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Abstract
This article concerns the use of an electronic spreadsheet in mathematical problem posing by prospective
elementary teachers. It introduces a didactic construct dealing with three types of a problem's coherence --
numerical, contextual and pedagogical. The main thesis of the article is that technological support of problem
posing proves to be insufficient without one's use of this construct. The article reflects on work done with the
teachers in a number of education courses. It suggests that including mathematics problem posing with
spreadsheets into a coursework for the teachers provides them with research-like experience in curriculum
development.
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Abstract

This article concerns the use of an electronic spreadsheet in mathematical prob-
lem posing by prospective elementary teachers. It introduces a didactic construct
dealing with three types of a problem’s coherence — numerical, contextual and ped-
agogical. The main thesis of the article is that technological support of problem
posing proves to be insufficient without one’s use of this construct. The article re-
flects on work done with the teachers in a number of education courses. It suggests
that including mathematics problem posing with spreadsheets into a coursework for
the teachers provides them with research-like experience in curriculum development.
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1 Introduction

Problem posing has long been recognized as an important pedagogical tool in the teach-
ing of mathematics [10], [18], [19], [23], [24], [33], [35]. Influenced by research carried
out in this area, the National Council of Teachers of Mathematics [27] has referred to
problem posing as “an activity that is at the heart of doing mathematics” (p. 138)
and, acknowledging the advent of technology into the classroom, noted “computer pro-
grams can engage students in posing and solving problems” (p. 76). Towards this end,
already in the early 1990s, the advances in educational applications of software tools
and the importance of problem posing for the development of mathematics have been
linked together in the standards for teachers: “technology may be used to enhance and
extend mathematics learning and teaching . . . in the areas of problem posing and prob-
lem solving . . . [allowing] students to design their own explorations and create their
own mathematics” [28, p134]. Most commonly known examples of using technology for
posing mathematical problems include the development of conjectures in dynamic geom-
etry environments (e.g., [26], [45]). Yet nowadays, the appropriate use of spreadsheets
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enables other areas of pre-college mathematics to be explored from a problem-posing
perspective.

At the elementary level, by using a spreadsheet, one can turn a routine arithmetical
problem into a challenging mathematical investigation [1]. Through such an investiga-
tion, numbers used to pose a problem may become parameters that one can alter and
test within the software and then choose (or reject) as data for a new problem. In other
words, the availability of technology-enabled variation of the conceptual and syntactic
structure of an existing problem statement provides a source of new problems [23].

At the secondary level, one’s ability to interpret correctly the results of spreadsheet
modeling of a single Diophantine equation in two or three variables can be used for
posing a variety of word problems that lead to the systems of algebraic equations, both
linear and non-linear, with friendly solutions [2]. When such use of spreadsheets is
integrated into mathematics teacher education, prospective teachers can gain valuable
research-like experience in taking intellectual risk by posing mathematically meaningful
problems based on numerical and graphical patterns observed and then attempting to
solve these problems. In that way, a spreadsheet becomes an agent of mathematical
activities that require teachers to use higher order thinking and reasoning skills.

While there are many studies concerning mathematics teacher education and problem
posing [13], [15], [21], [40], they do not deal with the use of a spreadsheet, or technol-
ogy, in general. In the focus of this article is the authors’ analysis of problems posed
by prospective elementary teachers (referred to below as teachers) using a spreadsheet.
In what follows, problem posing as a form of cognitive activity in mathematics teacher
education is understood as the unity of “the creation of a new problem from a situation
or experience” [38, p20] using technology and finding solution to the so created prob-
lem. The article concerns certain problem-posing activities that computer spreadsheet
naturally affords, allowing teachers to avoid using algebra otherwise required for pos-
ing grade-appropriate problems with friendly data. It is the combination of elementary
mathematics curriculum and spreadsheet’s computational capability to support the cur-
riculum that limits the scope of problem-posing situations discussed below to problems
bounded by discrete elementary concepts.

