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Mean-Gini Portfolio Analysis: A Pedagogic Illustration

Abstract
It is well known in the finance literature that mean-variance analysis is inappropriate when asset returns are
not normally distributed or investors’ preferences of returns are not characterized by quadratic functions. The
normality assumption has been widely rejected in cases of emerging market equities and hedge funds. The
mean-Gini framework is an attractive alternative as it is consistent with stochastic dominance rules regardless
of the probability distributions of asset returns. Applying mean-Gini to a portfolio setting involving multiple
assets, however, has always been challenging to business students whose training in optimization is limited.
This paper introduces a simple spreadsheet-based approach to mean-Gini portfolio optimization, thus
allowing the mean-Gini concepts to be covered more effectively in finance courses such as portfolio theory
and investment analysis.
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Abstract

It is well known in the finance literature that mean-variance analysis is inap-
propriate when asset returns are not normally distributed or investors’ preferences
of returns are not characterized by quadratic functions. The normality assumption
has been widely rejected in cases of emerging market equities and hedge funds. The
mean-Gini framework is an attractive alternative as it is consistent with stochastic
dominance rules regardless of the probability distributions of asset returns. Apply-
ing mean-Gini to a portfolio setting involving multiple assets, however, has always
been challenging to business students whose training in optimization is limited. This
paper introduces a simple spreadsheet-based approach to mean-Gini portfolio op-
timization, thus allowing the mean-Gini concepts to be covered more effectively in
finance courses such as portfolio theory and investment analysis.

Submitted March 2006; revised and accepted July 2006.

Keywords: portfolio analysis, mean-Gini, mean-variance.

1 Introduction

The mean-variance approach, under which investment decisions are based on the mean
and the variance of the probability distribution of investment returns, has revolutionized
risk analysis and portfolio management since its introduction by Markowitz [15] over 50
years ago. To this date, the mean-variance approach still dominates finance textbooks at
undergraduate and graduate levels. Levy and Markowitz [12] justify its use by showing
that mean-variance optimization is equivalent to maximizing a second order Taylor-
series approximation of expected utility functions. The degree of exactness depends on

∗Acknowledgement: Financial support for this study was provided by the Social Sciences and Hu-
manities Research Council of Canada.
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the shape of the probability distribution of returns and the nature of the utility function
involved. From a theoretical perspective, the mean-variance approach is appropriate
only when investment returns are normally distributed or investors’ preferences can be
characterized by quadratic functions.

As the assumption of quadratic utility is known to be problematic on theoretical
grounds, normality of investment returns becomes necessary for the mean-variance ap-
proach to hold. The validity of the assumption of normality or even near normality,
however, is questionable when applied to financial assets such as derivatives (which in-
clude various forms of options on stocks and other assets), stocks from emerging markets,
and hedge funds. The effect of derivatives in altering the resulting portfolio return dis-
tributions is well recognized in the literature.1 In the case of emerging market equities,
Bekaert and Harvey [2], for example, reject normality for most of the return distributions
in their sample. Hedge funds, each being a privately managed pool of investment cap-
ital and originally intended for wealthy investors, have become the hottest investment
vehicle over the last decade. According to Ibbotson and Chen [7], in 1990, there were
about 530 hedge funds managing about 50 billion dollars and, by the end of 2004, there
were over 8,000 hedge funds with about one trillion dollars under management. It is well
known that hedge fund returns display option-like payoff patterns that are not normally
distributed.2 Thus, the usual mean-variance framework is not expected to work well for
all these financial assets.

As explained below, a mean-Gini framework is an attractive alternative. The Gini
coefficient is a measure of inequality (or dispersion) that was first introduced to the
economics profession almost a century ago. The name is in honour of Corrado Gini who
developed this measure. The mean-Gini approach, with Gini treated as a risk measure for
investments, was eventually introduced to the finance profession by Shalit and Yitzhaki
[19] in 1984. Since then, it has become a highly regarded and popular investment tool.
Its role as a viable alternative to the mean-variance approach has been acknowledged by
investment practitioners as well.3

To illustrate what Gini measures in an investment context, suppose that an invest-
ment return can be characterized as a random draw from a probability distribution. To
see whether the distribution is widely dispersed, we can take many random draws, a
pair at a time, and observe the magnitude of the difference between each pair. For a
widely dispersed distribution, the magnitude of that difference as observed from many
repeated random draws would tend to be large. In contrast, for a narrowly dispersed
distribution, the magnitude of that difference would tend to be small.

