. With C(S; t) written simply as C for notational convenience, the Black-Scholes

formula is

C = S N(d1)�X exp[�r(T � t)]N(d2); (6)
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where

d1 =
1

�
p
T � t

�
ln

�
S

X

�
+ r(T � t)

�
+
1

2
�
p
T � t (7)

and

d2 = d1 � �
p
T � t: (8)

With the cumulative standard normal distribution

N(z) =
1p
2�

Z z

y=�1
exp

�
�y

2

2

�
dy (9)

being a function of z; it implicitly includes z = d1 and z = d2 above. In �nance textbooks, the

term T � t is often captured simply by a symbol representing, at the time when C is measured,
the proportion of a year before the option expires.

2.1 Transforming the Black-Scholes Partial Di¤erential Equation into
a One-Dimensional Heat Equation

Part 1, the �rst step: As shown in Appendix A, the transformation of equation (1) into

equation (3) requires an intermediate step. Equation (1) is �rst transformed into

@�(x; �)

@�
=
@2�(x; �)

@x2
+ (k � 1)@�(x; �)

@x
� k�(x; �); (10)

where

k =
2r

�2
; (11)

� =
�2

2
(T � t); (12)

x = ln

�
S

X

�
; (13)

and

�(x; �) =
C(S; t)

X
: (14)

With such changes in variables, the boundary condition in equation (2) is equivalent to

�(x; 0) = max[exp(x)� 1; 0]: (15)

The idea of this intermediate step is that, by �rst writing equation (1) equivalently as

@C(S; t)

@t
= �1

2
�2S2

@2C(S; t)

@S2
� rS @C(S; t)

@S
+ rC(S; t); (16)
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we look for a way to change the variables involved, in order to reduce the multiplicative factor

��2S2=2 for the �rst term on the right hand side to unity, thus making the resulting equation

closer to equation (3) in appearance. Speci�cally, with C(S; t) expressed in terms of �(x; �); we

are interested in reaching a partial di¤erential equation where the left hand side is @�(x; �)=@�

and the �rst term on the right hand side is exactly @2�(x; �)=@x2: The sign reversal, from

��2S2=2 to �2S2=2; is achieved by letting

t = T � 2�
�2
; (17)

which is equivalent to equation (12). Here, � is the proportion of a year before the option

expires, multiplied by the factor �2=2: As t increases, the corresponding � decreases instead,

thus ensuring the above sign reversal. This multiplicative factor is intended to match the �2=2

part of the multiplicative factor ��2S2=2 for the �rst term on the right hand side of equation

(16).

To take care of the S2 part of the multiplicative factor there requires the following variable

change:

S = X exp(x); (18)

which is equivalent to equation (13). With the variable x being the natural logarithm of the ratio

S=X; which is a dimensionless quantity, the corresponding option price �(x; �) is expressed as

the ratio C=X; just as equation (14) indicates. The �rst term on the right hand side of equation

(16), @2C(S; t)=@S2; when expressed in terms of @2�(x; �)=@x2; will generate an exp(�2x) term,
which is the same as 1=S2; to cancel the original S2 part of the multiplicative factor ��2S2=2:
As both x and �(x; �) are dimensionless quantities, the option will be exercised if exp(x) > 1;

and thus the boundary condition is as indicated in equation (15).

Part 1, the second step: To transform equation (10) into equation (3) requires the

following substitution:

�(x; �) = exp(�x+ ��)�(x; �): (19)

The task here is to �nd the speci�c values of � and � in terms of k; for which equation (3) is

the end result. As it turns out that

� = �1
2
(k � 1) (20)
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and

� = �1
4
(k + 1)2; (21)

the boundary condition is

�(x; 0) = max

�
exp

�
1

2
(k + 1)x

�
� exp

�
1

2
(k � 1)x

�
; 0

�
; (22)

which is �0(x) for use in equation (5). The attainment of equations (3) and (22) marks the

completion of the task to transform the Black-Scholes partial di¤erential equation into a one-

dimensional heat equation, for which equation (5) is applicable.

2.2 Solving the Heat Equation to Reach the Black-Scholes Formula

To use equation (5) directly to solve equation (3) under the boundary condition in equation

(22), no prior experience in solving partial di¤erential equations is deemed necessary. This is

because, with �0(w) being a known function of w; all that is required to reach the solution is to

perform the integration in equation (5). For such a task, however, students are required to have

some knowledge of integration techniques and to recognize some key expressions pertaining to

the normal distribution, both in univariate settings.

