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A Simple Spreadsheet-Based Exposition of the Markowitz Critical Line
Method for Portfolio Selection

Abstract
The critical line method for mean-variance portfolio selection, developed by Harry Markowitz over a half a
century ago, is an important analytical tool for modern portfolio management. The method in its original form
is a sophisticated algorithm for portfolio optimization under general linear constraints. Therefore, a challenge
for instructors of investment courses is how to explain the method to business students who are unfamiliar
with advanced mathematical and programming tools. This study illustrates pedagogically that, under
practically relevant constraints including investment limits on individual securities and disallowance of short
sales, the method can still be covered in investment courses where only general algebraic skills and statistical
concepts are required. The use of electronic spreadsheets for portfolio construction not only significantly
reduces the computational burden, but also makes the analytical materials involved less abstract for business
students. This study, which provides spreadsheet-based illustrations of the required computations, is intended
to make the Markowitz analysis more accessible to business students.
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Abstract

The critical line method for mean-variance portfolio selection, developed by
Harry Markowitz over a half a century ago, is an important analytical tool for
modern portfolio management. The method in its original form is a sophisticated
algorithm for portfolio optimization under general linear constraints. Therefore,
a challenge for instructors of investment courses is how to explain the method to
business students who are unfamiliar with advanced mathematical and program-
ming tools. This study illustrates pedagogically that, under practically relevant
constraints including investment limits on individual securities and disallowance of
short sales, the method can still be covered in investment courses where only general
algebraic skills and statistical concepts are required. The use of electronic spread-
sheets for portfolio construction not only signi�cantly reduces the computational
burden, but also makes the analytical materials involved less abstract for business
students. This study, which provides spreadsheet-based illustrations of the required
computations, is intended to make the Markowitz analysis more accessible to busi-
ness students.

Submitted April 2007, revised and accepted May 2007.

Keywords: mean-variance portfolio analysis, e¢ cient frontier, investments.

1 Introduction

Mean-variance portfolio theory, which is a key component of the modern �nance curricu-
lum, originates from the pioneering work of Markowitz [8], a 1990 Nobel Laureate. We
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learn from that study the importance of covariances of returns between risky securities,
such as stocks, in the determination of portfolio risk, as measured in variance or standard
deviation of returns. For a given set of securities for portfolio investments, the lower the
covariances, the better is the achievable risk-return trade-o¤. E¢ cient portfolio selection
is about constrained optimization of such a trade-o¤.

The constraints for e¢ cient portfolio selection in Markowitz [8] are con�ned to dis-
allowance of short sales. As short sales are about selling borrowed securities to others,
disallowance of short sales is the condition that the proportions of investment funds as
allocated to individual securities, commonly called portfolio weights, be non-negative.
For investment funds to be fully allocated among the securities considered, an implicit
constraint is that portfolio weights sum to one. A major task, therefore, is to determine
which of the securities considered are to have positive portfolio weights (i.e., to be se-
lected) for each e¢ cient portfolio. From a geometric illustration in Markowitz [8], we
learn that each e¢ cient portfolio can be captured by a point on some connected line
segments, called critical lines, in a multi-dimensional space of portfolio weights.

In contrast, e¢ cient portfolio construction in Markowitz [9,10,11] pertains to a gen-
eral case where the constraints � including equality and inequality constraints � can be
any linear combinations of portfolio weights. Examples include upper and lower invest-
ment limits on individual securities or some combinations of securities. The constraints
being so general, the corresponding solution method, called the critical line method, is
a sophisticated quadratic programming algorithm. It is worth noting that, although the
method was developed more than half a century ago, it is still an important analytical
tool for practical mean-variance portfolio selection today.1 The recent extension of the
method by Jacobs, Levy, and Markowitz [5] to select portfolios with realistic short sales
further illustrates its versatility as an investment tool.

The work of Markowitz, which has had a profound impact on the �nance profes-
sion, is highly regarded by �nance academics and practitioners alike. As Rubinstein
[14] observes, while commemorating the 50-year anniversary of modern portfolio theory,
�Markowitz�s approach is now commonplace among institutional portfolio managers who
use it both to structure their portfolios and measure their performance. . . Indeed, the
ideas in his 1952 paper have become so interwoven into �nancial economics that they
can no longer be disentangled.� (p.1044). However, Sharpe [15] � another 1990 No-
bel Laureate � comments that the work of Markowitz is �often cited, less often read
(at least completely)� (p.xiii) because of the formal mathematical materials involved.
Not surprisingly, the analytical details of the critical line method for portfolio selection,
though important in practice, are considered by most instructors of investment courses
to be well beyond the standard �nance curriculum.

Algebraic simplicity being the norm for pedagogic purposes in business education,
e¢ cient portfolio selection problems covered in investment courses often allow friction-
less short sales of securities. Under the assumption of frictionless short sales, which

1Various software products based on the Markowitz analysis are currently available to investors.
E¢ cient Solutions Inc. of Ridge�eld, CT, Wagner Math Finance, Daniel H. Wagner Associates, of
Malvern, PA, and Zephyr Associates Inc. of Zephyr Cove, NV are among the U.S. producers.
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is unrealistic in practice, the short seller not only provides no collateral for any bor-
rowed securities, but also has immediate access to the cash proceeds from the short-sale
transactions. As there are no restrictions on any portfolio weights, including their signs,
except that they must sum to one, e¢ cient portfolios can easily be constructed. The
corresponding portfolio weights can be determined directly from some algebraic formu-
las, such as those in Elton, Gruber, Brown, and Goetzmann [3, Chapter 6] and Merton
[12].

E¢ cient portfolio selection without short sales, while practically relevant, is more
complicated. To simplify the analytical task, one approach is to characterize the co-
variance structure of security returns with some speci�c models. They include, among
many competing models, the single index model, where a linear relationship between the
return of each security and the return of a market index is assumed, and the constant
correlation model, where a constant correlation of returns between any two di¤erent se-
curities is assumed. The corresponding analytical details and references to the literature
can be found in Elton, Gruber, Brown, and Goetzmann [3, Chapter 9].

An alternative approach is numerical in nature. The availability of electronic spread-
sheet tools, such as Microsoft Excel Solver R
, allows many portfolio selection problems to
be solved numerically, thus bypassing the analytical details that are potentially challeng-
ing to business students. Examples of the numerical approach can be found in Benninga
[1, Chapter 11], Carter, Dare, and Elliott [2], Kwan [6], and Pace [13]. As no simpli-
�cation is made to the original covariance structure of security returns, the numerical
approach is able to produce the same numerical results as those solved analytically. From
a pedagogic perspective, however, the reliance on numerical solutions alone inevitably
leave unanswered questions as to how the critical line method actually works and how
the mean-variance e¢ cient frontier is related to the corresponding critical lines.

Although the analytical details of e¢ cient portfolio selection (without simplifying the
covariance structure) under a general set of linear constraints are well beyond the scope
of the standard �nance curriculum, to illustrate pedagogically the concept of critical lines
in some settings is still possible. For example, Haugen [4, Chapter 5] provides a geometric
exposition of critical lines for a three-security case, with and without frictionless short
sales. Kwan and Yuan [7] consider, from a pedagogic perspective, e¢ cient portfolio
selection without short sales, by applying the critical line method to a revised analytical
setting, where multivariate di¤erential calculus and constrained optimization tools are
required.

Also from a pedagogic perspective, the present study illustrates the critical line
method (without altering the original analytical setting) by using algebraic and sta-
tistical tools that are generally familiar to business students. Like standard textbook
coverage of mean-variance portfolio theory, the required statistical concepts here are con-
�ned to expected values, variances, and covariances of random variables and their linear
combinations. The required algebraic skills include working with linear and quadratic
expressions where there are symbols with subscripts, as well as simple matrix operations
for solving linear equations. No prior knowledge of multivariate di¤erential calculus and
constrained optimization tools is necessary.

eJSiE 2(3):253�280 255
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This study considers e¢ cient portfolio selection disallowing short sales and then
also having investment limits (implicitly, upper limits) on individual securities. Both
are practically relevant constraints, especially for institutional investors. In each case,
once the corresponding portfolio selection problem is formulated for a given set of input
data, the use of electronic spreadsheets to perform the analysis involved allows the
critical line method to be implemented without the usual computational distractions.
The spreadsheet-based approach here is intended to make the Markowitz analysis more
accessible to business students. From the classroom experience of the author of this
study, who has been teaching the critical line method in undergraduate and M.B.A.-
level investment courses for many years, the availability of spreadsheet tools for carrying
out the algorithmic details, in addition to the required matrix operations, does make the
method less abstract for students. Indeed, spreadsheet-based exercises allow students
to improve signi�cantly their understanding of the Markowitz analysis, its underlying
concept, and its various implications.2

The rest of the paper is organized as follows: In order to explain the idea of critical
lines, relate them to the e¢ cient frontier, and facilitate the analysis that follows, section
2 considers a simple case where frictionless short sales are allowed. Section 3 performs
portfolio analysis without short sales by using the critical line method. The method is
illustrated with a spreadsheet example there. Section 4 extends the analysis in Section
3 by considering also investment limits on individual securities. The same spreadsheet
example is extended as well. Section 5 provides some concluding remarks.