The Gini coefficient formally captures the expected value of that magnitude. There-
fore, a mean-Gini framework is similar to a corresponding mean-variance framework in
that it also uses two summary statistics – the mean and a measure of dispersion – to
characterize the distribution of a risky prospect. With Gini being a measure of disper-

1See, for example, Cheung, Kwan, and Yip [4], Lien and Luo [13], and Shalit [18].
2See, for example, Fung and Hsieh [6].
3Recent examples of mean-Gini studies include Lien and Shaffer [14], Shaffer and Demaskey [17], and

Shalit and Yitzhaki [20]. See these studies for other references. As Biglova, Ortobelli, Rachev, and
Stoyanov [3] report, the mean-Gini approach is among the several major approaches in practice.
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sion, the framework provides a necessary condition for stochastic dominance regardless
of the probability distribution of returns.4 ,5 Further, unlike the mean-variance results,
the mean-Gini results will not involve situations where an investor ends up selecting
an inferior investment among competing prospects. This is due to the fact that the
restrictive assumption underlying the mean-variance framework (to ensure its validity)
does not apply to mean-Gini. Hence, mean-Gini is potentially a better framework than
mean-variance.

Although mean-Gini is both conceptually and intuitively appealing and is well ac-
cepted by the academic finance profession,6 it has not yet gained any textbook accep-
tance. This is in part due to the fact that its implementation in portfolio problems
involving multiple assets is cumbersome. In contrast to what can be achieved within the
mean-variance framework, which is well developed analytically, the corresponding mean-
Gini solution methods are tedious, even for small-scale portfolio selection problems. As
Okunev [16] explains, to determine an efficient mean-Gini portfolio without short sales
(i.e., without allowing negative holdings of any assets) based on 100 assets with return
data over 60 time periods requires solving a linear programming problem with as many
as 3,640 variables and 1,772 constraints. Thus, the solution methods involved are much
too complicated for coverage in courses of portfolio theory and investment analysis.

To bypass the above analytical complications, we propose here a simple spreadsheet-
based approach for mean-Gini portfolio analysis. The analysis is particularly useful
for investment situations where direct applications of the mean-variance approach are
known to be inappropriate.7 In what follows, Section 2 introduces the Gini coefficient
and expresses it in an analytically convenient form. Section 3 shows, with an illustra-
tive example, how the Gini coefficient can be estimated using Microsoft ExcelTM on

4If the cumulative distribution of asset X, defined in terms of wealth (or return), always lies to the
right of the cumulative distribution of asset Y, then asset X is said to dominate asset Y according to
first-degree stochastic dominance. In this case, the two cumulative distributions never cross each other.
First-degree stochastic dominance applies to all increasing utility functions. If the dominance of one
asset over another asset cannot be established by first-degree stochastic dominance, then we can try the
second-degree stochastic dominance criterion. In order to use such a criterion, we require risk aversion
of the investor. For a risk-averse investor, the increases in utility for constant changes in wealth (or
return) decline as wealth (or return) increases. For any given investment outcome, if the accumulated
area under the cumulative probability distribution of asset X is less than the accumulated area for asset
Y, then asset X dominates asset Y according to second-degree stochastic dominance. This requirement
of the two cumulative distributions ensures that the investor has a greater expected utility from investing
in asset X than from investing in asset Y.

5The framework also provides a sufficient condition if the families of cumulative distributions intersect
at most once. See Shalit and Yitzhaki [19] for the analytical correspondence between mean-Gini and
stochastic dominance.

