
Spreadsheets in Education (eJSiE)

Volume 2 | Issue 3 Article 4

4-11-2008

Revisiting Polya's summation techniques using a
spreadsheet: from addition tables to Bernoulli
polynomials
Sergei Abramovich
State University of New York at Potsdam, abramovs@potsdam.edu

Stephen J. Sugden
Bond University, ssugden@bond.edu.au

Follow this and additional works at: http://epublications.bond.edu.au/ejsie

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works
4.0 License.

This Regular Article is brought to you by the Bond Business School at ePublications@bond. It has been accepted for inclusion in Spreadsheets in
Education (eJSiE) by an authorized administrator of ePublications@bond. For more information, please contact Bond University's Repository
Coordinator.

Recommended Citation
Abramovich, Sergei and Sugden, Stephen J. (2008) Revisiting Polya's summation techniques using a spreadsheet: from addition tables
to Bernoulli polynomials, Spreadsheets in Education (eJSiE): Vol. 2: Iss. 3, Article 4.
Available at: http://epublications.bond.edu.au/ejsie/vol2/iss3/4

http://epublications.bond.edu.au/ejsie?utm_source=epublications.bond.edu.au%2Fejsie%2Fvol2%2Fiss3%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epublications.bond.edu.au/ejsie/vol2?utm_source=epublications.bond.edu.au%2Fejsie%2Fvol2%2Fiss3%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epublications.bond.edu.au/ejsie/vol2/iss3?utm_source=epublications.bond.edu.au%2Fejsie%2Fvol2%2Fiss3%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epublications.bond.edu.au/ejsie/vol2/iss3/4?utm_source=epublications.bond.edu.au%2Fejsie%2Fvol2%2Fiss3%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epublications.bond.edu.au/ejsie?utm_source=epublications.bond.edu.au%2Fejsie%2Fvol2%2Fiss3%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://epublications.bond.edu.au/ejsie/vol2/iss3/4?utm_source=epublications.bond.edu.au%2Fejsie%2Fvol2%2Fiss3%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epublications.bond.edu.au
mailto:acass@bond.edu.au
mailto:acass@bond.edu.au


Revisiting Polya's summation techniques using a spreadsheet: from
addition tables to Bernoulli polynomials

Abstract
Recurrence relations in mathematics form a very powerful and compact way of looking at a wide range of
relationships. Traditionally, the concept of recurrence has often been a difficult one for the secondary teacher
to convey to students. Closely related to the powerful proof technique of mathematical induction, recurrences
are able to capture many relationships in formulas much simpler than so-called direct or closed formulas. In
computer science, recursive coding often has a similar compactness property, and, perhaps not surprisingly,
suffers from similar problems in the classroom as recurrences: the students often find both the basic concepts
and practicalities elusive. Using models designed to illuminate the relevant principles for the students, we offer
a range of examples which use the modern spreadsheet environment to powerfully illustrate the great
expressive and computational power of recurrences.
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Abstract

Recurrence relations in mathematics form a very powerful and compact way of
looking at a wide range of relationships. Traditionally, the concept of recurrence has
often been a difficult one for the secondary teacher to convey to students. Closely
related to the powerful proof technique of mathematical induction, recurrences are
able to capture many relationships in formulas much simpler than so-called direct
or closed formulas. In computer science, recursive coding often has a similar com-
pactness property, and, perhaps not surprisingly, suffers from similar problems in
the classroom as recurrences: the students often find both the basic concepts and
practicalities elusive. Using models designed to illuminate the relevant principles
for the students, we offer a range of examples which use the modern spreadsheet
environment to powerfully illustrate the great expressive and computational power
of recurrences.
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1 Introduction

Advocated by Polya as tools for learning and teaching problem solving [13], the closely-
related concepts of recurrences, recursion, finite-differences, mathematical induction,
and difference equations are both fundamental and powerful. They are fundamental in
the sense that recursion and induction are woven into the very structure of the natural
numbers [7], and powerful in at least two senses:

1. enabling concise expression of far-reaching principles or relationships

2. forming the basis of very compact and efficient algorithms for computation of many
combinatorial objects
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Polya’s Summation Techniques

We are interested in conveying the elegance and power of recursive concepts and
methods in the teaching of mathematics through technology. To recognize and efficiently
apply recursive methods using traditional facilities such as pencil, paper and algebra
requires significant mathematical maturity. Such maturity is found only comparatively
rarely in high-school students or beginning tertiary students, at least at the authors’
institutions. In this paper, we argue that the modern spreadsheet environment enhances
the presentation of Polya’s ideas about the summation of perfect powers by offering new
opportunities for the teacher to illustrate the simplicity, yet great power of recursive
approaches. Such approaches are mathematically rigorous, yet quite accessible for the
students, even for those whose algebraic background is very modest.

