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spreadsheets can play in developing an environment in which ideas can be explored and discovered by
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student control and ease of learning of the environment together with the spreadsheet’s ability to cope with
exceptions without halting.

Keywords
spreadsheets, geometry, Napoleon’s Theorem

Distribution License

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0
License.

This regular article is available in Spreadsheets in Education (eJSiE): http://epublications.bond.edu.au/ejsie/vol1/iss2/4

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://epublications.bond.edu.au/ejsie/vol1/iss2/4?utm_source=epublications.bond.edu.au%2Fejsie%2Fvol1%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages


Napoleon’s Theorem and Beyond

John E Baker
Natural Maths

john@naturalmaths.com.au

October 5, 2005

Abstract

The use of Excel to explore old, well-known geometrical theorems is set in the
context of Napoleon’s Theorem. A number of geometrical ideas are drawn into the
investigation, and spreadsheet examples are given to show how Excel can effectively
model such concepts. The article concludes with a generalisation with respect to
lines drawn from the vertices of a triangle.
The article is not written primarily from the geometrical point of view, but em-

phasis is placed on the role that spreadsheets can play in developing an environment
in which ideas can be explored and discovered by students. The benefits of using
Excel in the context of a geometric investigation are outlined in terms of student con-
trol and ease of learning of the environment together with the spreadsheet’s ability
to cope with exceptions without halting.

Submitted December 2003; revised January 2004; accepted February 2004.
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1 Introduction

As noted in Baker and Sugden [3], the use of spreadsheets in secondary school mathe-
matics has great potential. In particular, Wood and D’Souza [14], Hughes-Hallett [10]
and Friedlander [8] stress its relevance to the learning of algebraic concepts, while Beare
[4] stresses the support that spreadsheets can give to a range of learning styles. In this
paper, I look at a particular part of the Year 11-12 curriculum in mathematics, where
students are introduced to matrices and vectors, and at the same time to the powerful
matrix capabilities of Excel. Thus, topics such as solving sets of linear equations, Markov
chains with transition matrices and the use of Leslie matrices [11] for exploring popula-
tion sustainability are all set in the context of spreadsheets that allow the calculations
of matrix multiplication and inversion to be undertaken without the heavy workload of
calculation by hand, but with understanding. As a result, it is realistic to encourage
students to develop interactive spreadsheets that display the results of matrix operations
in a graphical form, as recommended by Houghton [9]:

eJSiE 1(2):125-136 c°2003 Bond University. All rights reserved.
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Napoleon’s Theorem and Beyond

For those ready for this level of abstraction, spreadsheets provided an interactive
environment with numerous opportunities for further manipulation. Such manipulation
is an important early step in preparation for higher levels of scientific visualization. For
example, changes to the raw data are immediately reflected in the graph. Further, the
spreadsheet’s numerous options for graphing provide immediate access to a wide range
of perspectives on a given set of data.

2 Geometry and Spreadsheets

Recently, a number of authors [1], [2], [12] have demonstrated the value of using spread-
sheets as a means of displaying geometrical figures and relationships. Through the use
of rotation matrices and graphs of geometric objects, underlying geometric patterns and
relationships can be quickly displayed and explored.

Always on the lookout for situations that call for graphical, rather than algebraic ap-
proaches, the opening chapters of Mathematical Encounters of the 2nd kind [7] provided
me with the inspiration to use Excel to explore Napoleon’s Theorem. This theorem,
which is fully explained at Bogomolny’s cut-the-knot site [6], can be readily demon-
strated with an interactive Excel spreadsheet that the students can prepare for them-
selves with little guidance, once some initial ground rules for creating geometric objects
in Excel have been explored. The Excel Skill Sheet, Drawing a Triangle, which I use
with the class, is available from the SiE http://www.sie.bond.edu.au/index.htm, and it
leads students through the stages of charting a triangle whose shape is controlled by
three scrollbars. The position of A is given by formulae such as =2*COS(theta_a) and
=2*SIN(theta_a) and similar formulae give the positions of B and C. When the value
of theta_a is controlled by a scrollbar, the locus of A is a circle of radius 2 and in this
way, triangle ABC can be given any desired shape and orientation (see Figure 1).