It should also be noted that by using a spreadsheet as a modeling tool in an educa-
tional context, one can come across various challenging mathematical situations, which,
otherwise, are unlikely to be encountered [3, 4]. Consequently, problems motivated by
such use of a spreadsheet are unlikely to be posed. An example of such a problem that
can be introduced to prospective teachers as a window on more sophisticated mathe-
matical explorations (in the context of simple problem-posing experiments) is mentioned
briefly at the end of the article as its discussion merits a separate study. In general, it
is the emergence of computers that enabled new ways in which problems can be posed
[9], sometimes opening up new areas of mathematics research [20].

The article reflects on a number of courses taught at SUNY Potsdam that provide
opportunities for teachers in posing developmentally and culturally appropriate arith-
metical word problems. These include problems the solutions of which are generated
within a spreadsheet environment designed by the course instructor specifically for the
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purpose of problem posing. The authors assume that problems posed by teachers using
a spreadsheet are free from conceptual flaws as the flawless use of mathematical con-
cepts is integrated into a computational environment through its construction by ‘a more
knowledgeable other’ [43]. Although the teachers were not introduced to the details of
spreadsheet programming, the article includes Appendix explaining how to program the
environments involved.

2 The didactic complexity of problem posing with spread-
sheets

The use of a spreadsheet in problem posing can be characterized as a cultural support of
the teachers’ ability to develop new curriculum materials for a mathematics classroom.
It is cultural in a sense that teachers are encouraged to make use of a spreadsheet,
developed by advanced members of a technological culture for various practical and
scholastic purposes [34] and retrofitted by others for mathematics education [7]. It
is support in a sense that, in the specific context of problem posing, teachers learn
how to put to work the spreadsheet’s computational power in order to transform an
input (data for a problem) into an output (the problem’s solution). In other words, a
spreadsheet generates solutions to a problem that is about to be posed. This implies
that problem posing and problem solving are inherently linked to each other through
the use of technology.

Introducing a spreadsheet as a cultural support of mathematical problem posing, one
should note that the existence and availability of computational tools do not guarantee
their appropriate application unless one examines the effects of support in the context of
using the tools [12]. With this in mind, the ideas of this article resulted from the authors’
analysis of problem-posing activities by teachers. As part of the activities, teachers were
expected to critically reflect on their own problems and discuss the role of computational
environments they used to develop the problems.

However, in order for a spreadsheet to have a positive effect on problem posing, one
should not only know how to use the tool but, more important, how to interpret the
results of spreadsheet modeling. This interpretation requires understanding of what may
be called the didactical coherence of a problem. This notion is defined through the Venn
diagram of Figure 1 as the intersection of three mutually non-exclusive components:
numerical coherence, contextual coherence and pedagogical coherence.

While the three components will be explained in the context of spreadsheet use in
detail below, here is their brief description. This description can be applied to a non-
technological problem posing as well. Numerical coherence of a problem refers to its
formal solvability within a given number system. Put another way, if a problem has a
solution expressed by a number (or a set of numbers), it is numerically coherent. Con-
textual coherence of a problem comes into play when its solution should be interpreted in
terms of a context within which problem posing occurs. Besides the need to understand
the context of a problem statement, it requires one’s appreciation of hidden assumptions
grounded into one’s real-life experience and cultural background. Pedagogical coherence
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Figure 1: Didactical coherence defined through a Venn diagram

of a problem includes, but is not limited to, attention to students’ on-task behavior, the
absence of (or minimizing) extraneous data, the level of syntactic complexity [39], grade
appropriateness, and a method of solution expected. In other words, a problem should
be designed “with the learner in mind” [41, p416]. At the junction of the three compo-
nents, didactical coherence in problem posing is achieved. In particular, the notion of
didactical coherence can be applied to posing problems using spreadsheets.