6Besides the studies referenced in footnote 3, see also Kolb and Okunev [8, 9].
7 Just like the traditional mean-variance approach, the mean-Gini approach also relies on static op-

timization to reach its portfolio solutions. The lack of an analytically tractable dynamic version of
the mean-Gini approach is its disadvantage as an investment tool. To this date, however, static mean-
variance optimization is still routinely applied in practical investment settings. Thus, an alternative and
easily implemented risk measure within a static framework, such as the Gini coefficient, which is free
from the known problems associated with the variance of returns as a risk measure, is still practically
relevant.

196 eJSiE 2(2):194—207
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microcomputers. Section 4 extends the analysis to a portfolio setting to allow efficient
mean-Gini portfolios to be constructed using available Excel tools. Finally, Section 5
provides some concluding remarks.

2 The Gini Coefficient

Following the approach of Shalit and Yitzhaki [19], let Z1 and Z2 be a pair of random
returns drawn from a continuous probability distribution, where f(z) and F (z) are its
probability density function and its cumulative probability density function, respectively.
With the entire distribution extending over the range of z = a to z = b, where b > a, we
have Z b

a
f(z)dz =

Z b

z=a
dF (z) = 1 (1)

and

F (z) =

Z z

a
f(z)dz, (2)

implying that F (a) = 0 and F (b) = 1. Then, with E(·) generally representing the
expected value of a variable (·), the Gini coefficient is

Γ =
1

2
E (|Z1 − Z2|) , (3)

half of the expected value of the absolute difference between Z1 and Z2 given the above
probability distribution.8

As expected values involving an absolute difference are difficult to work with, we
now follow the same approach as in Dorfman [5] to express the Gini coefficient in an
equivalent but analytically more convenient form. A crucial algebraic expression used in
that study is9

|Z1 − Z2| = Z1 + Z2 − 2 min(Z1, Z2), (4)

where min(Z1, Z2) represents the smaller case between Z1 and Z2. Accordingly, we have

Γ =
1

2
{E(Z1) +E(Z2)− 2E [min(Z1, Z2)]} , (5)

where

E(Z1) = E(Z2) =

Z b

a
zf(z)dz =

Z b

z=a
zdF (z) (6)

8Some authors simply define Γ as E (|Z1 − Z2|) and some others, especially those using the Gini
coefficient to study income inequality of the economy, define Γ as 1

2μE (|Z1 − Z2|) , where μ is the mean
of the distribution. We choose to stay with the form 1

2E (|Z1 − Z2|) in this pedagogic note, as it is the
form commonly adopted for mean-Gini portfolio analysis in the finance literature. See, for example,
Shalit and Yitzhaki [19, 20].

9 If Z1 ≤ Z2, then, with min(Z1, Z2) = Z1, the right hand side of the expression becomes Z2 − Z1,
which is non-negative. If Z1 > Z2 instead, then, with min(Z1, Z2) = Z2, the right hand side of the
expression becomes Z1−Z2, which is positive. Thus, in both cases, the right hand side of the expression
is the magnitude of the difference between Z1 and Z2, which is |Z1 − Z2|.
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is the mean of the distribution, μ. Before we can work with the Gini coefficient, however,
we still have to find an explicit expression for E [min(Z1, Z2)] in terms of f(z) or F (z).

For this task, consider an arbitrary value of z from the distribution f(z) or, equiv-
alently, the cumulative distribution F (z). The probability that “both Z1 and Z2 are
greater than z” and the probability that “at least one of Z1 and Z2 is not greater than
z” must sum to 1 as the two probabilities cover all potential outcomes for each given
value of z. With

Pr(Z1 ≤ z) = Pr(Z2 ≤ z) = F (z), (7)

the probability that “both Z1 and Z2 are greater than z” is

Pr(Z1 > z)× Pr(Z2 > z) = [1− F (z)]2. (8)

Noting that the probability that “at least one of Z1 and Z2 is not greater than z” is
the same as the probability that “the minimum of Z1 and Z2 is not greater than z, ” we
have

Pr[min(Z1, Z2) ≤ z] = 1− Pr(Z1 > z)× Pr(Z2 > z) = 1− [1− F (z)]2. (9)

