
Spreadsheets in Education (eJSiE)

Volume 1 | Issue 3 Article 1

October 2005

Using Spreadsheets for Teaching Principles of On-
line Checking of Logic Circuits
Ilya Levin
School of Education, Tel Aviv University

Vadim Talis
School of Education, Tel Aviv University

Follow this and additional works at: http://epublications.bond.edu.au/ejsie

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works
4.0 License.

This Regular Article is brought to you by the Bond Business School at ePublications@bond. It has been accepted for inclusion in Spreadsheets in
Education (eJSiE) by an authorized administrator of ePublications@bond. For more information, please contact Bond University's Repository
Coordinator.

Recommended Citation
Levin, Ilya and Talis, Vadim (2005) Using Spreadsheets for Teaching Principles of On-line Checking of Logic Circuits, Spreadsheets in
Education (eJSiE): Vol. 1: Iss. 3, Article 1.
Available at: http://epublications.bond.edu.au/ejsie/vol1/iss3/1

http://epublications.bond.edu.au/ejsie?utm_source=epublications.bond.edu.au%2Fejsie%2Fvol1%2Fiss3%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epublications.bond.edu.au/ejsie/vol1?utm_source=epublications.bond.edu.au%2Fejsie%2Fvol1%2Fiss3%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epublications.bond.edu.au/ejsie/vol1/iss3?utm_source=epublications.bond.edu.au%2Fejsie%2Fvol1%2Fiss3%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epublications.bond.edu.au/ejsie/vol1/iss3/1?utm_source=epublications.bond.edu.au%2Fejsie%2Fvol1%2Fiss3%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epublications.bond.edu.au/ejsie?utm_source=epublications.bond.edu.au%2Fejsie%2Fvol1%2Fiss3%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://epublications.bond.edu.au/ejsie/vol1/iss3/1?utm_source=epublications.bond.edu.au%2Fejsie%2Fvol1%2Fiss3%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epublications.bond.edu.au
mailto:acass@bond.edu.au
mailto:acass@bond.edu.au


Using Spreadsheets for Teaching Principles of On-line Checking of Logic
Circuits

Abstract
This paper examines the use of spreadsheets as a tool for learning theoretical principles of concurrent error
detection. Basic concepts of concurrent checking are presented by using specific spreadsheet templates. A
matrix representation of a system of logical functions is used for this aim. A specific technique is described for
constructing a logic simulator implementing this matrix representation. After the logic simulator construction,
students are able to solve practical tasks due to understanding its theoretical basis.

The proposed spreadsheet simulation approach for teaching the subject achieves the theoretical goal of the
lesson by making use of practical student activities.

Keywords
spreadsheets, learning environment, concurrent error detection, logic design learning

Distribution License

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0
License.

This regular article is available in Spreadsheets in Education (eJSiE): http://epublications.bond.edu.au/ejsie/vol1/iss3/1

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://epublications.bond.edu.au/ejsie/vol1/iss3/1?utm_source=epublications.bond.edu.au%2Fejsie%2Fvol1%2Fiss3%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages


Using Spreadsheets for Teaching Principles of
On-line Checking of Logic Circuits

Ilya Levin
School of Education, Tel Aviv University

i.levin@ieee.org

Vadim Talis
School of Education, Tel Aviv University

talisv@yahoo.com

October 5, 2005

Abstract

This paper examines the use of spreadsheets as a tool for learning theoretical
principles of concurrent error detection. Basic concepts of concurrent checking are
presented by using specific spreadsheet templates. A matrix representation of a
system of logical functions is used for this aim. A specific technique is described
for constructing a logic simulator implementing this matrix representation. After
the logic simulator construction, students are able to solve practical tasks due to
understanding its theoretical basis.
The proposed spreadsheet simulation approach for teaching the subject achieves the
theoretical goal of the lesson by making use of practical student activities.

Submitted January 2004; revised and accepted March 2004.