The main thesis of this article is that attending to the notion of didactical coherence
of a problem allows for a greater effect of computational support on problem posing
provided by a spreadsheet. The Venn diagram of Figure 1, being a cultural tool itself,
didactically supports spreadsheet-based problem posing. By learning to use the Venn
diagram as a tool that informs problem posing, teachers develop higher order thinking
and reasoning skills and gain valuable research-like experience in preparing their own
curriculum materials.

3 Numerical coherence

In order to decide whether a posed problem is numerically coherent or not; that is,
whether, numbers involved have been chosen correctly, one has to solve the problem. As
mentioned by Grossman, Schoenfeld, and Lee [22], the effectiveness of learning mathe-
matics through problem solving depends on teachers’ knowledge of “how to solve prob-
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lems they pose to students” (p. 205). This problem-solving phase of a problem-posing
activity has been a reasonable expectation both for traditional [44] and technology-
enhanced [46] problem-posing activities at the elementary and middle school levels, re-
spectively. The concept of numerical coherence forms a robust link between problem
posing and problem solving.

Nevertheless, as the authors have observed, teachers often fail to recognize that
problem posing “is a platform from which further development proceeds” [14, p23].
Whereas research typically supports this unifying position [39], [40], there are studies
that suggest the existence of a dichotomy between problem posing and problem solving.
For example, Crespo [13] argued that because “knowing mathematics for oneself may not
be a reliable predictor of good problem posing practice” (p. 266), no clear connection
between problem posing and problem solving can be established. This view may be
due to the fact that just like many children traditionally see their role at school as an
engagement in answering, not asking questions [42], many teachers believe (or want to
believe) that problem posing is a practice in asking, not answering questions. However,
in the case of the spreadsheet-based support of problem posing, the answer is there as
a computational setting is designed to generate the answer. In order to recognize the
answer within a computational environment, one has to interpret correctly the results
of spreadsheet modeling. As an illustration, consider a problem posed by one of the
teachers.

Problem 1 You want to buy a 40-cent [Figure 2, cell A2] piece of candy at Kinney’s.
You have a piggy bank full of quarters, dimes and nickels [cells E2, F2, G2, respectively].
What are the different combinations of these coins you could take with you to the store
to pay for the piece of candy?

The spreadsheet of Figure 2 (see Appendix for programming details) shows that there
are seven ways to pay for the candy: the software counts the number of non-empty cells
in the range D5:J9 and displays this number in cell A8. One can say that Problem 1,
which mathematical model is the equation 25x+10y+5z = 40, is numerically coherent.
A simple alteration of data (that can be done in multiple ways) can bring about many
more numerically coherent problems of this type. For example, all Diophantine equations
of the form 5kx+ 2ky + kz = 8k when modeled within the spreadsheet yield the same
output in the range D5:J9 (Figure 2). Without changing input in the spreadsheet (i.e.,
the content of cells A2, E2, F2, G2), the insight into numerical coherence of Problem
1 may become a source of new problems.

4 Contextual coherence

The universal character and descriptive power of mathematical concepts allows for a
single mathematical model to describe multiple phenomena arising in diverse situations.
Being embedded by a designer in a problem-posing tool, a mathematical model can be
associated with multiple contexts. Rather than being represented by a physical envi-
ronment, a context is epitomized “by what people are doing and where and when they
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5

Abramovich and Cho: Problem Posing

Published by ePublications@bond, 2008



Problem Posing

A B C D E F G H I J
1

2 40 25 10 5

3

4 0 1      

5 0 8 3      

6 1 6 1      

7 2 4       

8 7 3 2       

9 4 0       

coinsmoney 

Figure 2: Spreadsheet solution to Problem 1

are doing it” [17, p22]. To understand a context, one needs to possess a certain amount
of social competence, which may vary across cultures, age levels, and social groups.
Moreover, as Silver [38] noted, “issues of morality, justice and human relationships may
have been as important to some students as issues of formal mathematics” (p. 26) when
posing problems. All this requires a problem statement to be consistent with cultural
background and social competence of a mathematics classroom involving culturally het-
erogeneous groups of pupils.

