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Recursion and Spreadsheets

Abstract

This article provides a definition of recursion1 based on the facilities offered by the spreadsheet. The recursive
paradigm is contrasted with the functional form, whereby a table of values is generated by reference to the
values of neighbouring cells rather than by means of context-independent direct formulae. The examples given
in this article show that the application of recursive thinking need not be restricted to conventionally
recognized areas, but that in many cases recursive thinking allows fresh insight into normally ‘hard’ areas.
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Abstract

This article provides a definition of recursion' based on the facilities offered
by the spreadsheet. The recursive paradigm is contrasted with the functional form,
whereby a table of values is generated by reference to the values of neighbouring cells
rather than by means of context-independent direct formulae. The examples given
in this article show that the application of recursive thinking need not be restricted
to conventionally recognized areas, but that in many cases recursive thinking allows
fresh insight into normally ‘hard’ areas.
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1 Introduction

For centuries, mathematical computation was made possible through the use of tables:
powers, square roots, logarithms, sines, cosines, and many other very useful quantities.
Such tables had their origins in the need for accurate maritime navigation, for which
tables were first developed in the 16" century. In 1569, Mercator published his famous
projection map, and Wright followed with a set of corrected tables for this projection

By recursion, we refer to primitive recursive functions that are described formally as recursive
functions that can be implemented programmatically by iteration (loops) [27]. This level of formality is
not appropriate to this paper, and we give a less formal definition of recursion later in the paper.
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at the close of that century [12]. One can have nothing but admiration for those whose
efforts went into the creation of this information form.

Four centuries later, with the advent of the modern computer, the need for tables
of data was superseded, but a similar effort was channeled into the development of pro-
gramming languages in which information processing needs could be expressed. While
not the only programming paradigm, the implementation of recursion as a way of ex-
pressing a problem and hence its solution by program became one of the main tools
available to programmers.

In this paper, we explore how the spreadsheet provides an environment in which both
information can be quickly laid out in tabular form, and how this layout so elegantly
supports the recursion paradigm. The term elegantly is used here to capture the notion
that a recursive approach, when used on a spreadsheet, is not only the simplest, but
most often the most transparent way of describing a process and of generating a table
of values within which the solution to a problem can be found.

Recursion is a computational method based on (usually simple) relationships be-
tween values of a sequence: a small number of initial elements being separately defined
(otherwise the calculation could not start). The remaining elements are calculated from
their predecessors using a specified calculation method. The (much overworked) factorial
function is defined in such a way, and is shown in eq (1).

1 if n=0
':
" {nx(n—l)! if n>0 (1)

Recursion is seldom taught in schools except where LOGO is used to enhance under-
standing of geometry. The main reason for this seems to be the complexity of evaluation,
or finding the value of a recursively defined function for a given value of x. It is not
always easy to understand the definition of a recursive function as we tend to expect that
a function will be defined as a formula that enables the function output to be calculated
directly from its input. However, given that the Church hypothesis [16] asserts that
every computable function can be expressed as a recursive function, we should not feel
that the ground that can be covered by recursive functions is limited.

Recursive functions or procedures are also not very popular among computer pro-
grammers. The main reasons for this would seem to be an apparent complexity in their
definitions and a reputation of poor run-time performance (inefficiency).

But we need to define what we mean by the use of recursion on a spreadsheet and
indicate what the inferior alternatives are. Let us begin then with an example from school
mathematics, the arithmetic sequence. The sum of the first n terms of an arithmetic
sequence is given by:

1
S:na+§n(n—1)d (2)
In eq (2), a is the initial term and d the constant difference. While this formula can

certainly be used to calculate the nth sum, the process by which the sum is obtained is
completely obscured by the formula. On the other hand, with a little understanding of
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Al B | ¢ | D | Al B | c ] D
1 1
2 a 12 2 a 12
3 d 3.5 3 d 3.5
4 4
5 n term sum 5 n term sum
6 1 12 12 6 1|=a =C6
7 2 15.5 27.5 7 2|=C6+d =D6+C7
8 3 19 46.5 8 3|=C7+d =D7+C8
9 4 22.5 69 9 4(=C8+d =D8+C9
10 5 26 95 10 5(=C9+d =D9+C10
11 6 29.5 124.5 11 6/=C10+d |=D10+C11
12 7 33 157.5 12 7|=C11+d |=D11+C12
13 8 36.5 194 13 8[=C12+d |=D12+C13
14 9 40 234 14 9|=C13+d |=D13+C14
15 10 43.5 277.5 15 10|=C14+d ([=D14+C15
16 11 47 324.5 16 11(=C15+d |=D15+C16

Figure 1: Values and recursive formulas for an arithmetic sequence.

spreadsheet mechanics, the table of Figure 1 can be constructed in such a way that both
a and d can be given values that the user might choose and all intermediate calculations
are on display as well.