Throughout the paper, we examine a series of mathematical objects and their re-
cursive definitions. It is shown that the spreadsheet offers a friendly and illustrative
environment for investigation of the properties of recursively-defined concepts. Each
such concept will be motivated by a combination of a concrete problem and its physical
representation.

2 Addition and multiplication tables

As mentioned in [16], the program of axiomatization of arithmetic was originally un-
dertaken by Grassmann [7] who, proceeding from the recursive definition of natural
numbers, introduced the operations of addition and multiplication through such a defi-
nition also. In developing spreadsheet-based addition and multiplication tables, one can
use this classic approach to the rigorization of arithmetic by using the software facility
of recurrent counting. To clarify, consider

Problem 1. There are x red and y yellow counters on the desk. How many counters
in both colors are there?

Figure 1: Counting counters recursively

The left and right parts of Figure 1 (in which x = 4 and y = 6) show, respectively,
that the total number of counters can be counted through the equalities 4+6 = 4+(6−
1) + 1 and 4 + 6 = (4− 1) + 1 + 6. These equalities can be generalized to the identities
x+ y = x+ (y− 1) + 1 and x+ y = (x− 1) + 1+ y. In a more formalized notation, and
setting A(x, y) = x+ y, these identities can be expressed through what may be referred
to as partial difference equations in two variables [8]

300 eJSiE 2(3): 299—315
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A B C D E F G H I J K
1 y  \  x 1 2 3 4 5 6 7 8 9 10

2 1 2 3 4 5 6 7 8 9 10 11

3 2 3 4 5 6 7 8 9 10 11 12

4 3 4 5 6 7 8 9 10 11 12 13

5 4 5 6 7 8 9 10 11 12 13 14

6 5 6 7 8 9 10 11 12 13 14 15

7 6 7 8 9 10 11 12 13 14 15 16

8 7 8 9 10 11 12 13 14 15 16 17

9 8 9 10 11 12 13 14 15 16 17 18

10 9 10 11 12 13 14 15 16 17 18 19

11 10 11 12 13 14 15 16 17 18 19 20

Figure 2: Addition table

A(x, y) = A(x, y−1)+1 or A(x, y) = A(x−1, y)+1, satisfying boundary conditions
A(1, y) = y + 1 and A(x, 1) = x+ 1, respectively. The spreadsheet pictured in Figure 2
generates an addition table by using one of the above partial difference equations.

2.1 Multiplication table as recursive structure

An effective way to develop a mathematical model that describes a new concept is to pose
a problem that allows for the construction of a physical model to serve as a situational
referent for the new concept. With this in mind, consider the following example.

Problem 2. On a parade, x people are marching in each of y columns. How many
people are marching?

Figure 3 (where x = 4, y = 7) shows two ways of solving this problem recursively.
Indeed, the bottom and top parts of Figure 3 can be described, respectively, through
the equalities 4× 7 = (3× 7) + 7 and 4× 7 = (4× 6) + 4, which can be generalized to
the identities xy = (x− 1) y + y and xy = x (y − 1) + x.

In this case, setting P (x, y) = xy, we have, P (x, y) = P (x − 1, y) + y or P (x, y) =
P (x, y−1)+x, satisfying boundary conditions P (1, y) = y and P (x, 1) = x, respectively.
The spreadsheet pictured in Figure 4 generates a multiplication table by using one of
these partial difference equations. Further discussion may be found in [2].

3 Power table

In this section, we consider the cardinality of a set of functions as a motivation for the
development of a power table through a recursive definition. Each function has the same

eJSiE 2(3): 299—315 301
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Polya’s Summation Techniques

Figure 3: Representing a product of two numbers recursively

finite domain and the same finite codomain. Suppose that the domain has cardinality y
and the codomain has cardinality x.