2 Portfolio selection with frictionless short sales

For a given set of n risky securities, labeled as i = 1; 2; : : : ; n; let Ri; �i; and �2i = V ar(R)
be the random return, the expected return, and the variance of returns of security i;
respectively. Let �ij = Cov(Ri; Rj) be the covariance of returns between securities i and
j; with �ij = �ji and �ii = �2i ; for i = 1; 2; : : : ; n and j = 1; 2; : : : ; n: For a portfolio
p based on the n securities, let xi be the proportion of available investment funds as
allocated to security i satisfying the condition that3

x1 + x2 + � � �+ xn = 1: (1)

This condition ensures that the investment funds be fully allocated among the n securities
considered. The random and expected portfolio returns, being weighted averages of

2The use of spreadsheets and, in particular, Excel for illustrating the Markowitz analysis serves the
pedagogic objectives of this study much better than does the use of a di¤erent computing environment,
such as MATLAB R
 or GAUSS R
. Given the popularity of Excel in the business world, business
students tend to be already familiar with basic Excel operations by the time they enroll in investment
courses. Their Excel training is acquired either formally from an academic course or informally from
assignments and projects for various courses that require the use of spreadsheets.

3 Illustrations with n being some speci�c integers, such as 2; 3 or 4; may be necessary for students who
are unfamiliar with algebraic expressions of series. Such illustrations will make the algebraic material
below less abstract for them.

256 eJSiE 2(3):253�280
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random returns and expected returns of individual securities, respectively, are

Rp = x1R1 + x2R2 + � � �+ xnRn (2)

and
�p = x1�1 + x2�2 + � � �+ xn�n: (3)

The variance of portfolio returns, �2p = V ar(Rp); is the sum of n2 terms, with each term
being of the form xixj�ij ; for i = 1; 2; : : : ; n and j = 1; 2; : : : ; n:4

E¢ cient portfolio selection is about allocating investment funds to achieve the lowest
risk for a speci�ed expected return or to achieve the highest expected return for a
speci�ed risk, where risk is stated in terms of variance of returns. The speci�ed expected
return or risk depends on the investor�s attitude toward risk. Letting � be a non-
negative parameter that quanti�es the investor�s risk tolerance (or, equivalently, letting
1=� capture the investor�s risk aversion), the portfolio�s certainty equivalent return is
�p��2p=�: That is, the investor is indi¤erent between a risky outcome � as characterized
by an expected return of �p and a variance of returns of �2p � and a certain return of
�p��2p=�; which is less than �p: For a highly risk tolerant investor, risk is not a concern;
the investor seeks to maximize the portfolio�s expected return. The less risk tolerant the
investor, the lower is the portfolio�s certainty equivalent return.

To construct an e¢ cient portfolio for a given value of � is to �nd the set of portfolio
weights x1; x2; : : : ; xn that maximizes �p � �2p=� or, equivalently, minimizes �2p � ��p:
The e¢ cient frontier is a collection of e¢ cient portfolios for di¤erent values of �; as
plotted on the plane of expected return and standard deviation of returns. As the only
constraint is the one that equation (1) provides, we can minimize instead the Lagrangian

L = �2p � ��p � � (x1 + x2 + � � �+ xn � 1) ; (4)

where �; often called a Lagrange multiplier, is an additional unknown variable.
To explain the Lagrangian approach intuitively to students who are unfamiliar with

it, we can start with assessing the idea of �nding the values of x1; x2; : : : ; xn that minimize

4For students who are familiar with summation signs, we can write each of the above equations more
compactly, and express �2p as

Pn
i=1

Pn
j=1 xixj�ij : However, for students who are unfamiliar with series

expressions, we may have to provide some illustrative examples. To �nd �2p where n = 3; for example,
we �rst arrange all the covariances and portfolio weights in the following manner:

x1 x2 x3
x1 �11 �12 �13
x2 �21 �22 �23
x3 �31 �32 �33

Once we multiply each covariance term by the portfolio weights in the same row and in the same column,
we have the following:

x1x1�11 x1x2�12 x1x3�13
x2x1�21 x2x2�22 x2x3�23
x3x1�31 x3x2�32 x3x3�33

The sum of these 9 terms is �2p =
P3

i=1

P3
j=1 xixj�ij :

eJSiE 2(3):253�280 257
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�2p � ��p without any attention to equation (1). For these n unknown variables to be
solved, we require n equations to be deduced from an explicit expression of �2p � ��p in
terms of the same variables. Even if the n equations are known, there is no guarantee
that the solved values of x1; x2; : : : ; xn also satisfy equation (1). A good example is the
case of � = 0; where the set of x1; x2; : : : ; xn that minimizes �2p � ��p (= �2p) is a set
of zeros. Obviously, equation (1) is violated in this case. Adding equation (1) directly
to the same set of n equations is not a valid remedy because the addition will result in
a total of n + 1 equations for the n unknown variables x1; x2; : : : ; xn: A viable remedy,
therefore, requires the presence of an extra unknown variable, such as the � in equation
(4).

To see whether a minimized L corresponds to a minimized �2p���p satisfying equation
(1), let us consider a set of values of x1; x2; : : : ; xn; and �; labeled as bx1; bx2; : : : ; bxn; andb�; respectively, that can potentially provide the lowest L: Intuitively, this set of values
cannot be the best choice if a change to any of them leads to a lower L: Suppose for now
that bx1 + bx2 + � � �+ bxn � 1 6= 0: (5)

If an increase (decrease) in b� causes L to increase, then a decrease (increase) in b� will
cause L to decrease instead. This decrease in L inevitably violates the idea that the
set of bx1; bx2; : : : ; bxn; and b� gives us the lowest L: Thus, to ensure the attainment of the
lowest L; we must have bx1 + bx2 + � � �+ bxn � 1 = 0: (6)

That is, equation (1) must be satis�ed. Accordingly, the set of portfolio weights that
minimizes L must also minimize �2p � ��p:

2.1 An algebraic solution

Students who are familiar with multivariate di¤erential calculus can recognize that, with
x1; x2; : : : ; xn; and � being the decision variables, the portfolio solution corresponding
to each given value of � is from the set of n + 1 equations based on @L=@xi = 0; for
i = 1; 2; : : : ; n; and @L=@� = 0: The following is an algebraic approach to reach the same
n+ 1 equations:

To �nd the set of portfolio weights that minimizes L; let us consider an arbitrary
security i among the n securities considered. Speci�cally, let us write the random return
of portfolio p in equation (2) equivalently as

Rp = xiRi +R
�
i ; (7)

where R�i is x1R1+x2R2+ � � �+xnRn with the term xiRi removed. The expected return
of portfolio p in equation (3) is then

�p = xi�i + �
�
i ; (8)

where ��i is the expected value of R
�
i : For example, in a three-security case, R

�
2 is x1R1+

x3R3 and ��2 is x1�1 + x3�3:

258 eJSiE 2(3):253�280
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Given equations (7) and (8), the portfolio�s variance of returns can be written as

�2p = x
2
iV ar(Ri) + 2xiCov(Ri; R

�
i ) + V ar(R

�
i ): (9)

Thus, equation (4) becomes

L = x2iV ar(Ri) + xi [2Cov(Ri; R
�
i )� ��i � �)] + terms not containing xi; (10)

which is a quadratic expression of xi: By completing the square for all terms that contain
x2i and xi; we have

L =
1

V ar(Ri)

�
xiV ar(Ri) + Cov(Ri; R

�
i )�

1

2
(��i + �)

�2
+ terms not containing xi:

(11)
Suppose that, for a given �; we have, as a tentative solution to this portfolio selection

problem, a set of values of x1; x2; : : : ; xn; and �: If we change the value of xi alone in
an attempt to improve the solution, the best possible improvement requires an xi that
makes the �rst term on the right hand side of equation (11) vanish. This requires

xiV ar(Ri) + Cov(Ri; R
�
i )�

1

2
(��i + �) = 0: (12)