It should be noted, whereas Problem 1 may typically be considered contextually
coherent for an U.S. classroom, pupils from immigrant communities may have difficulty
in ascribing numerical meaning to the names of the coins. (For example, many countries,
including Australia, Korea, Mexico, Russia, to name just a few, do not have a numerical
equivalent to an U.S. quarter dollar coin.) Therefore, one cannot say that Problem 1 is
contextually coherent for this group of pupils. Generally speaking, contextual coherence
of a problem is a variable attribute. Just as without the mastery of base ten system —
a cultural tool designed to support one’s counting abilities — one cannot understand the
numerical meaning of a multi-digit number, without the mastery of another cultural tool
— a currency system of a particular country — one cannot solve a problem which context
does not relate well to one’s cultural background. This is consistent with Cobb’s [11]
position that the learning of arithmetic involves the mastery of the numeration system
as a cultural tool. In formulating problems in context [36], one has to be sensitive to this
issue, as many pupils tend to tolerate mathematical errors when “they feel no personal
ownership of mathematics” [38, p26].

6 eJSiE 3(1): 1—19
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5 Pedagogical coherence

The effectiveness of using an open-ended approach in the teaching of mathematics has
been repeatedly emphasized in mathematics education research [8], [25], [30], [32], [47].
This approach includes the use of problems with more than one correct answer. By
analyzing problems of that type posed by elementary pre-teachers using a spreadsheet,
it has been found that the straightforward technological support of problem posing often
leads to problems that lack pedagogical coherence.

To illustrate this concept, consider another problem posed by one of the teachers.

Problem 2 Andy and Sarah have, respectively, $2 and 50 cents in quarters, dimes, and
nickels. In how many [different] ways can they share money so that Andy would have as
much money as Sarah?

One can first conclude that if Andy gives to Sarah 75 cents, they would have equal
amounts of money. Discounting the cases of money exchange and disregarding specific
coins involved [1] — otherwise Problem 2 would have too many levels of complexity, Figure
3 shows there might be eighteen different ways of making 75 cents out of quarters, dimes,
and nickels. However, if one is really concerned with solving self-posed problems, one may
wonder if a problem with so many answers, let alone a multitude of its interpretations, is
appropriate in terms of expected on-task behavior and the development of insight from
which a method — a way of thinking that differs “from mere observation and speculation”
[37, p7] can emerge. It appears that one would hardly become motivated to stay on task
that requires adding numbers over and over without ‘seeing light at the end of the
tunnel.’ By the same token, the development of a method would be shadowed by an
endless addition exercise. This raises the question: Is the support of problem posing
provided at the computational level effective in this case?

Some teachers the authors worked with have been observed formulating problems
similar to Problem 2, thus paying little attention to the notion of pedagogical coherence.
While being users of technology themselves, the teachers seemed to overlook the fact
that pupils — the primary consumers of their pedagogical knowledge — would typically
not be using a spreadsheet to solve a problem. Rather than reflecting on pedagogy
associated with their problems, the teachers focused on answers as numerical entities.
This observation is consistent with the finding of Thompson, Carlson and Silverman [41]
regarding pre-service teachers’ belief that the purpose of mathematical tasks they were
given was for them to answer specific questions rather than to build coherent meaning
through exploring the tasks and their non-traditional extensions.