Keywords: Spreadsheets, learning environment, concurrent error detection, logic
design learning.

1 Introduction

The subject of concurrent error detection is normally considered an advanced topic and
therefore, is usually not covered in a textbook of introductory logic design. However,
the subject can be relatively easily included in a digital logic course.

The theory of concurrent error detection, being based on exact definitions and formal
reasoning, represents a good example of a well-formed academic discipline. At the same
time, the practical component of the discipline is industry oriented and, consequently,
requires non-formal understanding of its basic principles. Indeed, the concept of con-
current error detection has come from the industrial practice. The central question in
this field of computer engineering is how a fault affects behavior of a specific circuit.

eJSiE 1(3):153-163 c°2004 Bond University. All rights reserved.
http://www.sie.bond.edu.au

1

Levin and Talis: Teaching Principles of On-line Checking of Logic Circuits

Published by ePublications@bond, 2004



Checking Logic Circuits

Both the analytical and the synthetic kinds of thinking are useful here and are usually
applied when solving problems from the above field. The analytical thinking deals with
a specific form of question: “what if. . . ” which in this case means “what kind of be-
havior will a certain circuit produce in presence of a specific fault?” In this context, a
concept of the fault model (a formal representation of a real physical fault) is typically
used. The alternative synthetic thinking is usually applied in the form of synthesis of
a circuit followed by its computer-based simulation. While the analytical thinking con-
cerning concurrent checking circuits is usually connected with a theoretical approach to
solving the problem, the synthetic thinking supports a practical approach. Needless to
say, both of the approaches are essential in studying concurrent checking, and have to
be supported by appropriate educational means.

A gap between the theoretical and practical approaches to teaching the topic demon-
strates a typical problem in engineering education, which is a contradiction between the
practical orientation of the engineering education and its academic depth.

In this work, we illustrate a possibility to close the gap between the theoretical and
the practical components of the discussed topic by using circuits’ simulation within a
Microsoft Excel-based learning environment.

We propose to use a matrix logic simulator [1] as a basic model for simulating a logic
circuit within a spreadsheet. This simulator allows implementing a system of logical
functions as a specific spreadsheet template, and very simple reprogramming of the
system. As a result, the spreadsheet becomes an ideal environment for teaching a wide
plurality of topics that are based on logical functions. The matrix simulation was used
in a number of applications including: circuit simulation [1], educational robotics [2],
state machine simulation [3], and logical control design [4], [5].

The paper is addressed to those teachers of a digital design course who are interested
in introducing the subject of concurrent error detection into the curriculum. It has to
be especially useful for instructors of practical exercises since the practice lessons have
to provide a variety of student activities in the limited time available.

In the present paper we expand the above list by introducing a method for teaching
basics of concurrent checking circuits. According to the proposed approach, students
build matrix models of logic circuits within the spreadsheet, explore circuit behavior in
the presence of faults and come to general conclusions concerning fundamental concepts
of the topic under discussion. The approach is oriented to teaching the theoretical basics
of the discussed topic. It is focused on developing and exploring a spreadsheet based
learning environment that enables students to build logical circuits having a self-checking
ability.

We assume that the students have basic skills in operating a spreadsheet and in
defining functions for its cells. Thus we consider the students to be able to implement
the following computer-based scenario under teacher guidance.

1. Development of a spreadsheet template modeling a circuit.

2. Observing operation of the circuit modeled by the template. Observations are
made both without a fault, and in the presence of a fault.

154 eJSiE 1(3):153—163

2

Spreadsheets in Education (eJSiE), Vol. 1, Iss. 3 [2004], Art. 1

http://epublications.bond.edu.au/ejsie/vol1/iss3/1



I Levin and V Talis

3. Verification of the circuit from the point of its self-checking ability.

Our virtual lessons comprise four learning modules. Each of these modules imple-
ments the three steps and is dedicated to a specific topic of the subject. The modules are
related in such a way that after performing a specific module a student will be motivated
to perform the next one. In other words, each module solves the problem of a specific
topic and formulates a new problem for the next module. Modules that are discussed in
the paper relate to the following topics.