The probability Pr[min(Z1, Z2) ≤ z] can be viewed as the value of the cumulative
distribution function G(y) of the random variable y = min(Z1, Z2), at y = z. As this
random variable extends over the range of y = a to y = b, it follows that

E [min(Z1, Z2)] =

Z b

y=a
ydG(y), (10)

which is analytically equivalent toZ b

z=a
zdG(z) =

Z b

z=a
zd
©
1− [1− F (z)]2

ª
= 2

Z b

z=a
z[1− F (z)]dF (z). (11)

The Gini coefficient, therefore, becomes

Γ = μ− 2
Z b

z=a
z[1− F (z)]dF (z) = 2

Z b

z=a
z

∙
F (z)− 1

2

¸
dF (z). (12)

Given that

E[F (z)] =

Z b

z=a
F (z)dF (z) =

1

2

n
[F (b)]2 − [F (a)]2

o
=
1

2
, (13)

Z b

z=a
{F (z)−E[F (z)]} dF (z) = 0, (14)

andZ b

z=a
E(z) {F (z)−E[F (z)]} dF (z) = E(z)

Z b

z=a
{F (z)−E[F (z)]} dF (z) = 0, (15)

198 eJSiE 2(2):194—207
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equation (12) can be rewritten as

Γ = 2

Z b

z=a
[z −E(z)] {F (z)−E[F (z)]} dF (z). (16)

As the covariance of two random variables is the expected value of the product of their
deviations from the corresponding means, this expression is equivalent to

Γ = 2 cov [z, F (z)] . (17)

Here, drawing on Dorfman [5] and Shalit and Yitzhaki [19], we have shown, in more
analytical detail for pedagogic purposes, that the Gini coefficient of a random variable
is twice the covariance of the variable and its cumulative distribution.10

3 Estimation of the Gini Coefficient

Now that we have expressed the Gini coefficient in terms of a covariance, its empirical
estimation is greatly simplified as there is no need to take the absolute difference between
two random draws from a distribution. Further, as Lerman and Yitzhaki [11] explain
intuitively, the Gini coefficient as expressed in equation (17) is proportional to the co-
variance between the observed values of the variable z and the ranks of these observed
values when they are sorted in an ascending order. The idea is that, with the individual
ranks being 1, 2, . . . , T for T observations of the variable, the cumulative distribution
corresponding to the observation with a rank of t is t/T. For example, in the case of
100 observations of z, the 25th, 50th, and 75th lowest values of the 100 observations
correspond to the cumulation distributions of 0.25, 0.50, and 0.75, respectively. The
following is an illustration of how the Gini coefficient can be estimated by using Excel
based on this intuitive idea.

Suppose that we have 12 monthly returns from an asset, stored under the heading
“Return” in cells C4:C15 of an Excel worksheet as shown in Figure 1.11 With the
12 returns sorted in an ascending order, we assign a rank of 1 to the lowest of the
returns, a rank of 2 to the next lowest, and so on, and indicate the corresponding ranks
in cells D4:D15. If we explicitly sort the return data in an ascending order, they will
appear as −0.030, −0.005, −0.001, 0.004, . . . , 0.040, and the sorted returns will have
individual ranks of 1, 2, 3, 4, . . . , 12, respectively. To simplify the task, however, we rank
the returns in cells C4:C15 by using the RANK worksheet function for cells D4:D15 instead.
For example, the return 0.010 in cell C4 has a rank of 6 among the 12 cells in C4:C15.
This return is the 6th lowest among the 12 returns. A rank of 6 is obtained by using the

10 In additional to stating the Gini measure in terms of the expectation of an absolute difference
[equation (3)] or a covariance [equation (17)], many economics students relate the Gini measure to the
Area between the Lorenz curve and the diagonal line representing perfect equality. For these three
equivalent representations and the relationship between stochastic dominance and the mean-preserving
spread, see Atkinson [1].
11Notice that the reliance on only 12 data points for parameter estimation is not a good idea in

practice. What is shown here is just an illustration of the method involved.
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cell formula “=RANK(C4,C$4:C$15,1)” for cell D4, where the use of C$4:C$15 instead of
C4:C15 allows the cell formula in D4 to be copied and then pasted to D4:D15. The order
indicator “1” used in the RANK worksheet function can also be other integers except zero,
as a “0” will lead to rankings in a descending order instead.