3 Napoleon’s Theorem

Once the students have achieved mastery of triangle-drawing, they are ready to move
on to Napoleon’s Theorem:

On each side of a triangle, let equilateral triangles be constructed that are external to
it. The centres of the equilateral triangles form an equilateral triangle.

Given that vectors and matrices are current topics when this theorem is introduced,
we address the problem of drawing the outwardly equilateral triangles by discussing how
vectors and matrices can be used to create the diagram for Napoleon’s Theorem in Excel.
For example, to locate the point D, which is the third point of the equilateral triangle
on side BC, we use the following formula for BC and similar formulae for CA and AB.µ

dx
dy

¶
=

µ
cos (−π/3) − sin (−π/3)
sin (−π/3) cos (−π/3)

¶µµ
cx
cy

¶
−
µ

bx
by

¶¶
+

µ
bx
by

¶
(1)

To see these formulae in action, the reader is asked to open the spreadsheet Napoleon
and Beyond and select the first worksheet, Napoleon. The worksheet shows how the

126 eJSiE 1(2):125—136
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θa

OA = 2, fixed
XOA = θa , variable

B

A

C

O X

Figure 1: Drawing a Triangle in Excel

above formula is applied. It is probably important to say that, once the skill sheet on
triangle drawing has been mastered, students need no further help to produce a similar
spreadsheet, apart from adding the check feature given below the chart. The check
feature shows that, no matter what shape triangle ABC is given, the sides of PQR are
always equal in length.

There is no claim here that the chart which demonstrates Napoleon’s Theorem rep-
resents any sort of proof that the theorem is true. But it certainly does seem to confirm
the result. This confirmation certainly helps to maintain the students’ motivation when,
later in the course, we use complex numbers to construct an algebraic argument that set-
tles its veracity. The complex number approach is one of many suggested by Bogomolny
[?], who gives a very comprehensive coverage of this elegant theorem.

Note too that the spreadsheet contains a minor addition to the theorem; the students
are asked to add in the lines AP , BQ and CR as in Figure 2, and to comment on what
they notice. It escapes no-one’s attention that these three lines are concurrent. We
return to this addition later in the paper.

4 An Extension of Napoleon’s Theorem

Davis [7, pages 6-11] also discusses two very similar theorems, which he struggled with.
The first of these is given as follows:

Equilateral triangles are constructed on the sides of a given triangle and external to
it. Prove that the three lines joining the outer vertex of one of the equilateral triangles

eJSiE 1(2):125—136 127
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A

C

B

E

D

F

P

Q

R

Figure 2: Napoleon’s Theorem

Line AD
A P AP

x-val 1.175571 -1.04212 Length 3.853553
y-val 1.618034 -1.53343 Slope 1.421058

Intercept -0.05252

B Q BE
x-val -1.96457 2.078171 Length 4.066627
y-val 0.374763 -0.06531 Slope -0.10885

Intercept 0.160909

C R CF
x-val 1.071654 -0.7534 Length 4.028643
y-val -1.68866 1.90288 Slope -1.9679

Intercept 0.420255

Figure 3: AD, BE and CF have the same length

128 eJSiE 1(2):125—136
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Figure 4: Squares on the sides of a Quadrilateral

to the opposite vertex of the given triangle meet in a point and are equal.
Because the hard work of setting up that chart in Napoleon’s Theorem has been

done, it takes little time for the students to make a copy of that and edit the copy to
produce the worksheet given as Extension. Having done this, they find that not only do
AD, BE and CF meet, but that, if the Excel calculations are to be believed, these lines
are also equal in length, as shown in Figure 3.