Problem 3. In how many ways can y objects be placed in x boxes? We consider an
example in which y = 3 and x = 2. Suppose we have three objects, denoted p, q, r. Each
object must be placed in one of two separate boxes, which we denote by 0 and 1. Thus,
a box may be empty or include more than one object. Since no object can be in both
boxes at the same time, we have the set of eight possibilities shown in Figure 5.

There are several ways to view this example, which is intended to illustrate the
cardinality of a set of functions. Suppose that f : {p, q, r} → {0, 1}. Then, the set of
pairs for f must be of the form {(p, b1) , (q, b2) , (r, b3)}, where each bi ∈ {0, 1} . To see
how many such sets are possible, we first observe that each bi is independent of the
others, and has 2 possible values. Thus, by the multiplication rule, we have 23 possible
sets of pairs.

We have illustrated this principle in Figure 5 by using the traditional arrow diagram.
The main point to notice here is that we must always have three arrows pointing from the
domain. This is required since we are dealing with functions and not relations. Where
do these arrows go? To use an archery or military analogy, each must hit a target.
The next question is: "how many possible targets are there?". Here, we have just 2
targets–these are the elements of the codomain. Since each arrow must hit a target,
each function may be represented by an ordered binary triple, or bitstring of length 3.
In such a triple, the domain element, or pre-image is implicit, as we always assume the
order p, q, r. The corresponding codomain element, or image, is just a bit. For example,

302 eJSiE 2(3): 299—315
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A B C D E F G H I J K
1 y  \  x 1 2 3 4 5 6 7 8 9 10

2 1 1 2 3 4 5 6 7 8 9 10

3 2 2 4 6 8 10 12 14 16 18 20

4 3 3 6 9 12 15 18 21 24 27 30

5 4 4 8 12 16 20 24 28 32 36 40

6 5 5 10 15 20 25 30 35 40 45 50

7 6 6 12 18 24 30 36 42 48 54 60

8 7 7 14 21 28 35 42 49 56 63 70

9 8 8 16 24 32 40 48 56 64 72 80

10 9 9 18 27 36 45 54 63 72 81 90

11 10 10 20 30 40 50 60 70 80 90 100

Figure 4: Multiplication table

the function {(p, 0) , (q, 0) , (r, 1)} may simply be represented by the bitstring 001. The
number of possible functions, then, is simply the number of bitstrings of length 3, and
this is well-known to be 23. In a typical arrow diagram, each of the mandatory three
arrows can be imagined to represent a bit: that of its target, or image point. Figure 6
illustrates this idea for the function "001", that is, f (p) = 0, f (q) = 0, and f (r) = 1.

In terms of recursion, that is to show that 24 = (23)× 2, note that, as we have two
boxes, object 4 can be added to each of the arrangements in two ways: either by being
added to box 0 (empty or not) or to box 1 (empty or not).

In general, the transition from x boxes and y objects to x boxes and y + 1 objects
always results in x different ways to choose a box for the (y+1)-st object. Then setting
E(x, y) = xy, one can introduce the equation E(x, y) = E(x, y − 1)x subject to the
boundary condition E(x, 1) = x. The results of spreadsheet modelling of this partial
difference equation are shown in Figure 7.

4 Modeling the sums of perfect powers

Investigation of sums of positive integer powers of the natural numbers has a long history
[10]. Finding a formula for

S(n,m) = 1m + 2m + 3m + · · ·+ nm =
nX

k=1

km

has interested mathematicians for more than 300 years since the time of Jakob Bernoulli
(1654-1705) [17]. General power sums also arise commonly in statistics [9]. It is known
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Figure 6: The function "001"
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A B C D E F G H I
1 y  \  x 1 2 3 4 5 6 7 8

2 1 1 2 3 4 5 6 7 8

3 2 1 4 9 16 25 36 49 64

4 3 1 8 27 64 125 216 343 512

5 4 1 16 81 256 625 1296 2401 4096

6 5 1 32 243 1024 3125 7776 16807 32768

7 6 1 64 729 4096 15625 46656 117649 262144

8 7 1 128 2187 16384 78125 279936 823543 2097152

Figure 7: Power table

that a closed form expression–a polynomial in n of degree m+1 –represents this sum
for any m ≥ 1. We list the first few of these below.