Given that
xiV ar(Ri) = Cov(Ri; xiRi) (13)

and
Cov(Ri; xiRi) + Cov(Ri; R

�
i ) = Cov(Ri; x1R1 + x2R2 + � � �+ xnRn); (14)

equation (12) can be written equivalently as

2�i1x1 + 2�i2x2 + � � �+ 2�inxn � � = ��i: (15)

Here, �i1; �i2; : : : ; �in are Cov(Ri; R1); Cov(Ri; R2); : : : ; Cov(Ri; Rn); respectively.
Notice that the security i considered above can be any of the n securities. Thus,

by letting i = 1; 2; : : : ; n; equation (15) actually represents a set of n linear equations
with the unknown variables being x1; x2; : : : ; xn; and �: As indicated earlier, the values
of x1; x2; : : : ; xn; and � that minimize L require equation (1) to hold. Including also
equation (1), we now have a total of n + 1 linear equations, as required to determine
the values of these n + 1 variables in terms of �: Notice also that equation (15) covers
the results of @L=@xi = 0; for i = 1; 2; : : : ; n; and that equation (1) follows directly from
@L=@� = 0:

2.2 The mean-variance e¢ cient frontier and the corresponding critical
line in a multi-dimensional space of portfolio weights

For computational convenience, the n + 1 linear equations that equations (1) and (15)
represent can be written compactly in matrix notation as5

W Z = H + �K; (16)
5 In order to help students with no prior knowledge of matrix algebra understand the material here,

it may be necessary for us to illustrate �rst how a small set of linear equations can be written in a
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where

W =

2666664
2�11 2�12 � � � 2�1n �1
2�21 2�22 � � � 2�2n �1
...

...
. . .

...
...

2�n1 2�n2 � � � 2�nn �1
1 1 � � � 1 0

3777775 ; (17)

Z =

2666664
x1
x2
...
xn
�

3777775 ; (18)

H =

2666664
0
0
...
0
1

3777775 ; (19)

and

K =

2666664
�1
�2
...
�n
0

3777775 : (20)

For a given value of �; the corresponding e¢ cient portfolio weights can be obtained
from the matrix equation

Z =W�1H + �W�1K; (21)

where W�1 is the inverse of W: Given the input data for portfolio analysis, as W; H;
and K are known, to �nd Z from equation (21) on computers using available spreadsheet
functions, such as MINVERSE and MMULT in Microsoft Excel (for matrix inversion
and multiplication, respectively), is straightforward.

Letting ai and bi be the i-th elements of the (n + 1)-element column vectors that
W�1H and W�1K represent, respectively, we have from equation (21)

xi = ai + bi�; for i = 1; 2; : : : ; n; (22)

and
� = an+1 + bn+1�: (23)

matrix form. Doing so will allow these students to establish the equivalence of the solutions with and
without using matrix algebra. The use of Excel functions for the illustration, such as MINVERSE
and MMULT (for matrix inverse and multiplication, respectively), will make the corresponding matrix
operations more intuitive to these students.

260 eJSiE 2(3):253�280
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With a1; a2; : : : ; an+1 and b1; b2; : : : ; bn+1 determined, each speci�c value of the parameter
� corresponds to a set of e¢ cient portfolio weights x1; x2; : : : ; xn and an associated value
of the Lagrange multiplier �:6

Equation (22) is the parametric form of a line, called the critical line, in a multi-
dimensional space of portfolio weights, with � being the parameter. With portfolio
weights always summed to one, each e¢ cient portfolio based on n risky securities can be
captured as a point on a line in an (n � 1)-dimensional space of portfolio weights. For
example, in a three-security case, the corresponding critical line can be plotted on the
plane of any two of the three portfolio weights. As the e¢ cient frontier (on the plane of
expected return and standard deviation of returns) for a given set of risky securities is
a collection of e¢ cient portfolios for investors with di¤erent levels of risk tolerance, the
critical line that equation (22) represents is a collection of the corresponding e¢ cient
portfolio weights for these investors. Each e¢ cient portfolio corresponds to a point on
the critical line.

3 Portfolio selection without short sales

If short sales are disallowed, any negative value of xi; for i = 1; 2; : : : ; n; is unacceptable.
Students who are familiar with constrained optimization can recognize that solving a
portfolio selection problem with x1; x2; : : : ; xn; and � being the decision variables involves
the Kuhn-Tucker conditions. Formally, these conditions include the �rst-order conditions
(in a set of n + 1 equations) and the complementarity conditions to establish, for each
xi; when to use a corresponding slack variable to avoid an unacceptable outcome. The
following is an algebraic approach to derive these conditions:

To avoid a negative xi for all values of � � 0 in an n-security case, let us return to
the algebraic expression of L in equation (11). Intuitively, the lower the value of the
�rst term (a non-negative term) on the right hand side of equation (11), the lower is the
corresponding value of L: If a negative value of xi is required to make this term vanish,
the value of Cov(Ri; R�i ) � 1

2(��i + �) must be positive. If so, we simply let xi = 0
because a positive value of xi inevitably worsens the portfolio solution. With xi = 0; we
have

xiV ar(Ri) + Cov(Ri; R
�
i )�

1

2
(��i + �) > 0: (24)

Before a portfolio selection problem is solved, however, it is unknown what value of
xi is required to make the �rst term on the right hand side of equation (11) vanish. If

6The same algebraic results can also be reached by applying Cramer�s rule to the set of n + 1
equations that equation (16) represents. Each of a1; a2; : : : ; an+1 and b1; b2; : : : ; bn+1 is simply a ratio of
two determinants. The denominator in each ratio is the determinant of W; a square matrix consisting
of all the coe¢ cients of the n + 1 unknown variables. In the case of ai; for i = 1; 2; : : : ; n + 1; the
numerator is the determinant of a revised matrix, which is W with its i-th column substituted by the
column vector H: In the case of bi; for i = 1; 2; : : : ; n+ 1; the numerator is the determinant of another
matrix, which is W with its i-th column substituted by the column vector K instead. To use Cramer�s
rule to reach equations (22) and (23) on computers, we can use an available spreadsheet function, such
as MDETERM in Microsoft Excel, to �nd the determinants involved.
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xi turns out to be positive, equation (12) is still valid. To accommodate the potential
outcome of a negative xi; which must be replaced by a zero, let us combine equation
(12) and inequality (24) into

xiV ar (Ri) + Cov(Ri; R
�
i )�

1

2
(��i + � + �i) = 0; (25)

where �i is a non-negative slack variable with the following properties: If xi is positive,
�i is zero and equation (25) reduces to equation (12). If xi is zero instead, �i is positive
and equation (25) is equivalent to inequality (24). Strictly speaking, if xi is zero, �i can
still be zero, but this requires Cov(Ri; R�i )� 1

2(��i + �) to be zero as well.
Just like the frictionless short sale case, which provides equation (15), we can write

equation (25) equivalently as

2�i1x1 + 2�i2x2 + � � �+ 2�inxn � � � �i = ��i: (26)

Since this equation holds for i = 1; 2; : : : ; n; we have, including equation (1), a set of
n + 1 linear equations for the 2n + 1 unknown variables x1; x2; : : : ; xn; �1; �2; : : : ; �n;
and � (all to be solved in terms of �): Students who are familiar with constrained
optimization can recognize that these n+1 linear equations are the �rst-order conditions
for minimizing �2p���p; subject to the conditions that portfolio weights sum to one and
no negative portfolio weights be allowed. They can also recognize the complementarity
conditions that one of xi and �i be zero (often stated as xi � 0; �i � 0; and xi�i = 0; for
i = 1; 2; : : : ; n) in this constrained optimization problem. For a given value of �; if we
know which of the n securities are to be selected to the corresponding e¢ cient portfolio,
then we still have an exact number of equations to solve the unknown variables because,
between each pair of variables xi and �i; one of them must be zero. The challenge,
however, is to identify the selected securities for each non-negative value of �:

3.1 A simple description of the critical line method for portfolio selec-
tion

For ease of exposition, let us consider a security to be in (out) if the security is included
in (excluded from) an e¢ cient portfolio without short sales. For each security i that is
out, as xi = 0; the unknown variable pertaining to the security is �i: For example, if it is
known that, for a given value of � in a three-security case, securities 1 and 3 are in and
security 2 is out, as �1 = x2 = �3 = 0; the three equations that equation (26) represents,
along with equation (1), provide the following set of four linear equations, from which
the remaining unknown variables (x1; �2; x3; and �) can be solved:

2�11x1 + 2�13x3 � � = ��1;
2�21x1 � �2 + 2�23x3 � � = ��2;

2�31x1 + 2�33x3 � � = ��3; (27)

x1 + x3 = 1:
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Equivalently, in matrix notation, we have2664
2�11 0 2�13 �1
2�21 �1 2�23 �1
2�31 0 2�33 �1
1 0 1 0

3775
2664
x1
�2
x3
�

3775 =
2664
0
0
0
1

3775+ �
2664
�1
�2
�3
0

3775 : (28)

This is a three-security case of matrix equation (16), where the second element of Z
is substituted by �2 and the second column of W is substituted by the corresponding
column of the negative of a 4� 4 identity matrix.