In revising course materials for the teachers related to problem posing, the notion of
pedagogical coherence of a problem was introduced. As the authors’ analysis of teachers’
portfolios (developed for the purpose of assessment) indicates, this resulted in a more
thoughtful use of technology in problem posing by teachers. That is, the notion of
pedagogical coherence, by providing support of problem posing at the coherence level,
can make a positive effect on one’s problem posing abilities.

eJSiE 3(1): 1—19 7
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A B C D E F G H I J
1

2 75 25 10 5

3

4 0 1 2 3    

5 0 15 10 5 0    

6 1 13 8 3     

7 2 11 6 1     

8 18 3 9 4      

9 4 7 2      

10 5 5 0      

11 6 3       

12 7 1       

coinsmoney 

Figure 3: A problem with 18 answers

6 Analysis of problem posing activities by teachers

Typically, problems posed by teachers using a spreadsheet are numerically coherent.
Yet, because of the importance of understanding of how the environment works, the
teachers were asked to reflect on their problems by answering a number of questions
about problems posed, among them: “Why do you think the spreadsheet generated all
solutions to your problem?” Following is the answer for Problem 1:

“I do think the spreadsheet [Figure 2] generated all solutions to my prob-
lem. The smallest coin one could use to make 40 cents was a nickel. The
spreadsheet listed that 8 nickels [cell D5] would equal 40 cents. The largest
coin one could use to make 40 cents was a quarter. The spreadsheet also listed
that 1 quarter +1 dime + 1 nickel [cells E4, C6, E6, respectively] would equal
40 cents and 1 quarter +3 nickels [cells E4 and E5, respectively] would equal
40 cents.”

In this response, the teacher attempted to develop a systematic way of solving the
problem in the absence of technology by analyzing the results of spreadsheet modeling.
Admitting an important role of technology in problem posing, she went on to suggest
another (simpler) question that may yield from this analysis: “If you use no quarters
and no dimes, how many nickels will you use to make 40 cents?” Again, it is the un-
derstanding of how the spreadsheet supports problem posing that allows one to develop
skills in organized mathematical exploration thereby being able to operate at a higher
cognitive level without pressing buttons on a computer.

8 eJSiE 3(1): 1—19
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A B C D E F G H I J K
1

2 35 14 3 11

3

4 0 1 2     

5 0        

6 1        

7 2        

8 0 3        

9 4        

10 5        

11 6        

12

stampspostage

Figure 4: Pseudo-numerical incoherence

An appreciation of what the spreadsheet actually adds to problem posing can be
found in the following remark by a teacher: “I also think that the use of the spreadsheet
will build confidence in educators as it is a tool to use to confirm one’s problems are
correct and appropriate for the students who will solve them.” In terms of the appropri-
ateness of problems posed for students, another teacher noted “Things like the partitions
spreadsheet allow teachers to challenge their academically gifted students while still al-
lowing other more challenged students the opportunity to succeed. Technology allows
teachers the chance to quickly, yet effectively gear the curriculum and problem sets to-
ward individual learners. The efficiency in which problems can be generated allows less
stress to be put on teachers which should allow them more time to concentrate on stu-
dents rather than creating worksheets.” This note indicates the usefulness of the tool to
support teachers’ design of differentiated curriculum for students of different abilities. It
shows how technology, in general, can provide a paradigm shift from product-oriented,
worksheet-based assessment to process-oriented teaching through problem solving [28].

It should be noted that the effect of support at the coherence level could be expected
only if one understands as to how support at the computational level operates. For ex-
ample, the spreadsheet of Figure 4 appears displaying a numerically incoherent problem
(showing zero in cell A8); nonetheless, there are two ways to make the 35-cent postage
(cell A2) out of the 14-cent, 11-cent and 3-cent stamp denominations (cells E2, G2, F2,
respectively). By placing the smallest denomination in cell F2, one does not take into
account the relationship between data and the corresponding ranges (see Appendix for
details). In doing so, one deals with an incomplete range for the 3-cent stamp (range
C5:C11) reducing it from eleven stamps to six stamps only. As a result, one misses
combinations with seven and eight stamps of that denomination. In order to avoid
such a pseudo-numerical incoherence, the smallest denomination should be placed in cell
G2. These issues are discussed with the teachers as the problem-posing environment is
introduced.

eJSiE 3(1): 1—19 9
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A B C D E F G H I J
1