1. Combinational circuits

2. On-line checking circuits

3. Error-detection coding

4. Self-checking checker

The paper is organized as follows. Section 2 introduces the concept of a matrix logic
simulator as a main tool for modeling circuits by a spreadsheet. Appropriate definitions
from the field of on-line checking circuits are given in Section 3. A concurrent error
detection architecture within the spreadsheet is described in Section 4. Section 5 gives
an example of using the proposed approach at a lesson. Conclusions are presented in
Section 6.

2 Logic circuits within a spreadsheet

Spreadsheets are useful and flexible modeling tools. They may be regarded as normal
calculator-type tools, but are also universal homogeneous two-dimensional fields, which
can be used for implementation of various computational and logical functions forming
any functional circuit.

The paper [1] considers the use of spreadsheets for simulation of a system of logical
functions in matrix form (usually called Programmable Logic Arrays (PLA) [6] or Deci-
sion Tables [7]). The main idea of such a simulation is based on a two-layer spreadsheet
template. The first programmable layer relates to a system of logical functions in its
matrix form, while the second functional layer implements the universal PLA matrix.
Students are able to implement any system of logical functions by reprogramming the
first layer of the spreadsheet template. Moreover, they are able to run the simulation of
the circuit and analyze its functioning “on-line”.

Any system of logical functions y1, . . . , yN of variables x1, . . . , xM can be presented
in a Sum-of-Products (SOP) form and implemented in the form of a two level struc-
ture: products X1, . . . ,XH are implemented at the first level of this structure and sum
y1, . . . , yN of these products at the second level.

eJSiE 1(3):153—163 155

3

Levin and Talis: Teaching Principles of On-line Checking of Logic Circuits

Published by ePublications@bond, 2004



Checking Logic Circuits

Table 1: Description of the matrix structure

x1 x2 x3 x4 y1 y2 y3
1 0 − − 1 1 •
0 1 − 1 1 • 1

0 − 0 0 1 • •
1 − 1 0 • 1 •
1 1 − − • 1 1

− 0 − 0 • 1 •
0 − 0 − • • 1

Let us consider one example of the matrix implementation [1] of a system of logical
functions, using a system presented in eqs 1—3 in a SOP form.

y1 = x1x
0
2 + x

0
1x2x4 + x

0
1x

0
3x

0
4 (1)

y2 = x1x
0
2 + x1x3x

0
4 + x1x2 + x2x4 (2)

y3 = x
0
1x2x4 + x1x2 + x

0
1x

0
3 (3)

Any SOP can be presented in tabular form. Columns appearing in the tables are marked
by variables x1, . . . , xM and functions y1, . . . , yN . Every product corresponds to a specific
row of the table. Character 1 appears at the intersection of row h and column m, if the
variable xm is contained in the term Xh in the direct form. Character 0 appears at the
intersection of row h and column m, if the variable xm is contained in the term Xh in
the inverse form. Character “-” appears at the intersection of row h and column m, if
the variable xm is absent in the product Xh.

Character 1 appears at the point of intersection of row h and column yN , if term Xh

is contained in the function yN (n = 1 . . . N); Character • appears in the opposite case.
The logic arrays of our example, corresponding to system (1) are shown in Table 1.
A hardware circuit implemented in the form of a two level matrix structure which has

a fixed numbers of inputsM, internal rowsH and outputsN is known as a Programmable
Logic Array (PLA). The PLA implements a SOP form of the system of logical functions
of interest.

The proposed method of SOP simulation includes constructing two interacting work-
sheets named SOP and PLA. Worksheet SOP represents the SOP of a system, and
worksheet PLA models the PLA operation.

Every cell of PLA is programmed by a universal function, which will be presented
below. This function’s value depends on the value of a corresponding cell of the worksheet
SOP, which is a copy of Table 1. Let us now construct the PLA worksheet.