As this example illustrates, once the in/out status of each of the n securities con-
sidered is known, we can use equation (21) in its revised form to determine the e¢ cient
portfolio weights. Speci�cally, we substitute, for each security i that is out, the i-th ele-
ment of Z with a �i and column i of W with the corresponding column of the negative
of an (n + 1) � (n + 1) identity matrix. Denoting the i-th element of Z as zi; we have
zi = xi if security i is in and zi = �i if security i is out, for i = 1; 2; : : : ; n; as well as
zn+1 = �: Analogous to equations (22) and (23) for the frictionless short-sale case, we
have the linear relationships

zi = ai + bi�; for i = 1; 2; : : : ; n+ 1; (29)

where ai and bi are, respectively, the i-th elements of the (n+1)-element column vectors
thatW�1H andW�1K represent. For a set of portfolio weights corresponding to a given
value of � to be acceptable, we must have zi � 0; for i = 1; 2; : : : ; n: The Markowitz
critical line method, as described in the following, allows us to identify the in/out status
of securities for di¤erent values of �:

Intuitively, if � is in�nitely high, risk is not a concern and thus the corresponding
e¢ cient portfolio consists only of the security with the highest expected return among
the n securities considered. In case of a tie, we can break it by arbitrarily adding an
in�nitesimal value to one of the expected returns in question so that any distortions to
the portfolio results are inconsequential. Given the initial in/out status of each security,
we revise W and Z in equations (17) and (18) accordingly. Equation (21) allows us to
write xi for each security i that is in, as well as �i for each security i that is out, in
the form of ai + bi�: If we decrease � from this initial value, a critical value of � will
eventually be encountered. This is the value of � below which the conditions of xi � 0
and �i � 0; for i = 1; 2; : : : ; n; do not hold for all n securities. All it takes is a violation
by one security, which is the security where �ai=bi is the highest among all cases of
bi > 0: The reason is that, if bi > 0; ai + bi� � 0 implies � � �ai=bi and thus, as �
decreases from its initial value, a violation occurs as soon as � is marginally below the
highest value of �ai=bi among such cases.

To allow � to decrease below this critical value, we must revise the in/out status
of the security that makes the portfolio solution unacceptable. The status change leads
to corresponding revisions in W and Z as well. With a new set of ai and bi; for i =
1; 2; : : : ; n; from equation (21), we can determine the next critical value of �; which is also
the highest �ai=bi among all cases of bi > 0: Upon identifying the security that makes
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the portfolio solution unacceptable and changing its in/out status, the same procedure
to revise Z andW continues. The iterative procedure, which generates a series of critical
values of �; stops when no more positive critical values can be found.

From a pedagogic perspective, the way equation (16) is revised above (to allow the
unknown variables among x1; x2; : : : ; xn; �1; �2; : : : ; �n; and � to be solved in terms of �)
is an improvement over the Markowitz [10] version. In Markowitz [10], the slack variable
�i for any security i that is out does not appear in equation (16). Instead, while the i-th
element of Z remains as xi; the i-th row and the i-th column of W are substituted by a
�unit cross,�whose elements are all zeros, except for the (i; i)-element, which is a one.
With the i-th element of K substituted by a zero, equation (16) ensures that xi = 0:
Equation (16) without the slack variables still allows the unknown portfolio weights and
� to be solved in terms of �: However, the search for the next critical value of � in
each iterative step requires a comparison of the various values of � obtained from the
intersections of the current critical line and all potential critical lines. In contrast, our
approach, which determines the next critical value of � by simply �nding the highest
�ai=bi where bi > 0 among i = 1; 2; : : : ; n; is more direct.

The e¢ cient portfolio corresponding to each critical value of � is a corner portfolio.
The in/out status of each security in all e¢ cient portfolios between two adjacent corner
portfolios remains the same. Analogous to the frictionless short-sale case, as portfolio
weights sum to one, each e¢ cient portfolio without short sales based on n securities
can be captured by a point on the corresponding critical line in an (n� 1)-dimensional
space of portfolio weights. Further, a movement on the e¢ cient frontier between two
corner portfolios, on the plane of expected return and standard deviation of returns, can
be captured by a movement on the corresponding critical line. As a corner portfolio is
where two critical lines meet, a movement on the e¢ cient frontier, from � =1 to � = 0;
corresponds to a movement on the connected critical lines, from one end to the other
end of these line segments.

3.2 A spreadsheet-based illustration

To illustrate the critical line method using Excel, let us consider a three-security case
with following input data: �1 = 0:05; �2 = 0:08; �3 = 0:12; �1 = 0:02; �2 = 0:05;
�3 = 0:10; �12 = �21 = 0:0004; �13 = �31 = 0:0002; and �23 = �32 = 0:0010: Given
equations (1) and (26), the four linear equations as required to construct the e¢ cient
frontier without short sales are as follows:

(0:0008x1 � �1) + 0:0008x2 + 0:0004x3 � � = 0:05�
0:0008x1 + (0:0050x2 � �2) + 0:0020x3 � � = 0:08�
0:0004x1 + 0:0020x2 + (0:0200x3 � �3)� � = 0:12� (30)

x1 + x2 + x3 = 1

Figures 1 and 2 show an Excel worksheet for the search of corner portfolios without
short sales based on these input data. Only four steps are required here. The initial
portfolio in Step 1 consists only of security 3; the security with the highest expected
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return among the three securities considered. As both security 1 and 2 are out, we revise
the 4 � 4 matrix W in B9:E12 � a three-security case of equation (17) � so that its
�rst two columns are now the corresponding columns of the negative of a 4� 4 identity
matrix in B14:E17. The resulting W and W�1 are displayed in B23:E26 and B29:E32,
respectively. The latter is produced by using the worksheet function MINVERSE (for
matrix inversion). The computed results ofW�1H andW�1K; labeled as A (containing
a1; a2; a3; and a4) and B (containing b1; b2; b3; and b4); are displayed in F29:F32 and
G29:G32, respectively. These computations require the worksheet function MMULT (for
matrix multiplication). The three cells in H29:H31, labeled as Ratio, shows �ai=bi if
bi > 0; for i = 1; 2; and 3: The highest of these values, 0:45; labeled as Lambda, is
displayed in H35. This is a critical value of �; implying that, for � marginally less than
0:45; security 2 ought to be selected for the portfolio as well.

The corner portfolio results corresponding to � = 0:45; including the three portfolio
weights, the expected portfolio return, and the standard deviation of portfolio returns,
are displayed in B35:F35. The required formulas for the various computations to com-
plete Step 1 are displayed in rows 38 to 52 of the worksheet. Notice that, although the
results of Step 1 in B35:F35 for a portfolio consisting of a single security are so obvious
that the corresponding computations seem unnecessary, the formulas used are intended
to be replicated for each of the subsequent steps. Given the results in Step 1; the simplest
way to perform Step 2 is to make a single change to C21 (from out to in) in a separate
worksheet, which is an exact copy of the �rst 35 rows of the original worksheet. Likewise,
Step 3 (Step 4) requires a status change of the security identi�ed in Step 2 (Step 3) to a
separate worksheet, which is an exact copy of the �rst 35 rows of the worksheet for Step
2 (Step 3): In order to reduce the number of pages for Figures 1 and 2; however, we put
the four steps on the same worksheet instead. The required changes to various �xed-cell
locations for Steps 2-4; which can be deduced from the corresponding formulas in Step
1; are not noted in Figure 1:

Notice also that, instead of performing multi-step calculations leading to the expected
portfolio return (�p) and the standard deviation of portfolio returns (�p) for each corner
portfolio (p); we use direct formulas involving matrix multiplications and, in the case of
�p; also the worksheet function SQRT (for square root). Of course, we can still �nd �p
by computing the three individual products xi�i; for i = 1; 2; and 3; and then summing
the results with simple Excel operations. Likewise, in the case of �p; we can start with
�nding the nine individual products xixj�ij ; for i = 1; 2; and 3 and j = 1; 2; and 3; and
summing the results to reach �2p afterwards. However, by writing �p as the product of a
row vector of expected returns (�1; �2; and �3) and a column vector of portfolio weights
(x1; x2; and x3); as shown in E35, we are able to reach �p directly. In the case of �p;
the computational simplicity that matrix operations provide is even more obvious. By
writing the sum of the nine individual cases of xixj�ij ; for i = 1; 2; and 3 and j = 1; 2;
and 3; as the product of a 3-element row vector of portfolio weights, a 3� 3 covariance
matrix, and a 3-element column vector of the same portfolio weights and then taking
the square root of the sum, as is done in F35, we are able to reach �p directly as well.