S(n, 1) =
nX

k=1

k =
1

2
n (n+ 1)

S(n, 2) =
nX

k=1

k2 =
1

6
n (n+ 1) (2n+ 1)

S(n, 3) =
nX

k=1

k3 =
1

4
n2 (n+ 1)2

S(n, 4) =
nX

k=1

k4 =
1

30
n (n+ 1) (2n+ 1)

¡
3n2 + 3n− 1

¢
S(n, 5) =

nX
k=1

k5 =
1

12
n2 (n+ 1)2

¡
2n+ 2n2 − 1

¢
S(n, 6) =

nX
k=1

k6 =
n

42
(n+ 1) (2n+ 1)

¡
3n4 + 6n3 − 3n+ 1

¢
Such polynomials have many interesting properties. For example, for each one, the

sum of the coefficients is unity, and n (n+ 1) /2 is a factor.

4.1 Combinatorial motivation of the sums of perfect powers

To begin, consider the following combinatorial problematic situation used elsewhere [1]
to introduce the use of a spreadsheet in teaching topics in discrete mathematics.

Problem 4. There are n types of objects with an unlimited number of each type,
or, in other words, any object after being chosen is replaced in the stock. One makes all
possible arrangements of m such objects (m—samples). In making up the arrangements,

eJSiE 2(3): 299—315 305
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objects of the same type can be used and therefore each place in the m—sample can be
filled in n different ways, because the stock of objects is unaltered by any choice. Two
arrangements are regarded as different if they contain different numbers of elements of
a certain type or if their elements are ordered differently. Arrangements of this type
are called m—samples with repetitions of elements of n—types. By the general counting
principle, known as the rule of product [15], the number of m—samples with repetitions
of n objects equals nm –the perfect mth power of an integer n.

For example, one can make up 109 different nine-digit ID strings using the ten digits
0 . . . 9 as characters. Since we are dealing with strings here (rather than numbers)
leading zeroes would be retained. Indeed, each ID string formed in this way is a nine-
sample made of ten objects (digits) that may be repeated. In general, computing the
number of all possible m—samples with repetitions from 1, 2, . . . , n types leads to the
sum 1m + 2m + 3m + · · ·+ nm.

4.1.1 Counting problems in geometry

There are counting problems in geometry that lead to the sums of perfect powers thereby
giving geometry a combinatorial flavor.

1. Counting segments within a segment. The number of all segments within a
line segment divided into n segments of equal length equals the sum 1 + 2 + 3 +
. . . .+ n.

2. Counting squares within a square. The number of all squares on an n × n—
checkerboard equals the sum 12 + 22 + 32 + · · ·+ n2.

3. Counting cubes within a cube. The number of all cubes within an n×n× n—
cube equals the sum 13 + 23 + 33 + · · ·+ n3.

4. Counting hypercubes within a hypercube. The total number of m—cubes
within an nm—cube equals the sum 1m + 2m + 3m + · · ·+ nm.

4.1.2 A partial difference equation

Analyzing the development of the sums of perfect powers in the above geometric situa-
tions and setting S(n,m) = 1m + 2m + 3m + · · · + nm, results in the partial difference
equation

S(n,m) = S(n− 1,m) + nm (1)

subject to the boundary condition

S(1,m) = 1,m ≥ 1 (2)

The results of modeling equation (1) under condition (2) are shown in Figure 8.