Variables x1, x2, x3, x4 and y1, y2, y3 are directly copied on to the worksheet PLA
from Table 1. According to the matrix structure, each cell of the AND matrix can
implement one of three different functions: reference to the contents of the left hand
cell, product of the variable and contents of the left hand cell, product of negation of the
variable and contents of the left hand cell. Each cell of the OR matrix can implement

156 eJSiE 1(3):153—163

4

Spreadsheets in Education (eJSiE), Vol. 1, Iss. 3 [2004], Art. 1

http://epublications.bond.edu.au/ejsie/vol1/iss3/1



I Levin and V Talis

one of two functions: reference to the value of the higher preceding cell or the sum of
the higher preceding cell and a corresponding output of the AND matrix.

Functions of the worksheet PLA are defined by the following rules.
For the AND array:
If 1 appears in a cell (m,h) of SOP, then the product of the value of the correspond-

ing variable and that of a preceding left hand cells will be updated into the correspondent
cell Fm,n. This can be expressed by the function Fm,n = Fm−1,h & Fm,1.

If 0 appears in a cell (m,h) of SOP, then the conjunction of the inversion of value
of the corresponding variable and of the value of the preceding left hand cells will be
updated into the corresponding cell Fm,n. This can be expressed by the function Fm,n =
Fm−1,h & F

0
m,1.

If “-” appears in a cell (m,h) of SOP, then the value of the corresponding variable
will be updated into the corresponding cell Fm,n. This can be expressed by the function
Fm,n = Fm−1,h.

Formally, all these conditions can be expressed as one function:

Fm,n =


Fm−1,h & Fm,1 if 1 appears in cell (m,h) of SOP
Fm−1,h & F

0
m,1 if 0 appears in cell (m,h) of SOP

Fm−1,h if “-” appears in cell (m,h) of SOP
(4)

For the OR array:
If character 1 appears in the cell (m,h) of SOP, then sum of the value of the

corresponding variable and the value of the higher preceding cell will be updated into
the corresponding cell Fm,n. The indicative function in this case is Fm,h = Fm,h+Fm,h−1.
If character • appears in a cell (m,h) of SOP, then the value of the higher preceding
cell will be updated into the corresponding cell Fm,n. This can be expressed by function:
Fm,h = Fm,h−1.

Formally, both of above conditions can be expressed in the form of the function Fm,h:

Fm,h =

½
Fm,h + Fm,h−1 if 1 appears in cell (m,h) of SOP,
Fm,h−1 if • appears in cell (m,h) of SOP.

(5)

Functions (4) and (5) are implemented within the cells of the AND and OR arrays
of the SOP worksheet correspondingly.

In [8], the logical capacity of spreadsheets was used for teaching principles of the
error detection in digital logic courses. The present study also uses the logical capacity
of spreadsheets as a basis for developing systems of logical functions. The simplicity
of both defining and redefining any logic system is exploited in our study for modeling
functional circuits in the presence of a fault, in comparison with the fault-free case.

3 Basic definitions

The self-checking property can be defined as the ability of a circuit to verify concurrently
and automatically, whether there is any fault in the circuit’s logic (without the need for

eJSiE 1(3):153—163 157

5

Levin and Talis: Teaching Principles of On-line Checking of Logic Circuits

Published by ePublications@bond, 2004



Checking Logic Circuits

Functional circuit

Checker

X1

Xm

Y1

Yn

R

Functional circuit

Checker

X1

Xm

Y1

Yn

R

Figure 1: Concurrent checking architecture.

an externally applied test). Thus, self-checking circuits allow concurrent on-line error
detection, i.e., allow detection of faults during the normal operation of the circuit.

A circuit is self-testing if, for every fault from an assumed fault set, the circuit
produces a non-codeword at the output for at least one input code word.