In Figure 1, we see one of the hallmarks of a recursive, rather than functional,
relationship. The term column expresses the relationship that successive terms are made
by adding d, the constant difference, at each stage. The sum column first establishes the
initial value, and the remaining formulas are based on close neighbor values, expressing
the recursive definition that each sum is made by adding the current term to the previous
sum. Many readers will be familiar with the key combination?: Hold down <Ctrl> and
press <~> as the way to switch between the left-hand part and right-hand part of Figure
1. It is a key combination that the authors use frequently in the classroom to uncover
the calculations that a spreadsheet uses.

The expressions used for the term and sum column are those that are closest to
our interpretation of recursion within the spreadsheet. The formula for term cam be
recursively expressed as

a if n=1
termy, = { term,_1 +d if n>1 (3)

The recursive equivalent of sum is

s — a if n=1 (4)
"1 sumy_1 +term, if n>1

Their analogs can be easily found in the columns of Figure 1.

2This key combination applies to Excel spreadsheets and may be different in other spreadsheet pro-
grams.
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Al B [ ¢ | D | Al B | ¢ | D
1 1
2 a 12 2 a 12
3 d 3.5 3 d 3.5
4 4
5 n term sum 5 n term sum
6 1 12 12 6 1|=a+(n-1)*d [=n*a+0.5*n*(n-1)*d
7 2 15.5 27.5 7 2|=a+(n-1)*d |=n*a+0.5*n*(n-1)*d
8 3 19 46.5 8 3[=a+(n-1)*d [=n*a+0.5*n*(n-1)*d
9 4 22.5 69 9 4[=a+(n-1)*d |=n*a+0.5*n*(n-1)*d
10 5 26 95 10 5|=a+(n-1)*d |=n*a+0.5*n*(n-1)*d
11 6 29.5 124.5 11 6[=a+(n-1)*d [=n*a+0.5*n*(n-1)*d
12 7 33 157.5 12 7|=a+(n-1)*d |=n*a+0.5*n*(n-1)*d
13 8 36.5 194 13 8[=a+(n-1)*d [=n*a+0.5*n*(n-1)*d
14 9 40 234 14 9|=a+(n-1)*d |=n*a+0.5*n*(n-1)*d
15 10 43.5 2775 15 10[=a+(n-1)*d |=n*a+0.5*n*(n-1)*d
16 11 47 3245 16 11[=a+(n-1)*d [=n*a+0.5*n*(n-1)*d

Figure 2: Using non-recursive formulae to create a table of values.

Whilst programmers might define recursion in terms of a routine that calls itself
recursively until the terminating condition is met, recursion within the spreadsheet is
somewhat simpler.

Definition 1 A recursive process within a spreadsheet is one in which a table of values
is formed sequentially by means of formulae that refer to nearby cells that have been
evaluated earlier in the calculation sequence.

To complete our introduction, let us generate the same table of values, but this time
using the functional form of the expressions for term and sum3.

In Figure 2, we give values and formulas for the same table, and invite the reader to
make a comparison between that and Figure 1, from a learner’s point of view. Noss [18]
has suggested that we may need to rethink about which is more natural: direct formulas

or recursive ones. The present authors are in complete agreement.

2 Recursion at the foundation of mathematics

The concept of recursion is one of the fundamentals of mathematics as it is the method
by which both sequences and the Axiom of Mathematical Induction are defined. Indeed,
it could be argued that only sets, functions and relations are more fundamental than
sequences and induction, as the normal definition of an infinite sequence is “a func-
tion whose domain is the natural numbers” [17]. Since the natural numbers are the

3Note: In this example, we have made extensive use of Names, a feature of Excel spreadsheets that
greatly simplifies the appearance of formulae. We should remind readers that the only letters that are
reserved by Excel are C (for columns) and R (for rows) and that simple lettering for variable names,
such as that used in this example, should be used wherever possible.

JSIE 2(1):50-72 53
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rock-bottom foundation of the hierarchy of number systems, and fundamental to the
development of all mathematical structures, it is not hard to see that sequences (and
hence recursion) assume an essential and fundamental role in the development of math-
ematics. The natural numbers themselves are defined by the Peano Axioms [20] where
the smallest natural number is defined to be 1. A more modern definition appears on
a page of the Math World site [26], where, according to modern consensus, zero is now
granted membership as follows.

1. Zero is a number.

2. If a is a number, the successor of a is a number.

3. Zero is not the successor of a number.

4. Two numbers of which the successors are equal are themselves equal.

5. Induction axiom. If a set, S, of numbers contains zero and also the successor of
every number in S, then every number is in S.