B C D E F G
2
3 Month Return Rank
4 1 0.010 6   D4=RANK(C4,C$4:C$15,1)
5 2 0.020 9   (Copy and paste D4 to D4:D15.)
6 3 0.015 8
7 4 -0.030 1
8 5 0.005 5
9 6 0.022 10

10 7 -0.005 2
11 8 0.040 12
12 9 0.030 11
13 10 0.012 7
14 11 0.004 4
15 12 -0.001 3
16
17 Gini
18 0.010288
19 C18=2*COVAR(C4:C15,D4:D15)/(COUNT(C4:C15)-1)
20

Figure 1: An illustrative example of the estimation of the Gini coefficient using Excel
Solver.

With all the returns sorted in an ascending order, the individual ranks when divided
by the number of returns (which is 12 in this example) are the corresponding cumula-
tive probabilities.12 In order to estimate the Gini coefficient, we use the COVAR work-
sheet function, with the cell formula “=2*COVAR(C4:C15,D4:D15)/(COUNT(C4:C15)-1)”
where the COUNT worksheet function provides the number of observations involved.13 The

12 In case of a tie, the RANK worksheet function assigns the same rank to the numbers involved To
illustrate, if the four lowest numbers in the example were −0.030,−0.005, −0.005, and 0.004, instead,
their ranks would have been 1, 2, 2, and 4, respectively. Therefore, the individual rank when divided by
the number of cases does not always capture exactly the cumulative distribution. If a sizeable number of
realized returns is used to estimate the Gini coefficient, the problem due to a tie in the return observations
should not be serious. In order to bypass the problem entirely, however, we can add an infinitesimally
small random number (by using the RAND worksheet function, along with a small multiplicative constant)
to each return to break any possible tie.
13Although there are separate worksheet functions in Excel for sample and population variances, only

one worksheet function, COVAR, which is intended for population covariances, is available there for all
covariance cases. In practical applications of mean-Gini analysis, as the number of observations to
capture the return distribution tends to be large, any potential understatement of the sample covariance
caused by using COVAR is likely inconsequential. In this illustrative example, where there are only 12
monthly return observations, an adjustment to the COVAR result seems necessary. The use of the denom-
inator “COUNT(C4:C15)-1” instead of “COUNT(C4:C15)” in the cell formula is for this purpose. When

200 eJSiE 2(2):194—207
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Gini coefficient thus obtained is 0.0102879. What this value means is that, if pairs of
random draws are to be generated repeatedly from a distribution of monthly returns,
for which the sample estimate of the distribution is based on the 12 observations of
monthly returns as shown in cells C4:C15, the corresponding estimate of half of the ex-
pected absolute difference between a pair of monthly returns is about 1.03%. The greater
dispersion of the return distribution, the greater is the expected absolute difference.

4 Mean-Gini Portfolio Selection without Short Sales

The idea of using the Gini coefficient to measure risk extends to portfolios of assets as
well. Let R1, R2, . . . , Rn be the random returns of n assets. The random return of a
portfolio p, which is a linear combination of these individual random returns, is

Rp =
nX
i=1

xiRi, (18)

where x1, x2, . . . , xn are the portfolio weights (i.e., the proportions of investment funds
as allocated to the individual assets) satisfying the conditions of

nX
i=1

xi = 1 (19)

and
xi ≥ 0, for i = 1, 2, . . . , n. (20)

These conditions ensure that the available investment funds be fully allocated among the
assets considered and that short sales of assets be disallowed. Further, let μi = E(Ri)
be the expected return of asset i, for i = 1, 2, . . . , n. The portfolio’s expected return is

μp = E(Rp) =
nX
i=1

xiμi, (21)

which is a linear combination of individual expected returns.
In the same manner as how equation (17) is derived, the portfolio’s Gini coefficient

can be written as
Γp = 2 cov[Rp, F (Rp)], (22)

where F (Rp) is the cumulative probability distribution of the portfolio returns. The
idea is that, for any given set of portfolio weights, as the random return of a portfolio
is a linear combination of the random returns of individual assets in the portfolio with

comparing different investment prospects based on a common number of realized return observations,
however, the choice of particular denominator in the cell formula has the effect of scaling all computed
values of their Gini coefficients in the same manner. Such scaling does not affect the relative riskiness
of the individual investment prospects.
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known probability distributions, the portfolio’s Gini coefficient can be established from
the implied probability distribution of portfolio returns.