A circuit is fault-secure for an assumed set of faults if, for any fault in the set, the
circuit’s output is either a correct codeword or a non-codeword. It means that the circuit
never produces an incorrect codeword for an input codeword.

The circuit is totally self-checking if it is both self-checking and fault secure. Totally
self-checking circuits are very desirable for highly reliable digital systems, since during
normal operation all faults from a given set would cause a detectable, erroneous output.

A schematic diagram of a concurrent self-checking circuit is shown in Figure 1. It
consists of a functional circuit (FC) and a checker, both of which are self-checking. The
function of the checker is to check validity of output codewords of the circuit.

We use a Sum-of-Minterms (SOM) based checker [9] that implements a sum of all
minterms corresponding to output vectors y1, . . . , yN of the functional circuit. When an
output vector is a codeword, the corresponding minterm will be activated and conse-
quently, the output error signal R will be equal to one. In the opposite case, when the
output vector is a non-codeword, no SOM checker’s minterm will be activated and the
error checker’s signal R will be equal to 0, which means that an error is detected.

4 Concurrent checking architecture within a spreadsheet

Now we construct an Excel template that simulates functioning of the self-checking func-
tional circuit implementing a certain system of logic functions represented in a matrix
form. We assume that students are able to create a spreadsheet model of the logic
system.

We construct the checker as a SOM-checker [9]. The SOM checker implements a
logical function and, consequently, can be implemented by the matrix model. Table 2
shows a programmable layer of the spreadsheet model for the self-checking architecture
for an exemplary system of logical functions.

158 eJSiE 1(3):153—163

6

Spreadsheets in Education (eJSiE), Vol. 1, Iss. 3 [2004], Art. 1

http://epublications.bond.edu.au/ejsie/vol1/iss3/1



I Levin and V Talis

Table 2: Programmable matrix of spreadsheet template for self-checking scheme

x1 x2 y1 y2 y3
0 0 0 0 1

0 1 1 1 0

1 0 0 0 0

1 1 1 0 1

y1 y2 y3 R

0 0 1 1

1 1 0 1

0 0 0 1

1 0 1 1

The upper matrix in Table 2 corresponds to a functional circuit (FC) (x1 and x2 are
inputs of the FC y1, y2 and y3 are its outputs) while the lower matrix corresponds to the
checker (R is an error signal). Notice that here and below, AND matrices are written in
a regular font while OR matrices are written in italic.

5 Sample lesson for studying the self-testing property

Students study basics of the concurrent error detection (which are unidirectional errors
and an unordered coding) by developing a matrix model of a functional circuit imple-
menting a system of logic functions and by constructing the SOM checker for this system
(Table 2).

Students “inject” a fault into the spreadsheet model of the functional circuit and
observe/analyze consequences of the fault injection, using the R output of the circuit.
Table 3 presents the matrix from Table 2, upon injection of the certain fault. Let this
fault is a stuck-at-1 crosspoint fault in the intersection of the output line y2 and the
first product term. Such a fault can be presented by “one” instead of “zero” in the
intersection of the first row and the y2 column of the programmable matrix (see Table
3). Students can come to a conclusion that this fault will be detected when the input
vector (00) occurs. In this case, the output vector of the FC is equal to (011) and, since
this vector is absent in the AND matrix of the checker, the checker’s output will be equal
to 0 that is a signal of error. This error signal can be observed in the functional layer of
the matrix model.

Students come to the conclusion that the proposed model enables detection of all
errors that lead to occurrence of a non-code output word. However, some faults may
lead to appearance of a code vector, which means that this fault is undetectable. Two
following examples illustrate this situation.