Part 2, the �rst step: As shown in Appendix B, the expression exp [(k + 1)w=2] �
exp [(k � 1)w=2] has the same sign as w: With �0(w) = 0 for w < 0; equation (5) reduces to

�(x; �) =
1

2
p
��

Z 1

w=0

�0(w) exp

�
�(x� w)

2

4�

�
dw = I1 � I2; (23)

where

I1 =
1

2
p
��

Z 1

w=0

exp

�
1

2
(k + 1)w � (x� w)

2

4�

�
dw (24)

and

I2 =
1

2
p
��

Z 1

w=0

exp

�
1

2
(k � 1)w � (x� w)

2

4�

�
dw: (25)

Notice that the lower limit of the integral in equation (23) is now w = 0; instead of w = �1 in

equation (5), because �0(w) = 0 for w < 0:

Part 2, the second step: The integrands in the integral expressions of I1 and I2 above

are exponential functions with quadratic exponents, where the highest-degree term is negative.

Thus, completing the square in each exponent will allow the corresponding integral to be ex-

pressed eventually in terms of a cumulative standard normal distribution, like the function N(z)

11



in equation (9). The end result, still in terms of x; k; and � ; is as follows:

I1 = exp

�
1

2
(k + 1)x+

1

4
(k + 1)2�

�
N(d1) (26)

and

I2 = exp

�
1

2
(k � 1)x+ 1

4
(k � 1)2�

�
N(d2); (27)

where

d1 =
xp
2�
+
1

2
(k + 1)

p
2� (28)

and

d2 =
xp
2�
+
1

2
(k � 1)

p
2� : (29)

Part 2, the third step: The remaining task in the derivation of the Black-Scholes formula

is to bring back the original variables and parameters for the expressions of I1 and I2: Once

�(x; �) is solved, so are �(x; �) and then C(S; t); given how the three bivariate functions are

connected via equations (14) and (19)-(21). With C(S; t) solved, the task of the Black-Scholes

model derivation is completed. As expected, the derived expression of C(S; t) is the same as

the one in equation (6), where d1 and d2 are also given by equations (7) and (8), respectively.

3 An Excel-Based Illustration

The Excel-based illustration in this section is intended to help �nance students with backgrounds

in traditional business disciplines, who tend to be unfamiliar with the topic of di¤erential equa-

tions, strengthen their understanding of the analytical details of the steps involved in solving

the Black-Scholes partial di¤erential equation to derive the Black-Scholes formula. The empha-

sis of the illustration is to con�rm numerically the equivalence of three di¤erent approaches to

reach each of C(S; t); �(x; �); and �(S; t): These approaches include the use of the Black-Scholes

formula directly and the use of the result from each of the �rst two steps in Part 2.

To compute the option price by using the Black-Scholes formula requires values of the fol-

lowing input parameters: S; X; T � t; r; and �: Here, for computational purposes, we have
treated the underlying stock price S as an input parameter, although it is actually a random

variable. As the maintenance of a risk-free hedge between the call option and its underlying

stock � whose price movements follow a stochastic process � is a crucial analytical feature

12



that leads to the Black-Scholes partial di¤erential equation, it is important to remind students

that, for computational purposes, we simply use the realized price S of the underlying stock at

the time of option valuation.

3.1 Selection of Input Parameters with Scroll Bars

In the Excel spreadsheet as displayed in Figure 1, �ve scroll bars are provided to allow the input

parameters over some predetermined ranges to be selected. The selected values are displayed

in B22:F22. To illustrate how each scroll bar is used for varying the corresponding input

parameter, let us use the scroll bar for S; which is the �rst scroll bar displayed in D1:E1, as

an example. This scroll bar, which allows any value in the range of 0 � 1; 000 in increments
of 1 to be selected, is linked to B1. The selected value of S in B22 is based on the cell

formula =B2+(B3-B2)*B1/1000, where B2 and B3 provide the range of its permissible values.