An equivalent form of equation (22), as reported in Shalit and Yitzhaki [19], [20], is

Γp = 2 cov

"Ã
nX
i=1

xiRi

!
, F (Rp)

#
= 2

nX
i=1

xi cov[Ri, F (Rp)]. (23)

This equivalent form indicates that the portfolio’s Gini coefficient is twice the weighted
average of the covariances between the individual asset returns and the portfolio’s cu-
mulative distribution. With x1, x2, . . . , xn imbedded in F (Rp), an analytical search for
the set of portfolio weights that minimizes Γp subject to constraints (19)—(21) is a formi-
dable task. However, given the currently available spreadsheet tools, such as the Excel
Solver (which is an optimization tool developed by Frontline Systems, Inc.), mean-Gini
portfolio construction is straightforward. The example below is an illustration for a
three-asset case, where asset 1 is the same asset as considered earlier.

For simplicity, let us assume that the sample average return Ri is a good estimate of
the expected return μi, for each asset i. The idea of using the Excel Solver is that, once
we arbitrarily assign an initial set of portfolio weights, we can compute the portfolio
returns from all realized returns of the individual assets. With the realized portfolio
returns explicitly ranked, the estimated cumulative distribution of returns for that set
of portfolio weights is revealed. Then, the portfolio Gini can be computed as well.
The Excel Solver allows us to search numerically for the set of portfolio weights that
minimizes the portfolio Gini under the constraints that the portfolio weights be summed
to one and the sample average of the portfolio returns be equal to a specified value.

In the example, we specify the sample average of the portfolio returns to be Rp =
0.015000 and arbitrarily set the initial portfolio weights to be x1 = x2 = x3 = 1/3.14

The worksheet involved is shown in Figures 2 and 3, where all worksheet functions and
operations involved are explicitly indicated. Figure 2 shows how the worksheet is set up.
The 12 observations of random returns of the three assets are entered in cells D10:D21,
E10:E21, and F10:F21. Their mean returns, as computed using the AVERAGE worksheet
function, are stored in cells D24:F24. Using the initial portfolio weights in cells D32:F32
(copied from cells D29:F29), we compute in cell H35 the portfolio mean return via an
intermediate step in cells D35:F35.

The same portfolio weights in cells D32:F32 allow us to compute, for each of the
12 observations, the corresponding portfolio return via an intermediate step in cells
D42:F53. The 12 portfolio returns are stored in cells H42:H53, and their corresponding
ranks are stored in cells I42:I53. The portfolio Gini, as stored in cell H24, is twice
the covariance between the portfolio returns (in cells H42:H53) and their corresponding

14Like the various cases of mean-variance portfolio selection in Kwan [10] using the same spreadsheet
tools, the final portfolio results are robust regardless of the initial portfolio weights attempted. Therefore,
the choice of the initial portfolio weights can be arbitrary. Notice also that, for greater precision of the
numerical results, options are available in the Excel Solver regarding search methods and convergence
criteria.
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C D E F G H I J K L
6   Asset Labels
7 1 2 3
8
9   Input Data: Time Series of Monthly Returns