In Step 2; where only security 1 is out, the only column in W requiring substitution
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A B C D E F G H I J
1 Sec.1 Sec.2 Sec.3
2
3 Exp.Ret. 0.05 0.08 0.12
4
5 Cov.Mat. 0.0004 0.0004 0.0002
6 0.0004 0.0025 0.001
7 0.0002 0.001 0.01
8 H K
9 W 0.0008 0.0008 0.0004 ­1 0 0.05 Sec.1

10 0.0008 0.005 0.002 ­1 0 0.08 Sec.2
11 0.0004 0.002 0.02 ­1 0 0.12 Sec.3
12 1 1 1 0 1 0
13
14 Neg.Iden. ­1 0 0 0
15 0 ­1 0 0
16 0 0 ­1 0
17 0 0 0 ­1
18
19
20 Step 1 Sec.1 Sec.2 Sec.3
21 out out in
22
23 W ­1 0 0.0004 ­1 Sec.1 out
24 0 ­1 0.002 ­1 Sec.2 out
25 0 0 0.02 ­1 Sec.3 in
26 0 0 1 0
27 Revised Corn.Port.
28 A B Ratio Status X
29 Inv. of W ­1 0 1 ­0.0196 ­0.0196 0.07 0.28 0
30 0 ­1 1 ­0.018 ­0.018 0.04 0.45 in 0
31 0 0 0 1 1 0 1
32 0 0 ­1 0.02 0.02 ­0.12
33
34 X1 X2 X3 Exp.Ret. St.Dev. Lambda
35 Corn.Port. 0 0 1 0.12 0.1 0.45
36
37 Formulas:
38   1. W (in B9:E12): twice the covariance matrix in B5:D7 augmented by extra row and column as shown.
39   2. First 3 elements of K (in G9:G12): {=TRANSPOSE(B3:D3)}.
40   3. W (in B23:E26): copy and paste B23=IF(B$21="in",B9,B14) to B23:D26, and E23=E9 to E23:E26.
41   4. Security status (in G23:H25): {=TRANSPOSE(B20:D21)}.
42   5. Inverse of W (in B29:E32): {=MINVERSE(B23:E26)}.
43   6. A (in F29:F32): {=MMULT(B29:E32,F$9:F$12)}.
44   7. B (in G29:G32): {=MMULT(B29:E32,G$9:G$12)}.
45   8. Ratio (in H29:H31): copy and paste H29=IF(G29>0,­F29/G29,"") to H29:H31.
46   9. Lambda (in H35): =MAX(0,H29:H31).
47 10. Revised status (in I29:I31): copy and paste I29=IF(AND(H$35>0,H29=H$35),IF(H23="in","out","in"),"")
48       to I29:I31.
49 11. X (in J29:J31): copy and paste J29=IF(H23="in",F29+G29*H$35,0) to J29:J31.
50 12. Corner portfolio weights X1, X2, and X3 (in B35:D35): {=TRANSPOSE(J29:J31)}.
51 13. Expected return of corner portfolio (in E35): =MMULT(B$3:D$3,J29:J31).
52 14. Standard deviation of corner portfolio (in F35): =SQRT(MMULT(B35:D35,MMULT(B$5:D$7,J29:J31))).

Figure 1: Excel example (no short sales).

266 eJSiE 2(3):253�280

14

Spreadsheets in Education (eJSiE), Vol. 2, Iss. 3 [2007], Art. 2

http://epublications.bond.edu.au/ejsie/vol2/iss3/2



C Kwan

A B C D E F G H I J
54 Step 2 Sec.1 Sec.2 Sec.3
55 out in in
56
57 W ­1 0.0008 0.0004 ­1 Sec.1 out
58 0 0.005 0.002 ­1 Sec.2 in
59 0 0.002 0.02 ­1 Sec.3 in
60 0 1 1 0
61 Revised Corn.Port.
62 A B Ratio Status X
63 Inv. of W ­1 0.87619 0.12381 ­0.00383 ­0.00383 0.034952 0.109537 in 0
64 0 47.61905 ­47.619 0.857143 0.857143 ­1.90476 0.648501
65 0 ­47.619 47.61905 0.142857 0.142857 1.904762 ­0.075 0.351499
66 0 ­0.85714 ­0.14286 0.004571 0.004571 ­0.08571
67
68 X1 X2 X3 Exp.Ret. St.Dev. Lambda
69 Corn.Port. 0 0.648501 0.351499 0.09406 0.052372 0.109537
70
71 Step 3 Sec.1 Sec.2 Sec.3
72 in in in
73
74 W 0.0008 0.0008 0.0004 ­1 Sec.1 in
75 0.0008 0.005 0.002 ­1 Sec.2 in
76 0.0004 0.002 0.02 ­1 Sec.3 in
77 1 1 1 0
78 Revised Corn.Port.
79 A B Ratio Status X
80 Inv. of W 257.8585 ­225.933 ­31.9253 0.98723 0.98723 ­9.01277 0.97541
81 ­225.933 245.5796 ­19.6464 ­0.00786 ­0.00786 5.992141 0.001311 out 0
82 ­31.9253 ­19.6464 51.57171 0.020629 0.020629 3.020629 ­0.00683 0.02459
83 ­0.98723 0.007859 ­0.02063 0.000792 0.000792 ­0.05121
84
85 X1 X2 X3 Exp.Ret. St.Dev. Lambda
86 Corn.Port. 0.97541 0 0.02459 0.051721 0.019905 0.001311
87
88 Step 4 Sec.1 Sec.2 Sec.3
89 in out in
90
91 W 0.0008 0 0.0004 ­1 Sec.1 in
92 0.0008 ­1 0.002 ­1 Sec.2 out
93 0.0004 0 0.02 ­1 Sec.3 in
94 1 0 1 0
95 Revised Corn.Port.
96 A B Ratio Status X
97 Inv. of W 50 0 ­50 0.98 0.98 ­3.5 0.98
98 0.92 ­1 0.08 0.000032 0.000032 ­0.0244 0
99 ­50 0 50 0.02 0.02 3.5 ­0.00571 0.02
100 ­0.98 0 ­0.02 0.000792 0.000792 ­0.0514
101
102 X1 X2 X3 Exp.Ret. St.Dev. Lambda
103 Corn.Port. 0.98 0 0.02 0.0514 0.0199 0
104

Figure 2: Excel example (no short sales), continued
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by the corresponding column of the negative of an identity matrix is column 1: The
resulting W is displayed in B57:E60. As the critical value of � = 0:109537 identi�ed
in Step 2 and shown in H69 pertains to the status change of security 1; the e¢ cient
portfolios in Step 3 consists all three securities. Thus, in Step 3; as shown in B74:E77,
the original W is retained. The critical value of � = 0:001311 that this step provides
corresponds to the status change of security 2 and, accordingly, securities 1 and 3 are
in and security 2 is out for Step 4: Thus, as shown in B91:E94, the only column of the
original W requiring substitution by the corresponding column of the negative of an
identity matrix is column 2: As the only displayed cell among H97:H99, labeled as Ratio,
shows a negative value, but no critical value of � can be negative, the iterative process
to search for corner portfolios is now completed. The portfolio results corresponding to
� = 0 are shown in B103:F103.7

In view of the results in Figures 1 and 2; the e¢ cient portfolio weights, expressed in
terms of the risk tolerance parameter �; are as follows:

Step 1:
x1 = x2 = 0; x3 = 1; for 0:45000 � �; (31)

Step 2:

x1 = 0;

x2 = 0:85714� 1:90476�; (32)

x3 = 0:14286 + 1:90476�; for 0:10954 � � � 0:45000;

Step 3:

x1 = 0:98723� 9:01277�;
x2 = � 0:00786 + 5:99214�; (33)

x3 = 0:02063 + 3:02063�; for 0:00131 � � � 0:10954;

Step 4:

x1 = 0:98000� 3:50000�;
x2 = 0; (34)

x3 = 0:020000 + 3:50000�; for 0 � � � 0:00131:

Thus, by specifying a value of �; we can �nd the corresponding portfolio weights. With
the portfolio weights known, the corresponding expected portfolio return and standard
deviation of portfolio returns can be determined as well.