The spreadsheet also allows us to reverse the order of A, B and C, making them
appear anti-clockwise rather than clockwise. In doing this, the equilateral triangles are
drawn not on the outside of ABC but on the inside. Indeed, when only B and C
are swapped and the triangle reads as ACB in the anti-clockwise direction, two of the
equilateral triangles appear on the inside. When this happens, we find that the lines AD,
BE and CF do not always meet. But that is only because they need to be extended.
A careful watch of the lengths of these lines shows that they continue to have the same
length no matter what order A, B and C are in.

The benefits of creating a good looking spreadsheet, complete with named cells,
show up clearly as the students can see how little extra time is needed to demonstrate
the extension in spreadsheet form. And the flexibility of the spreadsheet indicates that
the more general form of the extension would be to replace the requirement that the
equilateral triangles be drawn outside the given triangle with a requirement that, as
we travel round the triangle, A to B to C and back to A, the equilateral triangles are
always drawn to the left or right of the direction of motion–the phrase frequently used

eJSiE 1(2):125—136 129
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Figure 5: Triangle with Squares

to describe this is in the same sense. Thus the extension could be restated as:
Equilateral triangles are constructed in the same sense on the sides of a given triangle.

Prove that the three lines joining the third vertex of one of the equilateral triangles to
the opposite vertex of the given triangle meet in a point and are equal.

The same applies to Napoleon’s Theorem, where the triangles can be consistently on
the inside or outside of the given triangle.

5 The Quadrilateral Equivalent

Whilst looking for further examples that could be used with the students, I came across
the following challenge on the Wilson website [13].

Given any quadrilateral, construct a square and locate its center on each side of the
quadrilateral. Explore the relationship of the two segments defined by connecting the
centers of squares on the opposite sides of the quadrilateral.

Wilson’s challenge is illustrated in Figure 4, and the parallel between it and Napoleon’s
Theorem is clear; add a regular four-sided figure to each side of a general four-sided fig-
ure. But the results appear to be rather different.

As before, the students were challenged to model the question in an Excel chart.
Rather than restrict ourselves to moving the vertices of the quadrilateral around a circle
(as was done for the triangle of Napoleon’s Theorem) we agreed that only the two points

130 eJSiE 1(2):125—136
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A and B should move, and that we could leave C and D fixed. After all, we were not
out to prove anything, only to use the spreadsheet to investigate some ideas.

The worksheet, Quadrilaterals, shows how the Wilson conditions can be animated,
and it includes a check that PR and QS (the joins of opposing centres of squares) are
both equal and perpendicular.

Because of the facility in the model to fully control the positions of vertices A and
B, we can also discover that when these two points coincide, the quadrilateral reduces
to a triangle, which leads to the following theorem1:

Let squares be constructed on the sides of a given triangle and external to it. The line
joining one vertex of the triangle to the centre of the opposite square is perpendicular
and equal to the line joining the centres of the two other squares.

6 Triangles with Squares

The above theorem has been given as a special case of Wilson’s challenge, when two
vertices of the quadrilateral coincide. However, if the spirit of Napoleon’s Theorem and
its extension is followed, the investigation from the point of view of triangles ought to
take a different tack. Thus the students were invited to develop the Triangles with
Squares worksheet. In this, instead of looking at the relationship between the vertex-
centre and centre-centre lines, we turned our attention to the joins of each vertex to the
centre of its opposite square, as shown in Figure 5. The striking feature is that the joins
of vertices to the centres of opposite squares again meet at a common point.

7 A Generalisation

We now have a growing body of evidence that is pointing in one direction–that there
is something special about locating a point in relation to one side of a triangle and
then joining that point to the opposite vertex. Generalisation, the last worksheet to be
developed, is based on the following theorem.

In a triangle ABC, let λ ∈ < and let lines of length λBC, λCA and λAB be drawn
perpendicular to BC, CA and AB from their respective mid-points, A0, B0 and C 0, to
the points D, E and F . The lines AD, BE and CF meet at a common point, P .