10 1 0.010 0.020 0.041
11 2 0.020 0.040 0.034
12 3 0.015 -0.010 0.001
13 4 -0.030 0.025 0.020
14 5 0.005 0.015 0.050
15 6 0.022 0.011 -0.030
16 7 -0.005 0.003 0.042
17 8 0.040 0.004 0.010
18 9 0.030 0.022 0.022
19 10 0.012 0.012 -0.020
20 11 0.004 0.050 0.028
21 12 -0.001 -0.020 0.017
22
23   Mean Returns Portfolio Gini
24 0.0101667 0.0143333 0.0179167 0.00702778
25 D24=AVERAGE(D10:D21) H24=2*COVAR(H42:H53,I42:I53)/(COUNT(H42:H53)-1)
26 (Copy and paste D24 to D24:F24.)
27
28   Initial Portfolio Weights
29 0.3333333 0.3333333 0.3333333   (Copy and paste D29:F29 to D32:F32.)
30
31   Portfolio Weights Sum of Portfolio Weights
32 0.3333333 0.3333333 0.3333333 0.99999999  H32=SUM(D32:F32)
33
34   Portfolio Weights Multiplied by Mean Returns Portfolio Mean Return
35 0.0033889 0.0047778 0.0059722 0.014139  H35=SUM(D35:F35)
36 D35=D32*D24
37 (Copy and paste D35 to D35:F35.) Required Portfolio Mean Return
38 0.015000
39
40   Time Series of Portfolio Weights Time Series of Monthly Portfolio
41   Multiplied by Monthly Returns Returns and Corresponding Ranks
42 1 0.003333 0.006667 0.013667 0.023667 9
43 2 0.006667 0.013333 0.011333 0.031333 12
44 3 0.005000 -0.003333 0.000333 0.002000 4
45 4 -0.010000 0.008333 0.006667 0.005000 5
46 5 0.001667 0.005000 0.016667 0.023333 8
47 6 0.007333 0.003667 -0.010000 0.001000 2
48 7 -0.001667 0.001000 0.014000 0.013333 6
49 8 0.013333 0.001333 0.003333 0.018000 7
50 9 0.010000 0.007333 0.007333 0.024667 10
51 10 0.004000 0.004000 -0.006667 0.001333 3
52 11 0.001333 0.016667 0.009333 0.027333 11
53 12 -0.000333 -0.006667 0.005667 -0.001333 1
54 D42=D$32*D10 H42=SUM(D42:F42); I42=RANK(H42,H$42:H$53,1)
55 (Copy and paste D42 to D42:F53.) (Copy and paste H42 to H42:H53; I42 to I42:I53)

Figure 2: An illustrative example of Mean-Gini portfolio analysis using Excel Solver :
initialization of the worksheet.
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ranks (in cells I42:I53), divided by [COUNT(H42:H53)-1] (which is 11 in the example).
Clearly, the initial portfolio weights cannot be the final results as the corresponding
portfolio mean return in cell H35, 0.014139, deviates from the required value of 0.015000
in cell H38.

To use the Excel Solver to search for the set of optimal portfolio weights, we open
the Solver dialog box from the menu bar. We specify the target cell, which is cell H24
in the example. This cell is to be minimized. In the dialog box, we also indicate which
cells to change in the search of the solution. Here, they are the three cells containing
the individual portfolio weights (cells D32:F32). We also specify all the conditions to be
satisfied. Specifically, we want these three cells to be non-negative, the cell containing
the sum of all portfolio weights (cell H32) to be equal to 1, and the cell containing the
portfolio mean return (cell H35) to be equal to the cell containing its required value (cell
H38). The results of the numerical search are given Figure 3. This is the same worksheet
in Figure 2 after the completion of the task by the Excel Solver.

Figures 2 and 3 show the numerical search for the efficient mean-Gini portfolio cor-
responding to Rp = 0.015000 only. By using the same approach over different specified
values of the portfolio mean return, over the range of 0.010167 to 0.017917 (the lowest
to the highest sample mean among the three assets considered), we can construct the
entire efficient frontier – the set of all efficient mean-Gini portfolios – without short
sales. The procedure involved in each case will be the same as what is shown in Figures
2 and 3.

It is worth noting that the analysis as described above can be implemented on other
spreadsheet products as well. The software Solver is available for use in Lotus 1-2-3TM

and Quattro ProTM as well. The standard versions of Solver, which can accommodate
optimization problems with as many as 200 decision variables is already suitable for most
mean-Gini portfolio selection problems in practice. Larger-scale problems, however, do
require the use of enhanced versions of the same software.