Our interest here is in use of recursion in Axiom 2, and in the principle of math-
ematical induction, embodied in Axiom 5. Notorious among students for its difficulty
(see, for example, Abramovich and Pieper [2] and Sugden [23]), the fifth axiom is as-
sociated with an extremely powerful technique of proof, wide-ranging in its potential
scope of application: any true proposition concerning the set of natural numbers is, in
principle at least, a candidate for inductive proof. The process whereby mathematical
induction often uses a formula associated with n to show the correctness of the successor
formula associated with n + 1 is closely related to recursion, and their structures may
be usefully compared. For IT majors, a fundamental unit is discrete mathematics, and
will typically include both mathematical induction and elementary recurrence relations,
but perhaps not recursive programming, which is usually left to a programming unit.
Nevertheless, one of the authors has found it beneficial to point out the many connec-
tions between recursion and induction, via such seemingly mundane fundamentals as
truth-tables, relations, binomial coefficients, sets and power sets (Sugden [23]).

3 How does a table express a recursive relationship?

The spreadsheet is a tool, available on essentially every PC, that provides strong support
for tabular information. Indeed, the Fill Handle offers features that make the construc-
tion of tables both natural and rapid. When combined with the ability to highlight
numbers that meet predetermined criteria by the use of conditional formatting [3], the
tabular layout provides more that just a list of calculated values. Patterns may be easily
observed, giving a strong support to constructivist learning, and solutions to equations
located by visual means. For example, if a table of function values is created and solu-
tions to f (x) = 0 are sought, then applying a conditional format to table such as that
shown in Figure 3, enables roots to be located visually rather than by inspection.

54 JSIE 2(1):50-72
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To slightly paraphrase Hamming, computing is about insight, not numbers! [8].
When we have tables or lists (sequences), it is of interest, from the constructivist view-
point, to find and explain patterns within them. Mathematicians look for patterns, and
would encourage students at school to do the same when learning mathematics. Consider
the following statement by Hardy [9]:

A mathematician, like a painter or a poet, is a maker of patterns. If his
patterns are more permanent than theirs, it is because they are made with
ideas. ... The mathematician’s patterns, like the painter’s or the poet’s, must
be beautiful; the ideas, like the colours or the words, must fit together in a
harmonious way. Beauty is the first test: there is no permanent place in the
world for ugly mathematics.

We have the spreadsheet at our disposal: a near-ideal tool for looking for patterns.
Have we overlooked the power at our fingertips in a spreadsheet environment?
But just because a table of values can be readily formatted to expose patterns does
not necessarily imply that it should be constructed in recursive, rather than functional,
form. The many examples given later in this article are intended to make the case that
the recursive method has wide application as well as providing a simplifying view of the
processes that underlie a model. But before we expand into these examples, we give a
further rationale in support of the use of recursion within a table of values.

Conditional Formatting EHE |

ondition 1

ICEII Walue Is j IIess than j IIZI :‘J
Preview of Format bo use AaBhCoY wFr

when condition is true: ¥

@I add == | Delete. .. | 04 | Cancel

Figure 3: Applying conditional formatting to a table of values.

Recursion, and recurrence relations, are pervasive concepts in mathematics and com-
puter science. Indeed, entire programming languages are based on recursion (for ex-
ample, LISP [14], Scheme [22]), so it is perhaps surprising that recursive programming
traditionally is very tricky for students. Recurrence relations (also called difference equa-
tions) and their continuous analog, differential equations, are pervasive in mathematics
and the physical sciences and yet are usually perceived by students as being complex
and confusing. Later, we present examples to show that recursive relationships are nat-
urally and easily represented in a spreadsheet; so much so that we might be inclined
to underestimate the relatively high information content of a seemingly simple-looking
recursive formula that may arise in programming and mathematics. For example, the

JSIE 2(1):50-72 55
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Al B | ¢Cc | Al B [ ¢ |
1 1
2 n Fib 2 n Fib
3 1 1 3 1 1
4 2 1 4 2 1
5 3 2 5 3|=C3+C4
6 4 3 6 4[=C4+C5
7 5 5 7 5|=C5+C6
8 6 8 8 6|=C6+C7
9 7 13 9 7|=C7+C8
10 8 21 10 8|=C8+C9
11 9 34 11 9[=C9+C10
12 10 55 12 10|=C10+C11
13 11 89 13 11[=C11+C12

Figure 4: The Fibonacci sequence.

Fibonacci sequence is nearly trivial to generate on a spreadsheet (see Figure 4) but the
corresponding formula is inaccessible to all but the top echelon of high-school mathe-
maticians.

In contrast to the simplicity of Figure 4, the formula for the n!* term of a Fibonacci
requires a substantial understanding of mathematical notation.