Example 1 If due to a fault, the third and the fourth product terms (see the third and
the fourth lines of Table 2) are equal to one, the resulting output vector will be equal to
codeword 101 resulting from the OR summing of 000 and 101.

eJSiE 1(3):153—163 159

7

Levin and Talis: Teaching Principles of On-line Checking of Logic Circuits

Published by ePublications@bond, 2004



Checking Logic Circuits

Table 3: Programmable matrix after fault injection

x1 x2 y1 y2 y3
0 0 0 1 1

0 1 1 1 0

1 0 0 0 0

1 1 1 0 1

y1 y2 y3 R

0 0 1 1

1 1 0 1

0 0 0 1

1 0 1 1

Example 2 The fault is a stuck-at-1 fault in the y3 output column, on its third row. In
this case, when input vector 10 occurs, the resulting output vector will be equal to correct
codeword 001 which means that the fault is not detected.

In both of the above cases, the error signal is absent despite the presence of the
fault. The students have to analyze the reason for this phenomenon, and will be asked
to suggest their own solution to this problem. In other words, they will have to propose
a method of achieving the self-testing property of the system. One well-known solution
of the problem is to complement outputs of the Functional Circuit by check bits rep-
resenting any unordered code [10]. The teacher may suggest this elegant solution after
explaining the nature of the problem. The students may complete the template with the
unordered code as shown in Table 4. In this table, the well known modified Berger code
is applied (each output vector is additionally provided with check bits being a binary
value of the number of zeros in the vector decreased by one). Notice that introduction
of the check bits does not require introduction of any new formula. Indeed, the check
bits of the FC are programmed by the OR array formula (3), while the check bits of the
checker are programmed by the AND array formula (2).

Upon building such a template, the students can verify the self-testing property of the
functional circuit and the checker. They are able to inject faults that were not detected
in an original circuit and observe that the new solution enables detection of these faults.
This remarkable fact can motivate students to answer for a question: why it became
possible? What price do we pay here for achieving the self-checking property? The
teacher should be able to introduce the concept of redundancy and to explain the idea
of trade-offs between the redundancy and reliability in solving technological problems.

The next step of the work can be stimulated by the fact that the checker does not
meet the self-checking property. Indeed, if any of its output crosspoints (R-column)
become stuck-at-1 (or so-called stuck-at-product faults), the checker will never produce
the error signal. The teacher may propose that the students solve this problem by
themselves. The authors’ experience indicates that some students are able to solve this
problem and, sometimes, even to propose interesting solutions.

160 eJSiE 1(3):153—163

8

Spreadsheets in Education (eJSiE), Vol. 1, Iss. 3 [2004], Art. 1

http://epublications.bond.edu.au/ejsie/vol1/iss3/1



I Levin and V Talis

Table 4: Spreadsheet template for unordered coded circuit

x1 x2 y1 y2 y3 Check bits
0 0 0 0 1 0 1

0 1 1 1 0 0 0

1 0 0 0 0 1 0

1 1 1 0 1 0 0

y1 y2 y3 Check bits R

0 0 1 0 1 1

1 1 0 0 0 1

0 0 0 1 0 1

1 0 1 0 0 1

Table 5: Programmable matrix for the self-checking scheme with dual-rail checker

x1 x2 y1 y2 y3 Unordered code
0 0 0 0 1 0 1

0 1 1 1 0 0 0

1 0 0 0 0 1 0

1 1 1 0 1 0 0

y1 y2 y3 Unordered code R1 R2
0 0 1 0 1 1 0

1 1 0 0 0 1 0

0 0 0 1 0 0 1

1 0 1 0 0 0 1

The solution that may be proposed by the teacher is presented in Table 5 and termed
a dual-rail implementation, and is very important for understanding of concurrent error
detection principles. This new self-checking architecture includes two columns corre-
sponding to the error signal (R1 and R2).

The students investigate the solution in the same style as the previous tasks. They
inject various faults into the matrix and analyze obtained results of the matrix function-
ing. It would be easy to convince the students that in the case of proper functioning of
the circuit the output signals of the checker will be R1 = 0; R2 = 1 or R1 = 1; R2 = 0.
Every other output vector indicates the fact of the fault.