7Notice that, as the number of securities considered for e¢ cient portfolio selection changes, the entire
worksheet as shown in Figures 1 and 2 has to be revised accordingly. In order to ensure that students
understand the example in Figures 1 and 2, it is useful to ask them to perform the same analysis for
a case where n = 4 or n = 5 with some given input data. To perform this exercise properly, students
must know both the iterative procedure and the required Excel operations in each step. This exercise
will enable students to appreciate more fully the intuition underlying the critical line method. A similar
exercise is also useful for the example in Figures 4 and 5; as shown later in the paper.
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As each of the second, third, and fourth sets of linear relationships above is in a
parametric form, we can eliminate the parameter � from each set to obtain a corre-
sponding line on a plane � a critical line � where the two perpendicular axes are any
two of x1; x2; and x3: Figure 3 shows, as an illustration, the case involving the (x1; x2)-
plane. Here, the e¢ cient portfolio in Step 1 is the point (0; 0): All e¢ cient portfolios in
Step 2 are on the line segment connecting (0; 0) and (0; 0:6485): The line segment from
(0; 0:6485) to (0:9754; 0) covers all e¢ cient portfolios in Step 3: Finally, in Step 4; the line
segment from (0:9754; 0) to (0:9800; 0) captures the remaining e¢ cient portfolios, with
the point (0:9800; 0) representing the global minimum variance portfolio where � = 0:
Given that a point on these connected line segments � critical lines � represents an
e¢ cient portfolio, a movement of the point there captures the corresponding movement
along the e¢ cient frontier on the plane of expected return and standard deviation of
returns. Each corner portfolio, which is the intersecting point of two critical lines, is
where the status change of a security occurs. The three corner portfolios in Figure 3
are the points (0; 0); (0; 0:6485); and (0:9754; 0): As the choice of the two perpendicular
axes is arbitrary, the critical lines on the (x1; x3)-plane or the (x2; x3)-plane also convey
the same information.

4 Portfolio selection with investment limits and disallowance
of short sales

Suppose that there are also investment limits on individual securities besides disallowance
of short sales. In an n-security case, let us impose the conditions of 0 � xi � ci; where
ci is a pre-determined investment limit on security i; for i = 1; 2; : : : ; n: The sum of the
individual investment limits, c1 + c2 + � � � + cn; must be no less than one. Otherwise,
full allocation of investment funds becomes impossible. Analytically, the imposition of
investment limits will result in n additional slack variables in the Kuhn-Tucker conditions
for optimality to avoid over-investments in any securities. The following is an algebraic
approach to introduce these slack variables to the optimality conditions:

To search for an appropriate set of equations to construct the e¢ cient frontier with
investment limits and disallowance of short sales, let us return to the expression of L in
equation (11). Again, the lower the value of the �rst term (a non-negative term) on the
right hand side of equation (11), the lower is the achievable value of L: If a value of xi > ci
is required to make this term vanish, the value of xiV ar(Ri)+Cov(Ri; R�i )� 1

2(��i+ �);
where xi = ci (which minimizes this term without violating the condition of 0 � xi � ci);
must be negative.

In order to use this algebraic feature to revise equation (26), let us �rst clarify the
status of each security in the portfolio. With both investment limits and disallowance
of short sales, the status of security i must be one of the following three cases: out,
in, and up, corresponding to xi = 0; 0 < xi < ci; and xi = ci; respectively. However,
before the portfolio selection problem is solved, the status of the security is unknown.
Suppose for now that the selection of security i to the portfolio is assured, but what
remains unknown is whether the security is in or up. To accommodate both cases, we
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X1 X2 X3
Corn.Port. 0 0 1
Corn.Port. 0 0.648501 0.351499
Corn.Port. 0.97541 0 0.02459
Corn.Port. 0.98 0 0.02

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

x1

x2

Ý0, 0Þ

Ý0, 0. 6485Þ

Ý0. 9754, 0Þ
Ý0. 9800, 0Þ

Figure 3: Critical Lines on the (x1; x2)-plane for the e¢ cient frontier from the example
in �gures 1 and 2
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write equation (12) as

xiV ar(Ri) + Cov(Ri; R
�
i )�

1

2
(��i + � � �i) = 0; (35)

by adding a non-negative slack variable �i: This additional variable has the following
properties: If security i is in, �i is zero, allowing equation (12) to be retained. If security
i is up instead, �i is positive, implying that xiV ar(Ri) + Cov(Ri; R�i ) � 1

2(��i + �);
where xi = ci; is negative. Strictly speaking, if security i is up, �i can still be zero. This
requires xi = ci to be the result of equation (12); that is, the attainment of xi = ci
does not involve any forced reduction of xi from a higher value in order to satisfy the
condition of xi � ci:

To accommodate also the case where security i is out, we revise equation (35) as

xiV ar(Ri) + Cov(Ri; R
�
i )�

1

2
(��i + � + �i � �i) = 0: (36)

Here, both �i and �i are non-negative slack variables with following properties: If security
i is in or up, �i is zero; if security i is in or out, �i is zero. Similar to the case involving
equations (12) and (15), as well as the case involving equations (25) and (26), we can
write equation (36) as

2x1�i1 + 2x2�i2 + � � �+ 2xn�in � � � �i + �i = ��i: (37)

Equation (37) holds for i = 1; 2; : : : ; n: Along with equation (1), we have n+1 equations.
Students who are familiar with constrained optimization can recognize that this set of
n + 1 equations provides the �rst-order conditions. They can also recognize that the
complementarity conditions are 0 � xi � ci; �i � 0; �i � 0; xi�i = 0; and (ci�xi)�i = 0;
for i = 1; 2; : : : ; n: The complementarity conditions con�rm our algebraic results that,
if security i is out, xi = �i = 0; if security i is in, �i = �i = 0; and if security i is up,
xi = ci and �i = 0: Thus, as long as the status of each security is known, although there
are 3n + 1 unknown variables (i.e., x1; x2; : : : ; xn; �1; �2; : : : ; �n; �1; �2; : : : ; �n; and �);
we do have enough equations to solve these variables in terms of �:

To illustrate how the set of n+1 equations allows us to construct e¢ cient portfolios,
let us consider a �ve-security case where securities 1 and 2 are up, securities 3 and 4 are
in, and security 5 is out. In this case, we have the following set of linear equations:

�1 + 2�13x3 + 2�14x4 � � = �(2c1�11 + 2c2�12) + ��1
�2 + 2�23x3 + 2�24x4 � � = �(2c1�21 + 2c2�22) + ��2
+2�33x3 + 2�34x4 � � = �(2c1�31 + 2c2�32) + ��3
+2�43x3 + 2�44x4 � � = �(2c1�41 + 2c2�42) + ��4 (38)

+2�53x3 + 2�54x4 � �5 � � = �(2c1�51 + 2c2�52) + ��5
x3 + x4 = 1� (c1 + c2)
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Its equivalent matrix equation,26666664

1 0 2�13 2�14 0 �1
0 1 2�23 2�24 0 �1
0 0 2�33 2�34 0 �1
0 0 2�43 2�44 0 �1
0 0 2�53 2�54 �1 �1
0 0 1 1 0 0

37777775

26666664

�1
�2
x3
x4
�5
�

37777775 =
26666664

0
0
0
0
0
1

37777775�c1
26666664

2�11
2�21
2�31
2�41
2�51
1

37777775�c2
26666664

2�12
2�22
2�32
2�42
2�52
1

37777775+�
26666664

�1
�2
�3
�4
�5
0

37777775 ;
(39)

retains the same algebraic form as equation (16). As equation (39) illustrates, for each
security i in an n-security case that is out, we still substitute the i-th element of the
column vector Z with �i and substitute column i of W with the corresponding column
of the negative of an (n + 1) � (n + 1) identity matrix. For each security i that is up,
however, we substitute the i-th element Z with �i; substitute column i of W with the
corresponding column of an (n+1)� (n+1) identity matrix, and subtract from column
vector H column i of ciW (which is proportion ci of the originalW ): The more securities
that are up, the more subtractions from H are required. Once W;Z; and H are revised
in this manner, we can still use equation (21) and the same critical line method to
construct the e¢ cient frontier.

Notice that, just like the portfolio selection problem without short sales considered
earlier in this study, the way equation (16) is revised to accommodate investment limits
on individual securities is also a novel approach. Its novelty is in how the algebraic
form of equation (16) is retained in order to simplify the analysis that follows. If the
Markowitz [9] method, as intended for general linear constraints, were applied directly to
this speci�c portfolio selection problem, the required computations, which include inter-
secting potential critical lines during each iterative step, would be much too complicated
for business students to follow.