2 50 20 10 5

3

4 0 1 2     

5 0 10 6 2     

6 1 8 4 0     

7 2 6 2      

8 12 3 4 0      

9 4 2       

10 5 0       

11         

change
bill to change

Figure 5: A problem proposed by a student

Most of the teachers, when asked to evaluate their own problems in terms of ped-
agogical coherence, focused on the appropriate number of solutions: (e.g., “Yes, there
are not too many solutions” or “Yes, . . . there are not so many solutions . . . it would
be possible for the students to find them all”). Yet, some responses focused on grade
level, pupil’s on-task behavior, group work and the development of systematic reasoning
(method) by using a problem with multiple answers as a tool. As one teacher (who
posed a problem of finding all the ways to change a $50 bill using $20, $10, and $5 bills
— see Figure 5) remarked:

“My problem is definitely pedagogically coherent for third and fourth graders. Peda-
gogically, it makes a great pair-share opportunity for third graders and gives an appro-
priate challenge to fourth graders. They are capable of finding all [twelve] solutions . . .
because they have begun to develop an organization about their thinking.”

Finally, some pupils may have difficulty ascribing numerical meaning to the names
of the coins mentioned in Problem 2. For that group, the problem may be contextually
incoherent. In that case, it does not belong in region I in the Venn diagram of Figure
1. A useful practice for teachers could be to alter the context while preserving the
numerical structure of the problem as well as to reduce its linguistic complexity through
the recourse to meta-context — a picture in which coins, words, and numbers are put
into one-to-one correspondence [1].
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7 Overcoming limitations of a three-dimensional spread-
sheet

It should be noted that pedagogical coherence of a problem depends on the expected
method of solution. Often, as pupils learn to use more and more sophisticated mathe-
matical tools, a pedagogically incoherent problem for a lower-grade level becomes ped-
agogically coherent for a higher-grade level. A classic example of that kind is a legend
about Carl Friedrich Gauss who, at an early age, was able to avoid the straightforward
summation of 100 consecutive natural numbers (a pedagogically incoherent problem)
by recognizing a pattern that the numbers follow [16, p237]. However, as mentioned
elsewhere [5], the opposite relationship can be observed: a pedagogically coherent prob-
lem for a lower-grade level may become pedagogically incoherent for a higher-grade
level. For example, whereas for a six years old pupil (who uses concrete materials — a
non-computational technology — as means of problem solving) the tasks of arranging 24
students and 25 students into four groups to do a team work are at the same level of
complexity, for a ten years old pupil the latter case is conceptually more difficult as it
requires the interpretation of the meaning of remainder [31].

A B C D E F G H I J K L M N O P Q R S T U V W X

1 a 1 a 2 a 3 a 4

2 5 75 50 25 5 10 0 1 2 3 4 5 6 7

3 1 6 4 4 2 2 2 1 1

4

5

6 0       22

7 0 0 1       

8 k= 7         

9         

10         

11         

n

combinations total 

n -a 4k

Figure 6: Spreadsheet as a four-dimensional partitioner

Just like a pedagogically incoherent problem for a lower grade level can motivate the
development of a new method that would make it coherent for a higher-grade level, in
the age of technology such a problem can motivate the development of a new compu-
tational environment within which similar yet pedagogically (and numerically) coherent
problems can be posed. For example, one of the teachers inquired whether a spread-
sheet could be used to extend the problem of making 75 cents to include half a dollar
also. To address this inquiry, a new computational environment was developed (Figure
6, see Appendix for description and programming details). This new environment, be-
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ing qualitatively different from the one used for a three-dimensional modeling, enables
teachers to formulate didactically coherent problems of the higher degree of complexity.
By using the environment, one can also specify coins that Andy has. For example, the
spreadsheet pictured in Figure 7 shows that one way (out of 22 total — see Figure 6, cell
T6) of making 75 cents (cell D2) out of nickels, dimes, quarters, and half-dollars (cells
J2, K2, I2, H2, respectively) is through the combination of four dimes (cell C8), two
nickels (cell G8), one quarter (cell F8), and zero half-dollars (cell G6). In that way, when
no tool is available to decide if a problem, posed as an extension of an existing one, is
didactically coherent or not, by constructing such a tool one provides problem posing
with cultural support of a higher order through which two qualitatively different levels
of problem posing — computational and didactical — can be supported.