1 (1+vB\" 1 [1-vB)\"
A

Through the formulas of Figure 4, we can see how a recursive relationship is expressed in
a table by means of reference to neighboring cells. But the table goes one step further in
providing understanding and insight into formulas that are expressed in recursive terms.
A typical computer science exercise would be to ask the student to generate a trace
table of values that the execution of a routine implies. By generating a trace table, the
student may be able to locate where an error in coding has occurred, or alternatively,
to verify that a process is executing correctly. This is where one of the great benefits of
computing recursive expressions appears: a table of values emerges. Normally, there is
a considerable overhead to the generation of a trace table, but when the table of values
in a spreadsheet is created, the trace of many iterations is part and parcel of the process
[13].

Thus the spreadsheet not only makes it appropriate to express relationships in their
recursive form, it also provides a complete trace of the correctness of the processes used—
a form of feedback that in computer science normally requires considerable overhead.

Can a recursive reference also address cells to the right or down? Yes, in some
special cases—when then size of the referenced area can be restricted by a constant—
such calculations are possible. Hvorecky and Trencansky [10] describe a calculation of
this type. An unlimited growth to the right or down would certainly cause problems as

56 JSIE 2(1):50-72
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sooner or later a cell with an undefined content or a non-existing cell (a cell outside the
sheet) will be referenced.

4 Power in simplicity

Consider this: even without using any mathematical functions, that is, just by keeping
to the four operations of arithmetic, we can produce models of great power, yet of very
low complexity. We offer our compound interest/superannuation or mortgage payment
models in Excel. These each contain one addition and one multiplication, yet, with
the recursive power of fill-down, generate a complete payment schedule, and are able
to cope with residuals and superannuation rollover from a previous fund into a new
one. Our spreadsheet will double up for Excel’s built-in financial functions, of which
the big five are PV, FV, PMT, RATE and NPER, but it requires no understanding of these
complex formulas. We start with an example of superannuation, also termed a future
value annuity.

Consider the following example (a slightly modified examination question from the
1990s in Discrete Mathematics at Bond University):

Example 2 Al Gorithm has a superannuation account in which $200 is deposited at the
end of each month. His account earns 12% per annum compounded monthly, and was
opened with a one-off deposit of $200,000, being a lump-sum payout from a previous fund
after switching jobs. The first monthly payment of $200 was made at the end of the first
month. For each nonnegative integer, n, let $x,, be the amount in the account at the end
of n months.

1. Write down a linear, first-order recurrence relation for x,

2. Find the general solution for your recurrence relation of part 1.

3. Find the particular solution satisfying the initial condition o = 200, 000.
4

. Assuming no 3200 payment is missed, and the interest rate never changes, how
long will Al have to wait for his account to be worth 31,000, 0007

These questions invite an answer in functional form, and after a moderate algebraic
effort, we obtain the solution of a recurrence relation. We could also have used the Excel
intrinsic such as NPER to solve this problem. While it is useful for the student to know
how to use such functions, that approach obscures the structure of the problem. If our
goal is not just to get the right answer, but also to show maximum understanding of
the structure of the problem, then the recurrence approach in Excel is strongly recom-
mended. Numerical analysts may argue that round-off errors may accumulate and affect
the accuracy of the answer, but this is not a significant problem, even for hundreds or
even thousands of periods. A side benefit of the recursive method in Excel is that a
complete schedule of net worth is generated.

To show how the model is created, we give the following steps that produce the
spreadsheet shown in Figure 5.

JSIE 2(1):50-72 57
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B C | D |
net worth at end of month payment rate
200000 200 0.01
=C3 + rate*C3 + payment
=C4 + rate*C4 + payment
=C5 + rate*C5 + payment
=C6 + rate*C6 + payment
=C7 + rate*C7 + payment
=C8 + rate*C8 + payment
=C9 + rate*C9 + payment

3
s>
>

QOlOo(N|[O|O|B|WIN|F
~No ok WNEO

Figure 5: The Financial Model

1. In A1:D1, respectively type the headings “month”, “net worth at end of month”,
“payment” and "rate".

2. Fill the range A2:A202 with the series 0,1,2,3... by typing 0 in cell A2, holding
down <Ctrl> and dragging the Fill Handle down to A202.

3. Click in cell C2. Then go to the Name Box and type “payment” followed by
<Enter>. Now click in D2 and name it in the same way as “rate”.

4. Click on Column B and format it to $. Do the same with cell C2.
5. In C2, type 200 and in B2, type 200,000.

6. Now comes the recurrence: in cell B3, put a formula which shows that after one
month, our net worth is the sum of three quantities:

e what we had last month ($200,000),
e the interest on that sum, and finally,

e the monthly payment.
Thus, our formula is: (B3) = B2 + rate*B2 + payment
1. Double-click on the fill-handle of B3. The recurrence now occupies cells B3:B202.
2. Scrolling down to B157 yields our answer, which is 155 months (in A157).

Suppose now that 155 months (almost 13 years) is a bit too long for Al to have to
wait. He wants to retire on $1,000,000 (or thereabouts) in 10 years instead of 13. How
do we solve this one?