With very little alteration again, the spreadsheet that models this theorem was de-
rived from Triangles with Squares. The only major change is the introduction of a fourth
scrollbar to control the value of λ. By changing λ, the lengths of A0D, B0E and C 0F
are all altered, but the lines AD, BE and CF still meet at a point. In order to cover a
wide range of values for λ, the position of their meet, called P , is also calculated, and P
is added to AD, so that in effect Excel draws the lines ADP , BEP and CFP . This has
been done to allow for the situations where AD needs to be extended to meet the other
lines, i.e. when P does not lie between A and D.

1A spreadsheet for this theorem was prepared by a student at Kimberley College, Carbrook, and as
a reward I offered that, should the theorem ever be named, then it should be called Chan’s Theorem.

eJSiE 1(2):125—136 131
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Figure 6: A Generalisation

The generalisation is another way of stating Kiepert’s Theorem which is also dis-
cussed by Bogomolny [5], where instead of the parameter controlling the length of a
perpendicular to the sides of the triangle ABC, congruent isosceles triangles are drawn
on the sides; the effect is the same even if the articulations are not.

For students, the value of the generalisation is that it links a number of what might
be thought of as distinct results. For example, students can see that if we set λ = 0,
we have the median property, that the joins of the vertices of a triangle to the middle
of the opposite sides all meet at a point, the centroid. As λ tends to ±∞, the lines
AD, BE and CF approximate the altitudes of ABC, which also meet at a point, the
orthocentre. When λ =

√
3/2 and the extension to Napoleon’s Theorem is obtained.

We mentioned earlier that joining the vertices of the Napoleon triangle to the opposite
vertices of the original triangle produces lines that meet at a point. This case is covered
by λ = 1/(2

√
3) and the point at which AD, BE and CF meet is known as the Fermat

point, which has the property that PA+PB+PC is minimised. Finally, when λ = 1/2
the same result as that covered in the Triangle with Squares worksheet is demonstrated.

To explore the locus of P , the reader is invited to make two changes to the Gener-
alisation worksheet:

1. Right click the scrollbar for λ (which overlaps cell N2) and set the Maximum to
4000.

2. Select cell M2 and change the formula to make −20 ≤ λ ≤ 20. The formula should
be =-20 + N2/100.

Watch how the position of P changes with λ and, in particular, look for points that

132 eJSiE 1(2):125—136
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P passes through. The locus of P is known as Kiepert’s hyperbola and is discussed on
the MathWorld site at mathworld.wolfram.com/KiepertHyperbola.html.

8 Conclusions

The aim of this paper has been to show examples of using Excel to explore geometric
concepts. Starting from a simple spreadsheet that Grade 11 students are well capable
of mastering, Drawing a Triangle, the method of generalisation has been to use simple
extensions, such as:

• add in the line that joins two points,
• draw a line perpendicular to this line, passing through a given point,
• find the intersection of two lines.
Overall, the outcome of the investigations has been to find some generalisations to

known results as well as finding a generalisation that covers a wide range of such results.
But we need to stand back a little from the geometric content, and look at the value
that has been gained from using Excel in such a context.

Three benefits of using Excel over a conventional programming environment to make
these investigations are that:

1. Students have full control over what is drawn on the Excel chart, and are able to
construct their own understanding of the generalisation being explored.

2. The requirement for mastering a language’s syntax is minimal. Only the formulae
employed in drawing lines and the use of names need to be known to be able to
carry out the investigation.

3. The reader who followed the investigation of the locus of P will have noticed that
at no stage does the spreadsheet collapse because of a #DIV/0! problem. This can
be a difficult event to trap in a programming language, but it is not an issue when
using Excel.

As has been shown, key concepts such as vectors and matrices can be demonstrated
in Excel in a way that other media may not allow. Certainly graphics calculators would
be inadequate for such demonstrations, and while this author is not fully familiar with
geometry-specific environments such as Cabri, it is doubted whether they would be able
to do a great deal better . . . and much of the calculation would be hidden from the
student, who has to make everything happen in Excel.

The five worksheets given have a common look-feel, and were derived one from the
other once the basic triangle-drawing component had been established. Thus the labour
of producing the worksheets is not too large for students to achieve.