A B C D E F G H I J K L M N

1 a 1 a 2 a 3 a 4

2 35 75 50 25 5 10

3

4

5

6 0       

7 3 0 7       

8 k= 4 1 2       

9         

10         

11         

12

nn -a 4k

Figure 7: Showing 75 = 2× 5 + 4× 10 + 1× 25 + 0× 50

8 Concluding remarks

This article discussed the use of an electronic spreadsheet by elementary pre-teachers in
the context of mathematical problem posing. The authors argued that whereas compu-
tational support provided by a spreadsheet (designed by ‘a knowledgeable other’) enables
formulated problems to be free from conceptual flaws, an important didactical task for
the teachers is to decide the appropriateness of the problems in terms of their contextual,
numerical, and pedagogical coherences. By being able to make this kind of decision, one
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demonstrates higher order thinking skills that support problem posing beyond operating
a spreadsheet at the computational level. It is at the coherence level that the integration
of problem posing and problem solving occurs.

By gaining a research-like experience in curriculum development through the use
of technology, teachers can use their technological expertise in problem posing as an
agency for recognizing both the profound effectiveness of systematic reasoning as well
as the complexity of mathematical ideas that may emerge from familiar situations. In
particular, the pedagogical and mathematical power of a spreadsheet allows one to delve
into the way the tool supports problem posing and inductively discover interesting results
about mathematical structures involved; results that traditionally are not available to
teachers because of the complexity of mathematics associated with formal methods of
exploring those structures. For example, the spreadsheet of Figure 5 shows 12 ways
of changing a $50 bill using $20, $10, and $5 bills. One can also note that solutions
generated by the spreadsheet in the range D5:F10 are arranged in blocks forming an
arithmetic progression. Such geometry of numbers and their connection to the number
of solutions of the corresponding Diophantine equation, are due to the coefficients of
the equation. Further elaboration of this remark would require considerations that are
beyond the scope of this article. The authors plan to discuss this unexpected by-product
of mathematical problem posing with a spreadsheet in a separate article.

Acknowledgment. The authors wish to thank anonymous referees for many helpful
comments that improved the articulation of ideas presented in this article.
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A Spreadsheet details

The purpose of this section is to provide details of spreadsheet programming of problem-
posing environments discussed in this article. Note that mathematical ideas under-
lying the programming of similar environments, especially those based on the use of
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inequalities, are discussed in [6]. A connection between spreadsheet modeling of three-
dimensional problems and systematic reasoning with three variables is discussed in [1].
All environments introduced in this article are based on Excel 2008 (Mac) or 2007
(Windows) spreadsheets but they are equally effective with Excel 2004 (Mac) or 2003
(Windows) versions. Below, following [6], the notation (A1)= will be used to present a
formula defined in cell A1.

A.1 Spreadsheet programming for Figures 2-5

Consider the Diophantine equation

a1x+ a2y + a3z = n (1)

which describes a partition of n into summands a1, a2, a3. The four parameters are
defined, respectively, in the slider-controlled cells A2, E2, F2, and G2, which, in turn,
are given the names n, a_1, a_2, and a_3. The spreadsheet of Figure 2 (as well as
Figures 3-5) is designed to generate values of variables x, y, and z that provide solutions
to equation 1.