Descriptions for using the remaining scroll bars to select values of the input parameters of X;

T � t; r; and � in C22:F22 for the illustration are analogous. In the case of T � t; its minimum
value, as displayed in B10, is set at 0:001 years, in order to bypass a technical issue involving

equations (24) and (25) for � = 0: This technical issue will be addressed later in Subsection 3.5.

3.2 Simpli�cation of the Boundary Condition

Part 2, the �rst step: We �rst illustrate that the expression of �(w; 0) in equation (22), where

x is substituted by w; can be simpli�ed to an analytically more convenient form for use in equa-

tion (23). The block G3:G19 shows an arbitrary range of values of w; from �4:0 to 4:0 in incre-
ments of 0:5: The corresponding values of maxfexp [(k + 1)w=2]�exp [(k � 1)w=2] ; 0g; denoted
as �(w; 0) for each case, are displayed in H3:H19, where the computation of k in G22 is as de-

scribed in the next subsection. The cell formula for H3, which is =MAX(EXP((G$22+1)*G3/2)-

EXP((G$22-1)*G3/2),0), is copied to H3:H19.

As exp [(k + 1)w=2]�exp [(k � 1)w=2] has the same sign as w; the presence of some consecu-
tive zeros in the computed values of �(w; 0) as displayed in H3:H19 is as expected. Speci�cally,

we always have �(w; 0) = 0 for w < 0: It is this feature that justi�es the use of w = 0; instead

of w = �1; for the lower limit of each de�nite integral in the �rst step of Part 2. This part

of the illustration is obvious for students who are familiar with essential properties of exponen-

tial functions of real variables. It is included here in order to ensure that students who are
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Figure 1 An Excel-Based Illustration
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unfamiliar with such properties of exponential functions will still understand why the solution

of the heat equation satisfying the boundary condition of a call option can be expressed as the

di¤erence of the two speci�c de�nite integrals in equations (7) and (8).

3.3 Computations Based on the Black-Scholes Formula

Part 2, the third step: Given the values of S; X; T�t; r; and � in B22:F22, the corresponding
values of k; x; � ; d1; d2; N(d1); and N(d2); as well as C(S; t); �(x; �); and �(x; �) based on the

Black-Scholes formula, are computed and displayed in G22:I22 and C25:I25, as indicated. The

computed values of k; x; and � in G22:I22 are based on equations (11)-(13), with cell formulas

=2*E22/F22^2, =LN(B22/C22), and =D22*F22^2/2, respectively. The Black-Scholes formula

is in equations (6)-(8). As indicated earlier, the connections of C(S; t) to �(x; �) and �(x; �)

are via equations (14) and (19)-(21).

The computed values of d1 and d2 based on the Black-Scholes formula are displayed in C25:

D25, with cell formulas =(LN(B22/C22)+E22*D22)/(F22*SQRT(D22))+F22*SQRT(D22)/2

and =C25-F22*SQRT(D22), respectively. The corresponding values of N(d1) and N(d2); as

displayed in E25:F25 are via cell formulas =NORMSDIST(C25) and =NORMSDIST(D25), re-

spectively. Given S; X; T � t; r; �; N(d1); and N(d2); the computation of C(S; t) based on the
Black-Scholes formula is straightforward; the computed value of C(S; t); according to the cell for-

mula =B22*E25-C22*EXP(-E22*D22)*F25, is displayed in G25. The corresponding values of

�(x; �) and �(x; �); as deduced directly from the computed value of C(S; t) in G25, are displayed

in H25:I25, with cell formulas =G25/C22 and =H25/EXP(-(G22-1)*H22/2-(G22+1)^2*I22/4).

3.4 Computations Based on an Intermediate Step

Part 2, the second step: After establishing how combining equations (5) and (22) leads to

equations (23)-(25), the remaining analytical materials in Appendix B are all about completing

the squares and changing some variables afterwards. Students who are familiar with integration

techniques in calculus and have some knowledge of the cumulative distribution function of the

standard normal distribution ought to be able to recognize the equivalence of equations (24) and

(26) and the equivalence of equations (25) and (27). As the attainment of equations (26)-(29)

marks the completion of a major intermediate step in the Black-Scholes model derivation, these
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four equations can also be used to compute �(x; �); from which the corresponding values of

�(x; �) and C(S; t) can be deduced.