4.1 A spreadsheet-based illustration

Let us return to the same three-security Excel example and impose also a common 70%
investment limit on each security, i.e., c = c1 = c2 = c3 = 0:7: The set of linear equations
for portfolio construction according to equations (1) and (37) is as follows:

(0:0008x1 � �1 + �1) + 0:0008x2 + 0:0004x3 � � = 0:05�
0:0008x1 + (0:0050x2 � �2 + �2) + 0:0020x3 � � = 0:08�
0:0004x1 + 0:0020x2 + (0:0200x3 � �3 + �3)� � = 0:12� (40)

x1 + x2 + x3 = 1

Figures 4 and 5 shows the corresponding Excel worksheet, where the search for corner
portfolios requires four steps. The initial portfolio in Step 1; for an in�nitely high �;
consists of securities 2 and 3; the two securities with the highest expected returns among
the three securities considered. To achieve the highest possible expected portfolio return,
security 3 is assigned a 70% portfolio weight. Thus, in Step 1; security 1 is out, security
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2 is in, and security 3 is up, as indicated in B25:D25. The revised W in B28:E31 for
this step is the original W in B9:E12 with its �rst and third columns substituted by
the corresponding columns of the negative of the identity matrix in B19:E22 and of the
identity matrix in B14:E17, respectively. The column in the original W to be used for
revising H for this step is indicated in B26:D26. With security 3 being up (coded as 1
for computational convenience), the revised H in F28:F31 is the original H in F9:F12
minus 70% of the third column of the original W; which is D9:D12.

The computations of W�1 in B34:E37 and, subsequently, A and B in F34:G37 are
the same as those in Figure 1: Likewise, the computations of Ratio (1) in H34:H36 �
�ai=bi; for i = 1; 2; and 3; if bi is positive � are the same as those for Ratio in Figure
1: Ratio (1) provides, for each security i; the value of � below which the variable in
equation (40) pertaining to the security (i.e., xi; �i; or �i) would become negative. Ratio
(2) in I34:I36 � (c� ai)=bi; for i = 1; 2; and 3; if security i is in and bi is negative �
provides, for each security i that is in, the value of � below which the security would
exceed the investment limit c: By allowing � to decrease from an in�nitely high initial
value, the maximum among the computed values in Ratio (1) and Ratio (2) is the �rst
critical value we encounter, as a marginally lower value of � would render the portfolio
infeasible. This critical value of � = 0:2925; labeled as Lambda, is shown in I40. The
corner portfolio weights, expected portfolio return, and standard deviation of portfolio
returns, in B40:F40, corresponding to this critical value of �; are obtained in the same
manner as those in Figure 1: As this critical value of � is provided by security 3; we
change the status of the security from up to in for Step 2:

The required formulas for the �rst 40 rows beyond those already described in Figure
1 are listed in rows 43 to 54 of the worksheet. We can easily perform the remaining
steps by revising B25:D25 only on copies (to separate worksheets) of the �rst 40 rows
of the worksheet. However, in Figures 4 and 5; where all four steps are performed on
a common worksheet to minimize the number of pages for the display, some changes to
various formulas in Step 1 for the subsequent steps are required. As such changes can
be deduced from those provided for Step 1; they are not explicitly noted in Figure 4:

For Step 2; as no security is up, the revised H in F60:F63 retains the same values
as the original H in F9:F12. The critical value of � = 0:10954 from this step, in I72,
is caused by security 1 and thus, in Step 3; all three securities are in. Again, with
no security being up, the revised H in F78:F81 retains its original values. However,
as the critical value of � = 0:03187 from this step, in I90, is caused by a violation
of investment limit on security 1; Step 4 is the case where security 1 is up and the
remaining two securities are in. Accordingly, the revised H in F96:F99 is the original
H in F9:F12 minus 70% of the �rst column of the original W; which is B9:B12. As no
more non-negative critical value of � can be found in Step 4; the search is completed.

The results in Figures 4 and 5 allow us to express the e¢ cient portfolio weights in
terms of the risk tolerance parameter � as follows:

Step 1:

x1 = 0; x2 = 0:3; x3 = 0:7; for 0:29250 � �; (41)
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A B C D E F G H I J K
1 Sec.1 Sec.2 Sec.3
2 Investment Limit c
3 Exp.Ret. 0.05 0.08 0.12 0.7
4
5 Cov.Mat. 0.0004 0.0004 0.0002
6 0.0004 0.0025 0.001
7 0.0002 0.001 0.01
8 H K
9 W 0.0008 0.0008 0.0004 ­1 0 0.05 Sec.1

10 0.0008 0.005 0.002 ­1 0 0.08 Sec.2
11 0.0004 0.002 0.02 ­1 0 0.12 Sec.3
12 1 1 1 0 1 0
13
14 Iden. 1 0 0 0
15 0 1 0 0
16 0 0 1 0
17 0 0 0 1
18
19 Neg.Iden. ­1 0 0 0
20 0 ­1 0 0
21 0 0 ­1 0
22 0 0 0 ­1
23
24 Step 1 Sec.1 Sec.2 Sec.3
25 out in up
26 UP Code 0 0 1
27 H K
28 W ­1 0.0008 0 ­1 ­0.00028 0.05 Sec.1 out
29 0 0.005 0 ­1 ­0.0014 0.08 Sec.2 in
30 0 0.002 1 ­1 ­0.014 0.12 Sec.3 up
31 0 1 0 0 0.3 0
32 Revised Corn.Port.
33 A B Ratio (1) Ratio (2) Status X
34 Inv. Of W ­1 1 0 ­0.0042 ­0.00238 0.03 0.07933 0
35 0 0 0 1 0.3 0 0.3
36 0 ­1 1 0.003 ­0.0117 0.04 0.2925 in 0.7
37 0 ­1 0 0.005 0.0029 ­0.08
38
39 X1 X2 X3 Exp.Ret. St.Dev. Lambda
40 Corn.Port. 0 0.3 0.7 0.108 0.07446 0.2925
41
42 Formulas (beyond those analogous formulas already described in Figure 1):
43   1. UP Code (in B26:D26): copy and paste B26=IF(B25="up",1,0) to B26:D26.
44   2. First 3 columns of W (in B28:D31): copy and paste B28=IF(B$25="in",B9,IF(B$25="out",B19,B14)) to B28:D31.
45   3. H (in F28:F31): copy and paste F28=F9­F$3*(B$26*B9+C$26*C9+D$26*D9) to F28:F31.
46   4. First three elements of K (in G28:G30): {=TRANSPOSE(B$3:D$3)}.
47   5. A (in F34:F37): {=MMULT(B34:E37,F28:F31)}.
48   6. B (in G34:G37): {=MMULT(B34:E37,G28:G31)}.
49   6. Ratio (1) (in H34:H36): copy and paste H34=IF(G34>0,­F34/G34,"") to H34:H36.
50   7. Ratio (2) (in I34:I36): copy and paste I34=IF(AND(I28="in",G34<0),(F$3­F34)/G34,"") to I34:I36.
51   8. Lambda (in I44): =MAX(0,H38:I40).
52   9. X (in K34:K36): copy and paste K34=IF(I28="in",F34+G34*I$40,IF(I28="out",0,F$3)) to K34:K36.
53 10. Revised status (in J34:J36): copy and paste J34=IF(I$40<0,"",IF(H34=I$40,IF(OR(I28="out",I28="up"),"in",
54       "out"),IF(I34=I$40,"up",""))) to J34:J36.