For this author, however, there is one further feature that is considered most impor-
tant. The charts all have an interactive quality in as much as all key variables can be

eJSiE 1(2):125—136 133
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controlled by the user, who by simply changing a scrollbar, can completely alter the look
of the chart without losing the underlying connections between the points that have been
plotted and joined on the charts. . It was because of this interactivity that questions
such as “what if we joined . . . ” were supported, and thanks to which, new ideas have
been explored by students in an environment that is wholly under their control.
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Appendix: Proof of the Generalisation
Let the points of the diagram be represented by complex numbers, such that, for

example:

A0 =
b+ c

2
(2)

D = λi (b− c) + b+ c
2

=

µ
1

2
+ λi

¶
b+

µ
1

2
− λi

¶
c (3)

where b = bx + iby and c = cx + icy.
The representation of D uses the property that multiplication by i is equivalent to

rotation by π/2 in an anticlockwise direction.
Consider the point P , which is defined as the point where AD and BE meet. We

shall find a condition for P to lie on both AD and BE, and from that condition show
that P also lies on CF , which will complete the proof.

Given that P lies on AD, a parameter α can be defined to give the position of P as:

p = a+ α (d− a) (4)

= α

µµ
1

α
− 1
¶
a+

µ
1

2
+ λi

¶
b+

µ
1

2
− λi

¶
c

¶
(5)

The coordinate system is now chosen such that P lies as the origin. Thus:

0 =

µ
1

α
− 1
¶
a+

µ
1

2
+ λi

¶
b+

µ
1

2
− λi

¶
c (6)

Therefore:

2

µ
1

α
− 1
¶
ax + bx − 2λby + cx + 2λcy = 0 (7)

and

2

µ
1

α
− 1
¶
ay + 2λbx + by − 2λcx + cy = 0 (8)

Eliminating the bracketed expression in α from the above equations allows the condition
for P to be at the origin to be written as:

aybx − 2λayby + aycx + 2λaycy = 2λaxbx + axby − 2λaxcx + axcy (9)
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This equation can be used with cyclic rotation of a, b and c to give the condition that
P is at the origin and lies on BE. This condition is:

bycx − 2λbycy + byax + 2λbyay = 2λbxcx + bxcy − 2λbxax + bxay (10)

These two conditions can be added, and when terms in cx are collected on the right-hand
side and terms in cy are collected on the left-hand side, the following equation results:

cyax − 2λcyay + cybx + 2λcyby = 2λcxax + cxay − 2λcxbx + cxby (11)

This is the condition that the point P lies on CF and is at the origin. Hence AD, BE
and CF do meet at the origin of the chosen coordinate system.

Corollary 1 The locus of the point P, as defined above, is a conic that passes through
the three vertices, the centroid and the orthocentre of the given triangle.

Given that the locus we aim to show is a conic, affine transformations can be used
to greatly simplify the algebra. We assume that B = (0, 0), C = (1, 0) and that the
position of A is determined by a parameter c at the coordinates (c, 1). In this coordinate
system and using the complex number z = 1/2 + iλ to locate the positions of D, E and
F in the manner given by Bogomolny [?], the lines AD and BE respectively are given
by:

y =
2 (1− λ)

2c− 1 x+
2cλ− 1
2c− 1 (12)

y =
1− 2λ+ 2λc
1 + c− 2λ x (13)

The (x, y) coordinates of P satisfy both of the above, and thus eliminating λ between
these two equations will give a locus of P in terms of x and y. The expression obtained
on elimination of λ is:

−2x+ y (2c− 1) + 1
−x+ c

=
−x+ y (c+ 1)

x (c− 1) + y
(14)

or

x2 (1− 2c) + xy
¡
2c2 − 2c¢+ y2 (2c− 1) + x (2c− 1) + y

¡
1− c− c2

¢
= 0 (15)

This locus is of degree 2, which passes through the centroid,
¡
1
3 (c+ 1) ,

1
3

¢
, the ortho-

centre,
¡
c, c− c2

¢
, as well as the vertices A, B and C.
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