The computation of �(x; �) in E29 via equations (26)-(29) requires d1; d2; N(d1); N(d2);

I1; and I2; which are displayed in C26:F26 and C29:D29. The cell formulas for d1 and d2 in

C26:D26 are =H22/SQRT(2*I22)+(G22+1)*SQRT(2*I22)/2 and =H22/SQRT(2*I22)+(G22-

1)*SQRT(2*I22)/2, respectively. The cell formulas for N(d1) and N(d2) in E26:F26 are

=NORMSDIST(C26) and =NORMSDIST(D26), respectively. Next, the cell formulas for

I1 and I2 in C29:D29 are =EXP((G22+1)*H22/2+(G22+1)^2*I22/4)*E26 and =EXP((G22-

1)*H22/2+(G22-1)^2*I22/4)*F26, respectively. As �(x; �) in E29 is the di¤erence between I1

and I2; its computation is straightforward. With the value of �(x; �) known, the computa-

tions of �(x; �) and C(S; t) in F29:G29 are via the cell formulas =E29*EXP(-(G22-1)*H22/2-

(G22+1)^2*I22/4) and =C22*F29, respectively.

3.5 Computations Based on Numerical Integration

Part 2, the �rst step: In order to use equations (24) and (25) directly, we rely on a

well-known feature in integral calculus that, in a univariate case, a de�nite integral can be

viewed as the area enclosed by the integrand and the horizontal axis, between the limits of

integration. In the case of I1 in equation (24), the integrand, which is a function of w; is

exp [(k + 1)w=2� (x� w)2=(4�)] ; the horizontal axis is the w-axis, and the lower and upper
limits of integration are w = 0 and w = 1; respectively. In the case of I2 in equation (25),

the only di¤erence is the substitution of k + 1 by k � 1 in the expression of the integrand. For
a given set of input parameters, each enclosed area must be the same as the end result from

integrating the function involved, which is I1 in equation (26) or I2 in equation (27), as the case

may be.

Notice that, although equations (26) and (27) can easily accommodate input parameters

where � = 0; it is not so for equations (24) and (25). This is because, if equations (24) and

(25) are used directly to compute I1 and I2; respectively, as � approaches zero, so does each

integrand, thus resulting in the corresponding integral approaching zero as well. Meanwhile, as

� approaches zero, the multiplicative factor 1=2
p
�� for each integral in equations (24) and (25)

approaches in�nity, thus preventing the computation of �(x; 0) to be performed. Given such a

limitation, the Excel-based illustration here cannot accommodate input parameters where � is
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exactly zero. However, this is not a consequential limitation, as the value of � can still be made

very close to zero without being exactly zero, for the purpose of approximating the expiry date

of the option in the Excel-based illustration.

To approximate numerically the above enclosed area, we simply aggregate the areas of a

large number of narrow rectangular strips that are located side by side, where each height is the

value of the function being integrated. For this task, let b be a predetermined common width

of the individual strips. Let also n be the number of strips as needed for this approximation.

The height of strip i is at its mid-point

wi =
b

2
+ (i� 1)b; for i = 1; 2; 3; : : : ; n: (30)

Thus, we can approximate I1 and I2 as follows:

I1 =
b

2
p
��

Xn

i=1
exp

�
1

2
(k + 1)wi �

(x� wi)2
4�

�
(31)

and

I2 =
b

2
p
��

Xn

i=1
exp

�
1

2
(k � 1)wi �

(x� wi)2
4�

�
: (32)

For the purpose of the illustration in Figure 1, n and b have been preset at 1; 000 and 0:001;

respectively. That is, the areas of 1; 000 narrow rectangular strips, with each width being 0:001;

are to be summed. The block B33:B1032 shows the mid-point locations of the 1; 000 strips.

With w1 = 0:0005; w2 = 0:0015; w3 = 0:0025; w4 = 0:0035; : : : ; w1;000 = 0:9995; the computa-

tions for I1 and I2 are based on equations (31) and (32). The block C33:C1032 contains the

corresponding 1; 000 values of exp [(k + 1)wi=2� (x� w)2=(4�)] ; with one value for each i: The
cell formula for C33, which is =EXP(($G$22+1)*$B33/2-($H$22-$B33)^2/(4*$I$22)), is copied

to C33:C1032. The heights of rows 40 to 1029 have been set to nearly zero, in order to keep

the display of Figure 1 within one page. The sum of the areas of the 1; 000 narrow rectangular

strips, multiplied by the factor 1=(2
p
��) � which is I1 in equation (31) � is displayed in C30;

the corresponding cell formula is =SUM(C33:C1032)*($B$34-$B$33)/(2*SQRT(PI()*$I$22)).