306 eJSiE 2(3): 299—315
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A B C D E F G H I
1 r  \  n 1 2 3 4 5 6 7 8
2 1 1       3        6       10       15        21           28           36             
3 2 1       5        14     30       55        91           140         204           
4 3 1       9        36     100     225       441         784         1,296        
5 4 1       17      98     354     979       2,275       4,676       8,772        
6 5 1       33      276    1,300  4,425    12,201     29,008     61,776       
7 6 1       65      794    4,890  20,515  67,171     184,820   446,964     
8 7 1       129     2,316 18,700 96,825  376,761   1,200,304 3,297,456  
9 8 1       257     6,818 72,354 462,979 2,142,595 7,907,396 24,684,612 

Figure 8: Modelling the sums S(n,m)

4.2 Triangular numbers

When m = 1, equation 1 generates the sums of consecutive counting numbers starting
from one. These sums are commonly referred to as triangular numbers [5]. An interesting
fact, mentioned by Polya [13] is that the formula (3)

S(n, 1) =
n(n+ 1)

2
(3)

can be used to derive formulas for S(n, 2) and S(n, 3). In what follows, the results of
spreadsheet modeling of the sums S(n,m) will be used to enhance the presentation of
this idea by Polya. Furthermore, this idea will be extended to include the sums of higher
powers. Such an extension would require an additional use of a spreadsheet that goes
beyond numerical modeling of equation (2).

To begin, consider two sets of numbers, S(n, 1) and S(n, 2), displayed in rows 2 and
3, respectively, of the spreadsheet pictured in Figure 8. The ratios S(n, 2)/S(n, 1) for
n = 1, 2, 3, . . . form the following sequence

1,
5

3
,
7

3
, 3,
11

3
,
13

3
, . . .

What do all these numbers have in common? When multiplied by three, they become
consecutive odd numbers starting from three. In more general form, these ratios are

2n+ 1

3

and therefore one can come up with the following computationally driven conjecture
Proposition 1

S(n, 2) =
2n+ 1

3
S(n, 1) (4)

Formula (4) can be proved by the method of mathematical induction, and this is
discussed below. Another interesting observation is

eJSiE 2(3): 299—315 307
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Proposition 2

S(n, 3) = S2(n, 1) (5)

5 Modeling the sums S(n, 4) and S(n, 5)

The idea of the sum S(n, m) being a multiple of S(n, 1) and the fact that S(n, m) is a
polynomial of degree m + 1 in n prompts the following spreadsheet-based approach to
finding the sums S(n, m) for m > 3. Consider S(n, 4), the sum of n consecutive fourth
powers of natural numbers. Assuming that S(n, 1) is a factor of S(n, 4) brings about
the formula

S (n, 4) =
n (n+ 1)

2

¡
an3 + bn2 + cn+ d

¢
where coefficients a, b, c and d are yet to be found. To this end, by using modeling

data generated by the spreadsheet of Figure 8, one can develop the following system of
simultaneous equations in four variables

S(1, 4) = 1 (a+ b+ c+ d) (6)

S(2, 4) = 3 (8a+ 4b+ 2c+ d)

S(3, 4) = 6 (27a+ 9b+ 3c+ d)

S(4, 4) = 10 (64a+ 16b+ 4c+ d)

which can be simplified to the form

a+ b+ c+ d = 1 (7)

24a+ 12b+ 6c+ 3d = 17

81a+ 27b+ 9c+ 3d = 49

320a+ 80b+ 20c+ 5d = 177

One can use a spreadsheet function MINVERSE to find the values of coefficients a, b, c,
and d. The corresponding spreadsheet is depicted in Figure 9, where the range A1:D4
is entered with coefficients of the system of equations, the range A6:D9 computes the
inverse matrix of these coefficients, the range F1:F4 is entered with the right-hand sides
of the equations, and the range F6:F9 is filled with the values of a, b, c, and d.

As a result, the following formula can be obtained

S (n, 4) =
n (n+ 1)

¡
6n3 + 9n2 + n− 1

¢
30

The correctness of this formula can be verified within a spreadsheet by computing
its values for different values of n and comparing the results with the numbers found for

308 eJSiE 2(3): 299—315
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A B C D E F
1 1 1 1 1 1
2 24 12 6 3 17
3 81 27 9 3 49
4 320 80 20 5 177
5
6 ‐ 1/6 1/6 ‐ 1/6 1/30 2/5
7 1  1/2 ‐1  1/3 1  1/6 ‐ 1/5 3/5
8 ‐4  1/3 3  1/6 ‐2  1/3 11/30 1/15
9 4 ‐2 1  1/3 ‐ 1/5 ‐ 1/15

Figure 9: Solving a system of four linear equations

S(n, 4) by a spreadsheet based on a partial difference equation (1). Note that fractional
formatting (Figure 9, range F6:F9) has been used to clearly show the values of the
rational coefficients a, b, d and d. Finally, this formula can be proved by the method of
mathematical induction.