We assume he can increase his payment from $200 sufficiently to allow early retire-
ment. We can now use Goal Seek to determine the payment so that B122 (net worth
after 10 years) is 1,000,000. The steps are:

58 JSIE 2(1):50-72
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Goal Seek E |

Set cell: Igu:ual :"‘_J
To value: { 1000000
By changing cell: Ipa-;.-ment :‘J

Ik I Cancel |

Figure 6: Using Goal Seek to find the required payment

1. Click in B122; then click-in the Name Box and type “goal” followed by <Enter>.
2. Select Tools: Goal Seek and fill out its dialog box as shown in Figure 6.

3. Click OK, and Excel will do the rest. A surprisingly substantial increase from $200
to $1477.68 is seen to be necessary, even with a relatively high interest rate of 1%
per month! Al may wish to reconsider his plan and just work for another three
years!

In summary, we should point out that a minimum of effort is needed to establish this
superannuation model. It includes rollover from a previous fund, and the ability to alter
payments at any stage should we want to investigate a different time period. It would
be very easy to extend to make the interest rate another parameter, and likewise for the
initial rollover value. These answers may be checked with Excel intrinsics such as PMT,
FV or even by algebra using sums of appropriate geometric series. A similar Excel model
may be made to produce a schedule for mortgage payments; in fact we need to change
just one character! The formula in B3 and its descendants in the same column just
needs to be changed from (B3) = B2 + rate*B2 + payment to (B3) = B2 + ratexB2
- payment.

The potential that such a deceptively simple model offers business students for learn-
ing the structure of elementary finance in a compound interest environment is consid-
erable indeed, and many more variations on this theme can be quite easily done. For
example, we may ask what new interest rate would be necessary for Al to retire in 10
years, if he is prepared to increase his monthly contribution to $500. Such a question
can easily be accommodated, and answered, by defining the rate as a parameter (just
like payment was) and then invoking Goal Seek.

5 A range of applications

We conclude this article with a range of applications of the recursive paradigm with the
intention of showing that the method is not restricted to replacing numerical formulas
with recurrence relations. For a modern, general treatment of the recursive paradigm in
the spreadsheet environment, the work of Kreith and Chakerian [11] is worth reading.
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Table 1: The recurrence for Pascal’s triangle.
A B C D E
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This book illustrates that such an environment is well-suited to investigations into dy-
namic modeling and chaos theory. For an even more recent treatment of a wide-range of
applications, we recommend articles that have appeared in earlier issues of Spreadsheets
in Education; in particular, in the domain of geosciences, the excellent paper of Fratesi
and Vacher [7].

The reader might like to open the attached spreadsheet, recursion.zls, where we give
working models of each of the applications discussed below.

o) [ 6) 1)1 ()]G

5.1 Combinatorial numbers

The foregoing examples showed some of the simplest recursive functions. Their defini-
tions contained only one trivial and one recursive case. There are many functions with
more complex definitions. One well-known example is the collection of combinatorial
numbers forming Pascal’s triangle (see Abramovich and Brantlinger [1] for a discus-
sion of the pedagogical aspects of using spreadsheets to explore this topic). Their most
common definition is

m 1 if n=20
< > = 1 if n=m (6)
" (™ + (M) i 0<n<m
It consists of two trivial cases (for the extreme values of n) and one recursive (for the
values in between).

Our first problem is to position the calculation into the sheet. Let the values of
m grow with the column numbers. Then the values of n also grow with the column
numbers. One can see that all the pairs in the sheet are different because the difference
between m and n grows in each row. In the first row, it equals zero. In the second row,
it is one, in the second it is two, and so on. Table 1 shows our proposed organization of
combinatorial numbers in Pascal’s triangle.
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Notice that the Pascal triangle is slightly rotated. Usually, it is formed by rows of
m, whereas in Table 1, its rows are the diagonals of the sheet. The first standard row
corresponds to m = 0. Here it is just the cell Al. The second row (for m = 1) is formed
by A2 and B1. The third row is made by A3, B2, and C1. Thus, the k-th row of the Pascal
triangle starts at the k-th row of the sheets and occupies its corresponding diagonal.

It is easy to see that first row and the first column must contain just 1’s. These are
our boundary conditions, when n = 0 and m = n. In this representation, the numbers
referred to in the recursive case are the upper and left neighbor of the calculated value
so that (B2) = A2 + B1.

Filling the formula into all empty cells of the sheets computes Pascal’s triangle, as
shown in Figure 7.