Likewise, for I2; the 1; 000 values of exp [(k � 1)wi=2� (x� w)2=(4�)] ; with one value for
each i; corresponding to the 1; 000 values of wi in B33:B1032, are displayed in D33:D1032. The

cell formula for D33, which is =EXP(($G$22-1)*$B33/2-($H$22-$B33)^2/(4*$I$22)), is copied

to D33:D1032. The sum of the areas of the 1; 000 narrow rectangular strips, also multiplied by
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the same factor 1=(2
p
��) � which is I2 equation (32) � is displayed in D30; the corresponding

cell formula is =SUM(D33:D1032)*($B$34-$B$33)/(2*SQRT(PI()*$I$22)). With I1 and I2

known, �(x; �) in equation (23) is simply their di¤erence; its value is displayed in E30. The

corresponding value of �(x; �) according to equations (19)-(21) is displayed in F30 via the cell

formula =E30*EXP(-(G22-1)*H22/2-(G22+1)^2*I22/4). Finally, the corresponding value of

C(S; t); as displayed in G30, is simply X�(x; �):

As indicated earlier, the use of equations (24) and (25) where � = 0 for numerical integration

requires that T � t be approximated by a small positive value, in order to bypass a technical
issue. For the same set of input parameters in B22:F22, except that T � t = 0 years, as the
underlying stock price on the expiry date of the option, $36:85; exceeds the exercise price, $30:00;

the value of the call option ought to be $6:85 (= $36:85 � $30:00); according to the boundary
condition in equation (2). The computed value of C based on T � t = 0:001 years is $6:85095;
which slightly overstates its correct value on the expiry date as expected. If the expiry date

is approximated by T � t = 0:0001 years instead, the corresponding C will become $6:85010;

which is closer to its correct value. Such overstatements are small enough to justify the use of

a small positive value for T � t = 0 years in the Excel illustration.

3.6 Further Explanations

A comparison of the three computed values of C(S; t) in G25 and G29:30, of �(x; �) in H25 and

F29:F30, and of �(x; �) in I25 and E29:E30 con�rms that there are total agreements of the end

results in each case, regardless of whether the Black-Scholes formula or either intermediate step

is involved. Such an outcome is robust, regardless of what values of the input parameters are

used for the computations. To see why this is as expected, let us �rst review the key features

of the Black-Scholes model derivation as summarized in Section 2.

In order to solve the Black-Scholes partial di¤erential equation in equation (1), some changes

in variables are needed to replace the function C(S; t) there �rst with �(x; �); and subsequently

with �(x; �); in order to reach a one-dimensional heat equation in equation (3), for which a

solution method is available. There are speci�c connections of �(x; �); �(x; �); and C(S; t) via

equations (14) and (19)-(21), so that, if one of them is known, so are the remaining two. Such

connections are crucial for the transformation of the Black-Scholes partial di¤erential equation

into the heat equation.
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What is also crucial in the Black-Scholes model derivation is that �(x; �) satisfying the

boundary condition of a call option can be expressed as the di¤erence of two speci�c de�nite

integrals, which are I1 and I2 in equations (24) and (25), respectively. Given this analytical

feature, the remaining tasks of the derivation include the attainment of an expression for each

de�nite integral in terms of the transformed variables, as in equations (26)-(29), and then the

attainment of the Black-Scholes formula in terms of the original variables, as in equations (6)-

(8). To perform such tasks does not change the fact that �(x; �) is the di¤erence between I1

and I2; nor does it a¤ect the computed values of I1 and I2 for any given set of input parameters.

Given the existing connections of �(x; �); �(x; �); and C(S; t) via equations (14) and (19)-(21),

the equivalence of the computed values of any of these functions, via the Black-Scholes formula

or either intermediate step, is assured.