Figure 4: Excel example (with investment limits and no short sales)
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55 A B C D E F G H I J K
56 Step 2 Sec.1 Sec.2 Sec.3
57 out in in
58 UP Code 0 0 0
59 H K
60 W ­1 0.0008 0.0004 ­1 0 0.05 Sec.1 out
61 0 0.005 0.002 ­1 0 0.08 Sec.2 in
62 0 0.002 0.02 ­1 0 0.12 Sec.3 in
63 0 1 1 0 1 0
64 Revised Corn.Port.
65 A B Ratio (1) Ratio (2) Status X
66 Inv. Of W ­1 0.87619 0.12381 ­0.00383 ­0.00383 0.03495 0.10954 in 0
67 0 47.619 ­47.619 0.85714 0.85714 ­1.90476 0.0825 0.64850136
68 0 ­47.619 47.619 0.14286 0.14286 1.90476 ­0.075 0.35149864
69 0 ­0.85714 ­0.14286 0.00457 0.00457 ­0.08571
70
71 X1 X2 X3 Exp.Ret. St.Dev. Lambda
72 Corn.Port. 0 0.6485 0.3515 0.09406 0.05237 0.10954
73
74 Step 3 Sec.1 Sec.2 Sec.3
75 in in in
76 UP Code 0 0 0
77 H K
78 W 0.0008 0.0008 0.0004 ­1 0 0.05 Sec.1 in
79 0.0008 0.005 0.002 ­1 0 0.08 Sec.2 in
80 0.0004 0.002 0.02 ­1 0 0.12 Sec.3 in
81 1 1 1 0 1 0
82 Revised Corn.Port.
83 A B Ratio (1) Ratio (2) Status X
84 Inv. Of W 257.859 ­225.933 ­31.9253 0.98723 0.98723 ­9.01277 0.03187 up 0.7
85 ­225.933 245.58 ­19.6464 ­0.00786 ­0.00786 5.99214 0.00131 0.18310627
86 ­31.9253 ­19.6464 51.5717 0.02063 0.02063 3.02063 ­0.00683 0.11689373
87 ­0.98723 0.00786 ­0.02063 0.00079 0.00079 ­0.05121
88
89 X1 X2 X3 Exp.Ret. St.Dev. Lambda
90 Corn.Port. 0.7 0.18311 0.11689 0.06368 0.02438 0.03187
91
92 Step 4 Sec.1 Sec.2 Sec.3
93 up in in
94 UP Code 1 0 0
95 H K
96 W 1 0.0008 0.0004 ­1 ­0.00056 0.05 Sec.1 up
97 0 0.005 0.002 ­1 ­0.00056 0.08 Sec.2 in
98 0 0.002 0.02 ­1 ­0.00028 0.12 Sec.3 in
99 0 1 1 0 0.3 0
100 Revised Corn.Port.
101 A B Ratio (1) Ratio (2) Status X
102 Inv. Of W 1 ­0.87619 ­0.12381 0.00383 0.00111 ­0.03495 0.7
103 0 47.619 ­47.619 0.85714 0.24381 ­1.90476 ­0.2395 0.24380952
104 0 ­47.619 47.619 0.14286 0.05619 1.90476 ­0.0295 0.05619048
105 0 ­0.85714 ­0.14286 0.00457 0.00189 ­0.08571
106
107 X1 X2 X3 Exp.Ret. St.Dev. Lambda
108 Corn.Port. 0.7 0.24381 0.05619 0.06125 0.02358 0

Figure 5: Excel example (with investment limits and no short sales), continued
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Step 2:

x1 = 0;

x2 = 0:85714� 1:90476�; (42)

x3 = 0:14286 + 1:90476�; for 0:10954 � � � 0:29250;

Step 3:

x1 = 0:98723� 9:01277�;
x2 = � 0:00786 + 5:99214�; (43)

x3 = 0:02063 + 3:02063�; for 0:03187 � � � 0:10954;

Step 4:

x1 = 0:7;

x2 = 0:24381� 1:90476�; (44)

x3 = 0:05619 + 1:90476�; for 0 � � � 0:03187:

These linear relationships also allow us to �nd, for any � � 0; the corresponding portfolio
weights. Then, the corresponding expected portfolio return and standard deviation of
portfolio returns can be determined as well.

Once we eliminate the parameter � from each of the last three sets of linear rela-
tionships above, we can capture these relationships graphically on a plane, with the two
perpendicular axes being any two of x1; x2; and x3: For example, as shown in Figure 6;
the e¢ cient portfolio in Step 1 is the point (0; 0:3) on the (x1; x2)-plane. All e¢ cient
portfolios in Step 2 are on the line segment � a critical line on the (x1; x2)-plane �
between (0; 0:3) and (0; 0:6485): The line segment between (0; 0:6485) and (0:7; 0:1831)
covers all e¢ cient portfolios in Step 3: In Step 4; the line segment between (0:7; 0:1831)
and (0:7; 0:2438) covers the remaining e¢ cient portfolios, with the point (0:7; 0:2438)
being the global minimum variance portfolio where � = 0: The point where two crit-
ical lines meet gives us a corner portfolio, where a status change of a security occurs.
As Figure 6 shows, the three corner portfolios are the points (0; 0:3); (0; 0:6485); and
(0:7; 0:1831): A point on the e¢ cient frontier, on the plane of expected return and stan-
dard deviation of returns, has a corresponding point on these connected line segments.
Further, as we move along the e¢ cient frontier, where � � 0; the corresponding changes
in portfolio weights are revealed by the movement of a point on these connected line
segments, from one end to the other end.

Before concluding, it is worth noting that, although the spreadsheet illustrations
in this study are for n = 3; where all the input data for the analysis are provided,
the analysis can be made more practically relevant if larger-scaled portfolio selection
problems with real-world data are attempted. To do so will involve the following com-
ponents of an investment course: (1) empirical estimation of the required input data
for mean-variance analysis on some publicly traded securities and (2) implementation
of the analysis on the estimated data. The work, to be performed on spreadsheets, can
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X1 X2 X3
Corn.Port. 0 0.3 0.7
Corn.Port. 0 0.648501 0.351499
Corn.Port. 0.7 0.183106 0.116894
Corn.Port. 0.7 0.24381 0.05619
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0 0.2 0.4 0.6 0.8 1
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Ý0, 0. 3Þ
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Ý0. 7, 0. 2438Þ

Figure 6: Critical Lines on the (x1; x2)-plane for the E¢ cient Frontier from the Example
in Figures 4 and 5
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either be divided into two separate assignments for students, as the course progresses,
or treated as a single assignment upon the completion of both components of the course.
By assigning di¤erent sets of securities with di¤erent risk-return characteristics to indi-
vidual students (or groups of students), we can discuss in class various portfolio concepts
based on the results obtained.

5 Concluding remarks

The Markowitz critical line method for portfolio selection under general linear con-
straints, though a signi�cant advancement in the investment literature, is well beyond
the scope of the standard �nance curriculum because it is a sophisticated algorithm.
Thus, for many decades since its original publication, the method has remained a mys-
tery to many business students. This pedagogic study has provided a simple exposition
of the method by considering two speci�c but practically relevant constraints, i.e., in-
vestment limits on individual securities and disallowance of short sales. This study has
shown that the method requires only basic algebraic tools and statistical concepts, thus
allowing the Markowitz analysis to be more accessible to business students.

This study is intended to complement other pedagogic studies on mean-variance port-
folio selection, such as those using numerical approaches to bypass the analytical details
and those simplifying the covariance structure of security returns to reduce the analyti-
cal burden. This study is able to reduce the analytical burden in portfolio construction
while maintaining the original covariance structure. It also enables business students
to appreciate more fully an important feature of the Markowitz analysis that there is a
correspondence between the mean-variance e¢ cient frontier (on the plane of expected
return and standard deviation of returns) and the critical lines (in a multi-dimensional
space of portfolio weights).

The use of electronic spreadsheets in this study allows business students to follow
the Markowitz analysis under speci�c constraints without computational distractions.
As the only time-consuming computations in the analysis are for solving simultaneous
linear equations (if performed manually), the use of spreadsheet functions for basic ma-
trix operations to solve these equations is able to reduce signi�cantly the computational
burden without masking any analytical features of the method. Spreadsheet-based ma-
trix operations being easy to follow, their simplicity and computational advantage can
easily be recognized by students with or without prior knowledge of matrix algebra.
This computational simpli�cation, in turn, enables students to pay more attention to
the conceptual aspect of the Markowitz analysis.

For advanced students, including those who are already familiar with multivariate dif-
ferential calculus and optimization tools, instructors can present the same optimization
problems more formally. Once the optimality conditions � including those in equations
(15), (26), and (37) � are reached, the same spreadsheet approach as described in this
study can be applied directly. Instructors may �nd it useful to extend the analysis in this
study to accommodate additional linear constraints. Constraints such as speci�c limits
on the aggregate portfolio weights of subsets of securities are practically relevant. In
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cases where such limits are stated as equality constraints, the corresponding extensions
are straightforward. Cases involving inequality constraints, however, are more compli-
cated. They are suitable only for courses where students have some prior knowledge of
multivariate optimization.

Finally, it is worth noting that, although this pedagogic study has its focus on the
Markowitz critical line method for mean-variance portfolio analysis, the same idea of us-
ing simple algebraic tools can be extended to other types of decision problems as well. As
long as a decision setting can be formulated as an optimization problem with a quadratic
objective function subject to some speci�c linear constraints, a set of optimality condi-
tions, which allows the solution to be reached, can still be established without explicitly
using any multivariate di¤erential calculus tools. Therefore, the idea as presented in this
pedagogic study should also be of interest to instructors in other academic disciplines
who wish to make their quadratic-programming materials accessible to more students
with divergent mathematical backgrounds.
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