A [ B J ¢ [ b ] A ] B [ ¢ T b ]
1 1 1 1 1 |1 1 1 1 1
2 1 2 3 4 [2 1=A2+B1 =B2+Cl =C2+ D1
3 1 3 6 10 [3 1=A3+B2 =B3+ C2 =C3 + D2
4 1 4 10 20 [4 1=A4+B3 =B4 + C3 =C4 + D3
5 1 5 15 3B [5 1 =A5+ B4 =B5 + C4 =C5 + D4
6 1 6 21 56 |6 1=A6 + B5 =B6 + C5 =C6 + D5

Figure 7: Pascal’s triangle calculated by recursion.

5.1.1 Strips of Pascal’s triangle

The same set of numbers can also be defined by other recursive relationships. The first
one is a rarely used but simple formula:

m 1 if n=0
<n>_{%(7f‘11) if 0<n<m (7)

Notice that the elements bound by the recursive case form the rows in our representation
of the triangle. On the other hand, the cell must “know” its position in the sheet.
Otherwise m and n must be specified as constants somewhere in the sheet—our readers
are welcome to form such a solution as an easy exercise.

The position of the cell can be calculated using ROWS and COLUMNS functions. For
given m and n, its corresponding combinatorial number (T;) is located in the cell for
which the next relationships hold:

m = number of rows + number of columns —2

n = number of columns —1

The implementation starts with the trivial case. The number 1 is typed in the first
cell of the addressed row. For example, if our goal is the value of (Z), we work in the
fifth row e.g. start with A5. Into B5 we build the recursive formula using the ROWS and
COLUMNS functions in the form:

(B5) = ((ROWS(B$1:B5)+ COLUMNS($A5:B5)-2)/(COLUMNS($A5:B5)-1)) * A5
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N|o|o|R~|WIN| -

Figure 8: Pascal’s triangle calculated by rows

Al B ] c | b ] E]
1 1 1 1 1 1
2 1 2 3 4 5
3 1 3 6 10 15
4 1 4 10 20 35
5 1 5 5 3B 70
6 1 6. 21 56 126
7 1 7 28 84 210
8 1 8 36 120 330

Figure 9: Pascal’s triangle calculated by columns

where ROWS(B$1:B5) calculates the number of rows between the beginning of the
strip and the given cell (inclusive). COLUMNS($A5:B5) calculates in a similar way the
number of columns. Spreading the formula along the fifth row produces the section of
the triangle shown in Figure 8.

In the chapter on recursion in Polya [21], one can find inspiration for forming similar
selected portions of Pascal triangle.

5.1.2 Complex recursive formulas

Another recurrence defining of Pascal’s triangle is quite complex. It goes as follows:

(m) { 1 if n=0 (8)
= -1 -2 +1 -1 .

n o)+ o)+ +GR)+ )+ (o) i n>0

In our rectangular representation, the long summation contains a strip in the nearest
column to the left of the calculated cell — starting from the neighboring cell up to the
top as shown in Figure 9. To calculate the value of D6, all values from C1 to C6 must be
summed. Thus, the method of calculation becomes obvious: we fill the first column with
1’s. Then we use the formula (B1) = SUM(A$1:A1)in B1 and spread it into all remaining
cells of the sheet.
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B=Q

Figure 10: Locating the next point

5.2 Chaos theory

We will return to Pascal’s triangle in a moment, but let us first digress to consider
the Chaos Game of Barnsley. The Chaos Game provides a fascinating introduction to
fractals and demonstrates how order can be derived from an apparently random activity.
The activity itself can only be described in recursive terms.

Points are positioned in triangle ABC according to the following rules.

1. Point 1 is a randomly chosen point inside the triangle.

2. Point n is derived from point n — 1 by randomly choosing @) as point A, B or C
and making P,, the midpoint of QP,_1.

Figure 10 shows this for the case when @ is chosen to be B, but it could equally well
have been A or C.

The behaviour of the Chaos Game can be simulated in Excel by recursive formulas
to make a table of values such as those shown in Figure 11.

In Figure 11, the initial values of the point P1 are shown as (2,2) and names are
created for the = and y coordinates of triangle ABC. The formulas* used are:

(B3) = RANDBETWEN(1, 3)

(C3) = OFFSET(base, B3, 1)

(D3) = OFFSET(base, B3, 2)

(E3) = scale*C3 + (1 - scale)*E2
(F3) = scale*D3 + (1 - scale)x*F2

1The RANDBETWEEN function is part of the Excel Analysis toolkit, which may need to be installed
before the function can be used.
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Figure 11: Spreadsheet values for the chaos game.

To make a reasonable representation of positions that P, can take, at least 3000
points need to be plotted, but given that there is space to calculate some 63000 points,
the 3000 are easily accommodated. With this spreadsheet it is good to turn off the
automatic calculation feature on the Tools: Options: Calculation tab.

As shown in Figure 12, the resulting image is that of the Sierpinski Gasket, although
not yet complete. By augmenting the Chaos Game spreadsheet, the resulting pattern
can be turned into a gasket for a square, pentagon, etc., depending on how many points
in the original figure there are to choose from.