4 Concluding Remarks

Although the impact of the Black-Scholes option pricing model on the �nancial world has been

profound, its full derivation via the Black-Scholes partial di¤erential equation has eluded many

�nance students with backgrounds in traditional business disciplines. Apparently, some ad-

vanced mathematical requirements, which are well beyond those covered in the standard �nance

curriculum, have prevented these students from following its full derivation. Based on text-

book coverage such as that in Hull (2018), students in courses of �nancial derivatives still learn

how to reach the Black-Scholes partial di¤erential equation. Thus, for many �nance students,

the mystery in the Black-Scholes model derivation is in how to solve the Black-Scholes partial

di¤erential equation.

Cox, Ross, and Rubinstein (1979) have o¤ered a binomial approach for option pricing as

a simpler alternative, thus making the economic insights of the original Black-Scholes model

more readily accessible to the �nance profession. Using an Excel-based illustration, Feng and

Kwan (2012) have explained pedagogically how the two models are connected, thus making the

Black-Scholes model derivation less mysterious for �nance students. However, so far, textbook

coverage of directly solving the Black-Scholes partial di¤erential equation has been intended for

students with advanced mathematical knowledge.

To bypass as many advanced mathematical requirements as possible for solving the Black-
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Scholes partial di¤erential equation, this paper has treated the solution method for a one-

dimensional heat equation in physical science and engineering �elds as given. In so doing,

this paper has inevitably left a knowledge gap � as to how the solution method has been de-

rived in the �rst place � for �nance students with traditional business backgrounds in their

understanding of the Black-Scholes model derivation. Although it is feasible to cover pedagog-

ically a more thorough derivation via the Black-Scholes partial di¤erential equation, where any

unfamiliar mathematical materials, when encountered, will have to be explained, it is highly

unlikely that Excel can still play a pedagogic role, as it does in this paper. Thus, any limi-

tations notwithstanding, the basic version of the Black-Scholes model derivation as covered in

this paper, especially in conjunction with the Excel-based illustration for it, can still contribute

meaningfully in dispelling its perceived mystery among many �nance students.

Appendix A: Details of Transforming the Black-Scholes
Partial Di¤erential Equation into a One-Dimensional Heat
Equation

Part 1, the �rst step: The starting point for the derivation is

@C(S; t)

@t
+
1

2
�2S2

@2C(S; t)

@S2
+ rS

@C(S; t)

@S
� rC(S; t) = 0; (A1)

for which

C(S; T ) = max(S �X; 0): (A2)

Following the approach in Wilmott, Howison, and Dewynne (1995, Chapter 5), let

S = X exp(x); (A3)

t = T � 2�
�2
; (A4)

and

C(S; t) = X�(x; �): (A5)

It is implicit that �1 < x < 1 and � > 0: The intention is to use x; � ; and the function

�(x; �); instead of S; t; and C(S; t); respectively, in equation (A1). The partial derivatives

@C=@t; @C=@S; and @2C=@S2 there � implicitly for the corresponding partial derivatives of

C(S; t) � will have to be written in terms of the newly de�ned variables.
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Speci�cally, with arguments of the functions C(S; t) and �(x; �) omitted for notational con-

venience, we have
@C

@t
= �X�

2

2

@�

@�
; (A6)

@C

@S
= exp(�x)@�

@x
; (A7)

and
@2C

@S2
=
exp(�2x)

X

@2�

@x2
� exp(�2x)

X

@�

@x
=
exp(�2x)

X

�
@2�

@x2
� @�
@x

�
: (A8)

Substituting these expressions into equation (A1) leads to

�X�
2

2

@�

@�
+
�2X2

2
exp(2x)

exp(�2x)
X

�
@2�

@x2
� @�
@x

�
+ rX exp(x) exp(�x)@�

@x
� rX�

= �X�
2

2

@�

@�
+
�2X

2

�
@2�

@x2
� @�
@x

�
+ rX

@�

@x
� rX� = 0: (A9)

As X > 0; this equation is equivalent to

�2

2

@2�

@x2
+

�
r � �

2

2

�
@�

@x
� �

2

2

@�

@�
� r� = 0: (A10)

Now, let

k =
2r

�2
: (A11)

Equation (A10) becomes
@�

@�
=
@2�

@x2
+ (k � 1)@�

@x
� k�: (A12)

As t = T corresponds to � = 0 according to equation (A4), equation (A2) can be re-stated as

X�(x; 0) = max[X exp(x)�X; 0] (A13)

or, simply,

�(x; 0) = max[exp(x)� 1; 0]: (A14)

Part 1, the second step: Equation (A12) is now very close to the analytical form of a

one-dimensional heat equation. All that is left is to reduce the right hand side of equation (A12)

to a single term involving the second partial derivative. For this task, let us write

�(x; �) = exp(�x+ ��)�(x; �): (A15)

Here, the parameters � and � have yet to be determined.