As an aside, it is interesting to note that, according to Polya [13, p79], the sum
S(n, 4) can further be represented through eq (8).

S (n, 4) = S (n, 2)
6S (n, 1)− 1

5
(8)

Proposition 3

S (n, 4) = S (n, 1)

¡
6n3 + 9n2 + n− 1

¢
15

(9)

In much the same way, one can conjecture that

S (n, 5) =
n (n+ 1)

2

¡
an4 + bn3 + cn2 + dn+ e

¢
and then, using modeling data presented in Figure 9, find the solution to the system

of simultaneous linear equations in five variables

a+ b+ c+ d+ e = 1

16a+ 8b+ 4c+ 2d+ e = 11

81a+ 27b+ 9c+ 3d+ e = 46

256a+ 64b+ 16c+ 4d+ e = 130

625a+ 125b+ 25c+ 5d+ e = 295

As a result, the following formula can be obtained
Proposition 4

S (n, 5) =
n (n+ 1)

12

¡
2n4 + 4n3 + n2 − n

¢
(10)
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A B C D E F G
1 1 1 1 1 1 1
2 16 8 4 2 1 11
3 81 27 9 3 1 46
4 256 64 16 4 1 130
5 625 125 25 5 1 295
6
7
8 1/24 - 1/6 1/4 - 1/6 1/24 1/3
9 - 7/12 2 1/6 -3 1 5/6 - 5/12 2/3
10 2 23/24 -9 5/6 12 1/4 -6 5/6 1 11/24 1/6
11 -6 5/12 17 5/6 -19 1/2 10 1/6 -2 1/12 - 1/6
12 5 -10 10 -5 1 0

Figure 10: Solving a system of five linear equations

The above polynomial of the fourth degree can be factored to represent S(n, 5) in
the form mentioned in section 4.

Figure 10 shows the results of using the MINVERSE function in solving the above
system of five linear equations in five variables.

To conclude this section, we note that a number of other, similar investigations may
be made. For example, by first partitioning the collection of sums of powers into sums
of even powers and sums of odd powers, we may seek the "patterns" given by eqs (11)
and (12) respectively. Note the common factor n2m−2 +O

¡
n2m−3

¢
.

S (n, 2m) =
n (n+ 1) (2n+ 1)

2 (2m+ 1)

¡
n2m−2 +O

¡
n2m−3

¢¢
for m ≥ 1 (11)

S (n, 2m+ 1) =
n2 (n+ 1)2

2m+ 2

¡
n2m−2 +O

¡
n2m−3

¢¢
for m ≥ 1 (12)

6 From conjecturing to proving

A computational environment of Figure 8 was used to develop a number of conjectures
regarding the fundamental role of triangular numbers in the construction of the sums
S(n,m) for m > 1. Those conjectures, being technology-driven, were developed through
inductive reasoning. In order to motivate formal justification of these conjectures, stu-
dents can be given examples of incorrect generalizations resulting from inductive rea-
soning [11], [18]. Therefore, the next logical step of computer-enhanced mathematical
activities is to provide students with experience in mathematical induction to prove their
conjectures. For further examples where the spreadsheet environment is used to derive
inductive hypotheses, see [2], [3], [14].
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6.1 Proof of proposition 1

Proposition 1 (given by formula (4)) can be proved by the method of mathematical
induction, referred to by Polya [12] as "the demonstrative phase" (p. 110). The first
step of this method is to show that formula (4) is true for n = 1. Indeed, by definition,
S(1, 2) = 1 and S(1, 1) = 1. A didactical importance of this elementary demonstration
is that it allows one to see how the abstract form of Proposition 1, original (closed)
definition of S(n,m) and its numerical realization within a spreadsheet are connected.