O’Sullivan shows how Pascal’s triangle can be modified to demonstrate the same
pattern. Using the diagonal form, make the following change: (B2) = MOD(B1 + A2,
2).

This picks out where the elements of the triangle are odd, and then condition format-
ting can be used to expose the Sierpinski Gasket (see O’Sullivan [19]). Choose Format:
Conditional Formatting and set the first condition to be equal to 1. After some
rescaling of the cell size, the result is as shown in Figure 13.

5.3 Simulation

There are many situations where a simulation model relies on a recursive definition. A
very modern example is O’Sullivan [19], while a more comprehensive treatment in that
of Kreith and Chakerian [11]. Typically, the use of the Fibonacci sequence to model
a rabbit population is used in the classroom. A similar model, but one that is less
deterministic than the Fibonacci model, can be described in terms of tossing coins. The
growth of a rabbit population is defined by the following rules:

64 JSIE 2(1):50-72
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1 [Point Random [chosen-x [chosen-y |x-value |y-value Scale 0.5

2 1 3 4 0 2 2

3 2 2 2 4 2 3 Base X y

4 3 2 2 4 2 3.5 A 0 0
5 4 3 4 0 3 1.75 B 2 4
6 5 2 2 4 2.5 2.875 C 4 0
7 6 2 2 4 2.25 3.4375

8 7 2 2 4 2.125( 3.71875

9 8 2 2 4 2.0625| 3.859375

10 9 3 4 0| 3.03125| 1.929688

11 10 3 4 0| 3.515625| 0.964844

12 11 1 0 0| 1.757813| 0.482422

13 12 1 0 0| 0.878906| 0.241211

14 13 3 4 0| 2.439453| 0.120605

15 14 1 0 0| 1.219727| 0.060303

16 15 3 4 0| 2.609863| 0.030151

17 16 1 0 0| 1.304932| 0.015076
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Figure 12: Chaos game chart
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Figure 13: Sierpinski’s gasket
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1. Initially there is a population of 10 rabbits. Using normal ecology conventions, we
consider only female rabbits as they are able to breed.

2. Each breeding season, the females have a 50% chance of breeding and have three
offspring when they do.

3. Also, predators take their toll on the population, with each rabbit having an even
chance of survival to the next breeding season.

The process can be modeled by tossing the coins on the table and counting the
number that have Heads showing, an event that has an even chance of occurring.

Figure 14: The Sierpinski gasket and Pascal’s triangle

Students can be asked to both derive a deterministic model and run a simulation
with coins (recording only Heads as a Birth) and to comment on the results. To run the
simulation requires a large number of coins, as the population can quickly get quite large,
and as a result the data gathering part of the exercise is likely to be very time-consuming.

The same simulation can be set up in Excel by basing the coin simulation on random
numbers and using the CRITBINOM function®. This function returns the number of suc-

For some reason, there appears to be an unspecified limit on the number of trials allowed with the
CRITBINOM function, thus in the simulation given, a sample size of 100 was used and then scaled to the
actual size of the rabbit population.
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cesses of a Bernoulli trial needed achieve a given probability or criterion. Thus if there
were 100 rabbits with a 50% chance of breeding, a simulation of this is obtained by: =
CRITBINOM(100, 0.5, RAND())/100.

Suppose RAND() evaluates to 0.3, then this formula returns the proportion of breed-
ing rabbits that would have a 0.3 chance of happening. This function can be used for
predation as well as breeding, and produces the data shown in Figure 16.

Year Random 1|Random 2|Breed Predate
0 10 10
1 55 48 26 12
2 42 48 27 12
3 52 49 30 14
4 54 54 36 19
5 51 50 48 24
6 42 53 54 28
7 53 58 72 41
8 52 51 104 53
9 52 46 135 62
10 44 54 143 77

Figure 15: Simulation of rabbit breeding

The randomized model needs to be compared with the deterministic model in which
the number of rabbits that breed in season n is 0.5 x 3 x P,_jand this is added to
the previous season’s population, while the predation reduces this by half. Thus the
recursive definition of P, is given by P, = 1.25P,_;. The deterministic and simulated
data can be compared on a graph as that shown in Figure 17.

When the calculation mode has been set to Manual, by choosing the Tools: Op-
tions: Calculation tab, it is possible to run many simulations and to explore the way
in which the deterministic model is occasionally matched by the simulation model, but
often the two vary considerably ... particularly on those occasions when the predators
get the upper hand and the population is wiped out entirely, but on other occasions, the
two models agree quite well, as is the case in the simulation run on which Figure 16 was
based.

Before leaving the topic of simulation, we note that the modern spreadsheet is not
just useful for teaching simulation modeling, but also allows “industrial-strength” real-
world simulation; just two examples are those of Noble and Sugden [24], and Thiriez
[25].