5 Concluding Remarks

We intend to achieve two objectives in this pedagogic study. First, by showing in detail
that the Gini coefficient can be written in terms of a covariance, we make the sophis-
ticated mean-Gini approach more accessible to finance students while recognizing that
familiarity with integral calculus and statistical concepts of probability distributions
and cumulative probability distributions is still needed in order to understand more
fully the analytical derivations involved. Second, with a numerical example, we illus-
trate that, although mean-Gini portfolio analysis appears to be more difficult than the
mean-variance approach, it can still be performed numerically using currently available
spreadsheet tools.

As investment assets are becoming more sophisticated, so are their return distribu-
tions. The mean-Gini approach, which is consistent with stochastic dominance criteria
for decisions under risk, is ideal for portfolio analysis for a great variety of financial
assets. They include various derivatives, emerging market equities, and hedge funds,
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C D E F G H I J K L
6   Asset Labels
7 1 2 3
8
9   Input Data: Time Series of Monthly Returns

10 1 0.010 0.020 0.041 Solver Parameters:
11 2 0.020 0.040 0.034 Target Cell: H24; Min
12 3 0.015 -0.010 0.001 Changing Cells: D32:F32
13 4 -0.030 0.025 0.020 Constraints: D32:F32>=0, H32=1, H35=H38
14 5 0.005 0.015 0.050
15 6 0.022 0.011 -0.030
16 7 -0.005 0.003 0.042
17 8 0.040 0.004 0.010
18 9 0.030 0.022 0.022
19 10 0.012 0.012 -0.020
20 11 0.004 0.050 0.028
21 12 -0.001 -0.020 0.017
22
23   Mean Returns Portfolio Gini
24 0.0101667 0.0143333 0.0179167 0.0081
25 D24=AVERAGE(D10:D21) H24=2*COVAR(H42:H53,I42:I53)/(COUNT(H42:H53)-1)
26 (Copy and paste D24 to D24:F24.)
27
28   Initial Portfolio Weights
29 0.3333333 0.3333333 0.3333333
30
31   Portfolio Weights Sum of Portfolio Weights
32 0.255814 0.2606814 0.4835046 1   H32=SUM(D32:F32)
33
34   Portfolio Weights Multiplied by Mean Returns Portfolio Mean Return
35 0.0026008 0.0037364 0.0086628 0.015000   H35=SUM(D35:F35)
36 D35=D32*D24
37 (Copy and paste D35 to D35:F35.) Required Portfolio Mean Return
38 0.015000
39
40   Time Series of Portfolio Weights Time Series of Monthly Portfolio
41   Multiplied by Monthly Returns Returns and Corresponding Ranks
42 1 0.002558 0.005214 0.019824 0.027595 10
43 2 0.005116 0.010427 0.016439 0.031983 12
44 3 0.003837 -0.002607 0.000484 0.001714 3
45 4 -0.007674 0.006517 0.009670 0.008513 5
46 5 0.001279 0.003910 0.024175 0.029365 11
47 6 0.005628 0.002867 -0.014505 -0.006010 1
48 7 -0.001279 0.000782 0.020307 0.019810 7
49 8 0.010233 0.001043 0.004835 0.016110 6
50 9 0.007674 0.005735 0.010637 0.024047 8
51 10 0.003070 0.003128 -0.009670 -0.003472 2
52 11 0.001023 0.013034 0.013538 0.027595 9
53 12 -0.000256 -0.005214 0.008220 0.002750 4
54 D42=D$32*D10 H42=SUM(D42:F42); I42=RANK(H42,H$42:H$53,1)
55 (Copy and paste D42 to D42:F53.) (Copy and paste H42 to H42:H53; I42 to I42:I53)

Figure 3: An illustrative example of Mean-Gini portfolio analysis using Excel Solver :
the final results.
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where mean-variance portfolio analysis is not expected to be appropriate because of
its strict distributional requirements on asset returns. With the mean-Gini approach
better understood and more readily accessible, we hope that this pedagogic study can
generate further teaching interests in applying mean-Gini to portfolio analysis and risk
management involving non-traditional financial assets.
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