21



With this substitution, equation (A12) becomes

exp(�x+ ��)

�
�� +

@�

@�

�
= exp(�x+ ��)

��
�2� + 2�

@�

@x
+
@2�

@x2

�
+ (k � 1)

�
�� +

@�

@x

�
� k�

�
: (A16)

From

�� +
@�

@�
=

�
�2� + 2�

@�

@x
+
@2�

@x2

�
+ (k � 1)

�
�� +

@�

@x

�
� k�; (A17)

we have
@�

@�
=
@2�

@x2
+ (2�+ k � 1)@�

@x
+
�
�� + �2 + �(k � 1)� k

�
�: (A18)

Thus, by setting

� = �1
2
(k � 1) (A19)

and

� = �2 + �(k � 1)� k = 1

4
(k � 1)2 � 1

2
(k � 1)2 � k = �1

4
(k + 1)2; (A20)

we �nally have
@�

@�
=
@2�

@x2
(A21)

or, more formally with the two arguments of � explicitly indicated,

@�(x; �)

@�
=
@2�(x; �)

@x2
; (A22)

which is a one-dimensional heat equation.

As

�(x; �) = exp(�x+ ��)�(x; �)

= exp

�
�1
2
(k � 1)x� 1

4
(k + 1)2�

�
�(x; �); (A23)

equation (A14) becomes

exp

�
�1
2
(k � 1)x

�
�(x; 0) = max[exp(x)� 1; 0]: (A24)

This boundary condition is equivalent to

�(x; 0) = max

�
exp

�
1

2
(k + 1)x

�
� exp

�
1

2
(k � 1)x

�
; 0

�
: (A25)
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With

�0(x) = �(x; 0) (A26)

being a known function of x; the solution of equation (A22) that satis�es equation (A25) is

�(x; �) =
1

2
p
��

Z 1

w=�1
�0(w) exp

�
�(x� w)

2

4�

�
dw: (A27)

Appendix B: Details of Solving the Heat Equation to Reach
the Black-Scholes Formula

Part 2, the �rst step: Here, we continue to follow the approach in Wilmott, Howison, and

Dewynne (1995, Chapter 5). Let us �rst rewrite equation (A25) as

�0(w) = �(w; 0) = max

�
exp

�
1

2
(k + 1)w

�
� exp

�
1

2
(k � 1)w

�
; 0

�
; (B1)

by substituting the variable x there with w: The sign of

exp

�
1

2
(k + 1)w

�
� exp

�
1

2
(k � 1)w

�
= exp

�
kw

2

�h
exp

�w
2

�
� exp

�
�w
2

�i
(B2)

is the same as the sign of w: This is because exp(kw=2) is always positive, for all real values of

w; and because exp(w=2); which is also positive, is an increasing function of w: If w � 0; we
have exp(w=2)� exp(�w=2) � 0; if w < 0 instead, we have exp(w=2)� exp(�w=2) < 0: Thus,
with �0(w) = 0 for w < 0; we can write equation (A27) as

�(x; �) =
1

2
p
��

Z 1

w=0

�
exp

�
1

2
(k + 1)w

�
� exp

�
1

2
(k � 1)w

��
exp

�
�(x� w)

2

4�

�
dw; (B3)

which is equivalent to

�(x; �) = I1 � I2; (B4)

where

I1 =
1

2
p
��

Z 1

w=0

exp

�
1

2
(k + 1)w � (x� w)

2

4�

�
dw (B5)

and

I2 =
1

2
p
��

Z 1

w=0

exp

�
1

2
(k � 1)w � (x� w)

2

4�

�
dw: (B6)

Part 2, the second step: Now, let

! =
w � xp
2�
: (B7)
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It follows that

I1 =
1p
2�

Z 1

!=�x/
p
2�

exp

�
1

2
(k + 1)

�
!
p
2� + x

�
� 1
2
!2
�
d!