The second step if the demonstrative phase is to test the transition from k to k + 1
[12]. Assuming that formula (4) is true for n = k, one has to prove that

S(k + 1, 2) =
2k + 3

3
S(k + 1, 1) (13)

Indeed, according to equation (1) and assumption (4)

S(k + 1, 2) = S(k, 2) + (k + 1)2 =
2k + 1

3
S(k, 1) + (k + 1)2

Therefore, one has to prove that

2k + 1

3
S(k, 1) + (k + 1)2 =

2k + 3

3
S(k + 1, 1)

The last equality can be rewritten in the form

2k

3
(S(k + 1, 1)− S(k, 1)) + S(k + 1, 1)− 1

3
S(k, 1) = (k + 1)2 (14)

It follows from formula (14) that S(k + 1, 1)− S(k, 1) = k + 1. Thus equality (14) can
be replaced by

2k

3
(k + 1) +

2

3
S(k, 1) + k + 1 = (k + 1)2

Finally, applying formula (14) to the last equality one gets

2k(k + 1)

3
+

k(k + 1)

3
+ k + 1 = (k + 1)2

thus proving equality (13).

6.2 Proof of proposition 2

Again, we employ the method of mathematical induction. We have S(1, 3) = 1 and
S(1, 1) = 1. Proceeding in a similar manner to the proof of Proposition 1, we assume
that S(k, 3) = S(k, 1)2. One may then write:
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S (k + 1, 3) = S (k, 3) + (k + 1)3

= S2 (k, 3) + (k + 1)3

=

µ
k (k + 1)

2

¶2
+ (k + 1)3

=

µ
k + 1

2

¶2 ¡
k2 + 4k + 4

¢
=

µ
(k + 1) (k + 2)

2

¶2
= S2 (k + 1, 1)

6.3 Proof of proposition 3

Again, we proceed inductively. When n = 1, both sides of the eq (9) are equal to unity.
Assuming that

S (k, 4) = S (k, 1)
6k3 + 9k2 + k − 1

15

one has to show that

S (k + 1, 4) = S (k + 1, 1)
6 (k + 1)3 + 9 (k + 1)2 + k

15

Indeed,

S (k + 1, 4) = S (k, 4) + (k + 1)4

= S (k, 1)

¡
6k3 + 9k2 + k − 1

¢
15

+ (k + 1)4

=
k (k + 1)

2
×
¡
6k3 + 9k2 + k − 1

¢
15

+ (k + 1)4

=
k + 1

30

¡
6k4 + 9k3 + k2 − k

¢
+
30 (k + 1)4

30

=
k + 1

30

³¡
6k4 + 9k3 + k2 − k

¢
+ 30 (k + 1)3

´
=
(k + 1)

¡
6k4 + 39k3 + 91k2 + 89k + 30

¢
30

On the other hand,

S (k + 1, 4) =
(k + 1) (k + 2)

2
× 6 (k + 1)

3 + 9 (k + 1)2 + k

15

It remains to be shown that (k + 2)
³
6 (k + 1)3 + 9 (k + 1)2 + k

´
= 6k4+39k3+91k2+

312 eJSiE 2(3): 299—315

14

Spreadsheets in Education (eJSiE), Vol. 2, Iss. 3 [2007], Art. 4

http://epublications.bond.edu.au/ejsie/vol2/iss3/4



S Abramovich and SJ Sugden

89k + 30. A few lines of algebra achieves this. In much the same way, a similar formula
for S(n, 5) can be proved. However, the algebra starts to become quite tedious.

7 The Bernoulli connection

In section 4, we considered sums of powers and defined the quantity S (n,m). It is well-
known that sums of positive integer powers of the natural numbers, i.e., S (n,m) , are
closely related to the Bernoulli family of polynomials. Denote by Bm (x) the Bernoulli
polynomial of degree m. Then eq (15) gives us the connection [4, p. 804].

S (n,m) =
Bm+1 (n+ 1)−Bm+1 (0)

m+ 1
(15)

The Bernoulli numbers are the constant terms in the Bernoulli polynomials. Denot-
ing themth Bernoulli number by bm, we have bm = Bm (0). It is of interest to investigate
whether a reasonably simple spreadsheet model may be used to determine the Bernoulli
polynomials from sums of powers. However, we first briefly describe a model to generate
the Bernoulli numbers, via the recurrence of eq (16). We start with b0 = 1, and then
recursively apply eq (16) for m ≥ 1. Other methods are possible, but this is perhaps the
simplest.

mX
k=0

µ
m+ 1

j

¶
bj = 0 with m ≥ 1 (16)

The Bernoulli polynomials Bn (x) may then be computed by a simple sequence of
antiderivatives. We have B0 (x) = 1, and then recursive application of (17) for n ≥ 1
yields the sequence of polynomials.