5.4 Mazes

The recursive concept lies at the heart of many maze-threading algorithms. Who has
not followed this rule:
Keep your hand on the left-hand wall.
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Rabbit Population Simulation

1200

1000

800 ~

Deterministic

600 - )
— - -Randomised

400 -

200
/

# Seasons

Rabbit Population

Figure 16: Graphs of the rabbit population simulation

In the same vein, there is the greedy algorithm concept, defined rather precisely by
McMahon [15] as those non-backtracking algorithms in which irrevocable decisions of
global significance are made on the basis of local information. We summarize this as: do
the best you can from where you are.

However, to write such programs in a programming language often requires a hefty
overhead of data input and output and the simplicity of the recursive definition of the
process can be lost. To demonstrate the power of recursion in this context, the spread-
sheet can greatly simplify data input and output and at the same time clearly exemplify
how and why the recursive process works.

Suppose the maze-threading problem is posed as:

A grid of numbers is given. Starting at the top left corner and moving only to the
right and downwards, find the path with the smallest total.

First, a random grid can be established in cells C4:N15 with the RANDBETWEEN func-
tion.

(C4) = RANDBETWEEN(1, 10)

This formula is dragged over the range C4:N15 to give a 12 by 12 grid of random
numbers. We will denote this table of random numbers by R(i, 7).

The first stage of threading the maze is to make a lowest-score grid of the same size
in R4:AC15. The values in this grid are based on recognising that the lowest total that
can be in any position in the lowest-score grid is found by the recursive formula:

St+1,7+1)=R(i+1,j+1)+MIN (S(i+1,5),5(,5+1)

This recursive formula translates into cell formulae such as:
(R4) = C4
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(S5) = D5 + MIN(R5, S4)

That is, apart from the top left cell, the value in a cell is found by adding the lesser
of the values above it and to its left to the current value of the cell. To enable the D5
+ MIN(R5, S4) formula to be used in every cell of lowest-score grid, we create a wall
of high numbers around the outside of R4:AC15. This ensures that along the edges, the
total is always calculated from numbers inside the grid.

If a trace of the actual path is needed, the formulas are a little more complicated,
but still fully recursive in nature (see Figure 16). The path into cell X is from either of
cell A or B, and from A, you only choose to go to cell X if its total-so-far is less than
that of cell Z. There is the additional requirement, of course, that the path goes through
A in the first place. Thus the journey path is created with the formulas:

Y

Go to Cell X
from B only if
X<=Y

Goto Cell X
from A only if
X<=Z

Figure 17: The conditions that apply to choosing cell X

(AG4) 1

(AH5) = IF(AND(S5<=T4, AH4 = 1), 1, IF(AND(S5<=R6, AG5=1), 1, 0))

This time a wall of 0 values is placed round the grid to indicate the path doesn’t use
a cell that is outside the grid and conditional formatting can be used to highlight the
cells in the journey grid that the path uses.

6 Conclusion

The examples given in Section 5 underline the inherent simplicity of a recursive formu-
lation of a problem. When, in the 19" century, Fourier [6] explained the use of infinite
series to represent functions, he did more than open up a very fertile area of mathemat-
ics. He challenged the conventional thinking that a function could only be expressed as
a finite combination of algebraic symbols. In doing so, Fourier changed the mathemati-
cians’ view of the function and the benefit of the changes was widespread. In a similar
way, the recursive definition of a function or process represents a changing view of the
function and it is one that still has to find its place in the educational context.

The paradigm of recursive thinking differs from functional thinking in that it repre-
sents the rules that determine the transition between states rather than a fixed functional
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form. Our definition of recursion in terms of the spreadsheet emphasizes this distinction
by referring to formulas based on the values of neighboring cells that will alter depend-
ing on the position of the formulas in the spreadsheet. As a result, we find that the
use of recursive formulas relies on the power of the spreadsheet to generate tables of
information, but this is a positive feature of their use rather than an overhead, because
spreadsheets are designed to support this type of layout and provide support through
facilities such as the Fill Handle and Conditional Formatting. Another benefit of the
use of recursive thinking that we would claim lies in the simplicity of the formulas that
express such relationships by comparison with formulas expressed in functional form.

We do not expect to learn how close we might have come to convincing the reader
that the recursive method, when combined with the table features of the spreadsheet,
provides us and our students with an unusually powerful tool for learning, exploring
and doing mathematics. But we can hope that the impression that the reader takes
away will sustain interest enough to continue exploration into how simple formulas,
combined with a tabular layout really does open up new possibilities for students to gain
insight into mathematical concepts. While we have pointed to a number of indicators
suggesting that others recognize and have researched the value of recursive thinking
within the spreadsheet context, we know that the impact of such insights on mainstream
mathematics teaching have yet to be felt.
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