=
exp

�
1
2
(k + 1)x

�
p
2�

Z 1

!=�x/
p
2�

exp

�
1

2
(k + 1)!

p
2� � 1

2
!2
�
d!

=
exp

�
1
2
(k + 1)x+ 1

4
(k + 1)2�

�
p
2�

Z 1

!=�x/
p
2�

exp

(
�1
2

�
! � 1

2
(k + 1)

p
2�

�2)
d!: (B8)

Letting

u = ! � 1
2
(k + 1)

p
2� ; (B9)

we can write, given the symmetry of the standard normal distribution,

I1 =
exp

�
1
2
(k + 1)x+ 1

4
(k + 1)2�

�
p
2�

Z 1

u=�d1
exp

�
�1
2
u2
�
du

=
exp

�
1
2
(k + 1)x+ 1

4
(k + 1)2�

�
p
2�

Z d1

u=�1
exp

�
�1
2
u2
�
du

= exp

�
1

2
(k + 1)x+

1

4
(k + 1)2�

�
N(d1); (B10)

where

d1 =
xp
2�
+
1

2
(k + 1)

p
2� (B11)

and

N(d1) =
1p
2�

Z d1

u=�1
exp

�
�1
2
u2
�
du: (B12)

The latter is a cumulative standard normal distribution function.

The only di¤erence between the expressions of I1 and I2 is that the k+1 term in the former

case is k � 1 instead in the latter case. Therefore, we can directly write

I2 = exp

�
1

2
(k � 1)x+ 1

4
(k � 1)2�

�
N(d2); (B13)

where

d2 =
xp
2�
+
1

2
(k � 1)

p
2� : (B14)

The cumulative standard normal distribution function N(d2) is also given by equation (B12),

but with the d1 there substituted by d2:
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Part 2, the third step: To complete the derivation, we must express x; � ; k; and �(x; �)

in terms of S; X; �; T; t; and C(S; t): Based on how x; � ; k; and �(x; �) are de�ned, we have,

along with equation (A11),

x = ln

�
S

X

�
; (B15)

� =
1

2
�2(T � t); (B16)

and

C(S; t) = X�(x; �) = X exp

�
�1
2
(k � 1)x� 1

4
(k + 1)2�

�
�(x; �): (B17)

The last expression above can be written as

C(S; t) = X exp

�
�1
2
(k � 1)x� 1

4
(k + 1)2� +

1

2
(k + 1)x+

1

4
(k + 1)2�

�
N(d1)

�X exp
�
�1
2
(k � 1)x� 1

4
(k + 1)2� +

1

2
(k � 1)x+ 1

4
(k � 1)2�

�
N(d2)

= X exp

�
�1
2
(k � 1)x+ 1

2
(k + 1)x

�
N(d1)

�X exp
�
�1
4
(k + 1)2� +

1

4
(k � 1)2�

�
N(d2)

= X exp

�
ln

�
S

X

��
N(d1)�X exp(�k�)N(d2)

= SN(d1)�X exp[�r(T � t)]N(d2); (B18)

where

d1 =
ln(S=X)

�
p
T � t

+
1

2

�
2r

�2
+ 1

�
�
p
T � t

=
ln(S=X) + (r + �2=2)(T � t)

�
p
T � t

(B19)

and

d2 =
ln(S=X)

�
p
T � t

+
1

2

�
2r

�2
� 1
�
�
p
T � t

=
ln(S=X) + (r � �2=2)(T � t)

�
p
T � t

= d1 � �
p
T � t; (B20)

thus completing the derivation of the Black-Scholes formula. The available correspondence
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between the equation numbers in the main text and those in the two appendices is as follows:

(1) , (A1) (8) , (B20) (15) , (A14) (24) , (B5)
(2) , (A2) (9) , (B12) (17) , (A4) (25) , (B6)
(3) , (A22) (10) , (A12) (18) , (A3) (26) , (B10)
(4) , (A26) (11) , (A11) (19) , (A15) (27) , (B13)
(5) , (A27) (12) , (B16) (20) , (A19) (28) , (B11)
(6) , (B18) (13) , (B15) (21) , (A20) (29) , (B14)
(7) , (B19) (14) , (A5) (22) , (A25)
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