Bn (x) = bn +

Z x

0
nBn−1 (t) dt (17)

Equations (16) and (17) are the basis of the spreadsheet model shown in Figure 11.

8 Conclusion and possible further investigations

We have considered several examples of the pervasive, powerful and related concepts
of recursion and induction. In a variety of contexts, the cognitive frameworks of these
fundamental mathematical principles are extremely useful. They provide not only the
certainty of rigorous proof, but also compactness of expression and much mathematical
insight. They also offer many fruitful opportunities for exploration by both teacher and
student. In many instances, this is particularly well illustrated by casting the example
under discussion into the spreadsheet environment. While not as complete as some
may wish, the spreadsheet has reasonable support for recurrences. Indeed, the ease with
which the final, important inductive step of the implementation a simple recurrence may
be achieved with a double-click of the mouse is rather deceptive. It is very important,
then, that the teacher be able to help the students bridge the considerable semantic gap
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A B C D E F G H I J K L M N O P Q R S T U V W X
1 COMBIN(m, j) transpose
2 B[m] m \ j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
3 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 - 1/2 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
5 1/6 2 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210
6 0 3 1 4 10 20 35 56 84 120 165 220 286 364 455 560 680 816 969 1140 1330
7 - 1/30 4 1 5 15 35 70 126 210 330 495 715 1001 1365 1820 2380 3060 3876 4845 5985
8 -0 5 1 6 21 56 126 252 462 792 1287 2002 3003 4368 6188 8568 11628 15504 20349
9 1/42 6 1 7 28 84 210 462 924 1716 3003 5005 8008 12376 18564 27132 38760 54264
10 0 7 1 8 36 120 330 792 1716 3432 6435 11440 19448 31824 50388 77520 116280
11 - 1/30 8 1 9 45 165 495 1287 3003 6435 12870 24310 43758 75582 125970 203490
12 0 9 1 10 55 220 715 2002 5005 11440 24310 48620 92378 167960 293930
13 5/66 10 1 11 66 286 1001 3003 8008 19448 43758 92378 184756 352716
14 -0 11 1 12 78 364 1365 4368 12376 31824 75582 167960 352716
15 - 20/79 12 1 13 91 455 1820 6188 18564 50388 125970 293930
16 0 13 1 14 105 560 2380 8568 27132 77520 203490
17 1 1/6 14 1 15 120 680 3060 11628 38760 116280
18 0 15 1 16 136 816 3876 15504 54264
19 -7 7/76 16 1 17 153 969 4845 20349
20 0 17 1 18 171 1140 5985
21 54 34/35 18 1 19 190 1330
22 -0 19 1 20 210
23 -529 1/8 20 1 21
24 21 1

Figure 11: Bernoulli numbers in Excel

between spreadsheet representation, and mathematical abstraction. This point has been
discussed in greater detail in [14].

The authors’ teaching experience indicates that students learn abstract ideas best
when these ideas are supported by concrete problems that have lucid and easy-to-
understand visual representations. As this paper has demonstrated, the idea of recursion,
associated originally with counting techniques that are offered as alternatives to direct
counting, can be communicated through making reference to physical models involving
concrete objects such as counters, grids, boxes, combination locks, etc. In turn, the
spreadsheet facility of recurrent counting can be used in generating numerical data as a
setting for one’s engagement in pattern recognition and conjecturing. In that way, such
high level mathematical activity as a formal proof of a computationally-driven conjec-
ture can be preceded by a computational experiment grounded in a real life situation.
This approach to the teaching of mathematics can be presented through the follow-
ing sequence: from concrete problem to its physical model to a mathematical model
to computational modeling to technology-enabled conjecturing and finally to a formal
mathematical proof. Adding a new dimension to Polya’s views on teaching and learning
problem solving, this general pedagogical idea was applied in this paper to the concept
of recursion using a spreadsheet as a digital medium.
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