The authors of the paper checked the presented approach in teaching the subject
Introductory Logic Design during one semester. The approach had proven its success
by essentially improving the understanding of the subject by the students, and by effec-
tiveness of practical exercises, namely the students were available to solve much more
suggested practical tasks during one lesson.

eJSiE 1(3):153—163 161

9

Levin and Talis: Teaching Principles of On-line Checking of Logic Circuits

Published by ePublications@bond, 2004



Checking Logic Circuits

6 Conclusions

We have presented a method for teaching the subject of concurrent error detection to
electrical engineering students, in the framework of a digital design course.

We propose using a matrix simulator as a base for building spreadsheet models of
logical circuits. This matrix simulator is suitable for constructing a flexible learning
environment that allows performing a number of experiments under the teacher’s guid-
ance.

We propose a sequence of steps for creating various self-checking architectures. The
aim of these experiments is to introduce to students the fundamental concepts of the
theory of concurrent error detection in logical circuits. All experiments with spreadsheet
templates are performed in the framework of the same lesson, step-by-step, and can
therefore be considered as a spreadsheet based introduction to on-line checking principles.

Notice that contrary to the regular spreadsheet based teaching and learning meth-
ods, the proposed approach is addressed to teaching theoretical concepts, and not just
teaching applicative issues of a certain subject matter.

Students are taught to build spreadsheet templates for modeling digital circuits, and
these templates allow visualization of the error detection process. The proposed method
can be extended for teaching other concurrent checking concepts and methods.

References

[1] Levin, I. (1993). Matrix Model of Logical Simulator within Spreadsheet, In-
ternational Journal of Electrical Engineering Education, Vol.30, 3, pp.216-223.

[2] Mioduser, D., Levin, I., and Talis, V. (1995). Cognitive-Conceptual Models for
Defining Robot Control, Artificial Intelligence in Education, Association for Ad-
vancement of Computers in Education, Washington, USA, 131—134.

[3] Levin, I. (1994). The State Machine Paradigm and the Spreadsheet Learning Envi-
ronment, In: A.J. Smith (ed.) Engineering Education, Increasing Students Partici-
pation, Sheffield Hallam University, Sheffield, UK, 351—355.

[4] Levin, I., and Levit, V. (1998). Controlware for Learning with Mobile Robots,
Computer Science Education, 8(3): 181—196.

[5] Levin, I., and Mioduser, D. (1996). A Multiple-Constructs Framework for Teaching
Control Concepts, IEEE Transactions of Education, 39(4): 488—496.

[6] Baranov, S. (1994). Logic Synthesis for Control Automata, Kluwer Academic Pub-
lisher.

[7] Humby, E. (1973). Programs from decision tables, London, Macdonald and Co.;
New York, American Elsevier.

162 eJSiE 1(3):153—163

10

Spreadsheets in Education (eJSiE), Vol. 1, Iss. 3 [2004], Art. 1

http://epublications.bond.edu.au/ejsie/vol1/iss3/1



I Levin and V Talis

[8] Anneberg, L. (1999). Error Detection and Correction Templates for Digital Courses,
IEEE Transaction on Education, 42(2).

[9] Levin, I., and Karpovsky, M. (1998). On-line Self-Checking of Microprogram Con-
trol Units, 4-th International On-line Testing Conference, Capri, Compendium of
papers, 153—159.

[10] Lala, P. (2000). Self-checking and Fault-Tolerant Digital Design, Morgan Kaufmann
Publishers, San Francisco.

eJSiE 1(3):153—163 163

11

Levin and Talis: Teaching Principles of On-line Checking of Logic Circuits

Published by ePublications@bond, 2004


	Spreadsheets in Education (eJSiE)
	October 2005

	Using Spreadsheets for Teaching Principles of On-line Checking of Logic Circuits
	Ilya Levin
	Vadim Talis
	Recommended Citation

	Using Spreadsheets for Teaching Principles of On-line Checking of Logic Circuits
	Abstract
	Keywords
	Distribution License


	levin.dvi