One can establish the inequalities x ≤ INT (n/a1) and y ≤ INT (n/a2), which
enable ranges for variables x and y in equation 1 to be generated through the following
spreadsheet formulas

(D4)= =0; (C5)= =0; (E4)= =IF(D4<INT(n/a_1),1+D4," ") —
replicated across row 4; (C6)= =IF(C5<INT(n/a_2),1+C5," ") —
replicated down column C.
The values of z satisfying equation 1 can be found as follows:
(D5)= =IF(OR(D$4=" ",$C5=" ")," ",
IF(AND(n-D$4*a_1-$C5*a_2>=0,
MOD(n-D$4*a_1-$C5*a_2,a_3)=0),(n-D$4*a_1-$C5*a_2)/a_3, " ")).
The formula in cell D5 is replicated to cell J9.
Finally, the total number of solutions of equation 1 can be counted as follows:
(A8)= = COUNT(D4:J9).

A.2 Spreadsheet programming for Figure 6

Consider the Diophantine equation

a1x+ a2y + a3z + a4k = n (2)

which describes a partition of n into summands a1, a2, a3, a4. One can establish the
inequality k ≤ INT (n/a4), which enables the reduction of equation 2 to the family of
equations

a1x+ a2y + a3z = n− a4k (3)

where k ∈ {0, 1, 2, . . . , INT (n/a4)}. For each such value of k, equation 3 represents
a three-variable equation that can be modeled using a three-dimensional spreadsheet
like the one shown in Figure 2. In finding ranges for variables x and y, in equation
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3, one should take into account that these ranges depend on the value nk = n − a4k,
k = 0, 1, 2, . . . , INT (n/a4). In other words, for each such value of k the inequalities

x ≤ INT (nk/a1) (4)

y ≤ INT (nk/a2) (5)

determine the ranges for variables x and y.
For example, the equation 10x+9y+8z+7k = 25, due to the equality INT (25/7) = 3,

can be reduced to the family of four equations 10x+9y+8z = 25 (k = 0), 10x+9y+8z =
18 (k = 1), 10x+9y+8z = 11 (k = 2), 10x+9y+8z = 4 (k = 3), each of which can be
modeled within a three-dimensional spreadsheet. However, a modification of the three-
dimensional spreadsheet allows for the full automation of the process of calculating the
total number of solutions for any four-variable Diophantine equation of the form (2).
Such a four-dimensional modeling tool (Figure 6) can be programmed as follows.

1. The values a1, a2, a3, a4, and n are defined, respectively, in the slider-controlled
cells H2, I2, J2, K2, and D2, which, in turn, are given the names a_1, a_2,
a_3, a_4, and n.

2. Cell C8 is slider-controlled and given the name k.

3. (C2)= =n-a_4*k; this cell is given the name n_k.

4. (B7)= =INT(n_k/a_4).

5. (G6)= =0; (F7)= =0; (H6)= =IF(G6<INT(n_k/a_1),1+G6, " ") — replicated across
row 6; (F8)= =IF(F7<INT(n_k/a_2),1+F7," ") — replicated down column F.
The last two conditional formulas are based on inequalities (4) and (5) allowing
for the exact ranges for variables x and y to be generated by the spreadsheet.

6. (G7)= =IF(OR(G$6=" ",$F7=" "), " ", IF(AND(n_k-G$6*a_1-$F7*a_2>=0,
MOD(n_k-G$6*a_1-$F7*a_2,a_3)=0), (n_k-G$6*a_1-$F7*a_2)/a_3," ")) — repli-
cated to cell M11. Note that the last formula is similar to the one used in the
programming of the three-dimensional spreadsheet of Figure 2.

7. The chart pictured in the range Q2:X3 is designed to record the number of so-
lutions of the family of equations (3) for each value of k generated in the top
row of the chart beginning from cell Q2. These values are generated through the
formula defined in cell R2 and replicated to the right; namely (Q2)= =0; (R2)=
=IF(Q2<INT(n/a_4),Q2+1," "). Slider-controlled cell O3 is assigned two val-
ues, 0 and 1, and given the name iterate. When the content of O3 is zero, all
cells in the bottom part of the chart are blank; otherwise the of formula (Q3)=
=IF(iterate=0," ",IF(Q2=k,COUNT($G$7:$M$11),Q3)) records the number of
integers displayed in the range G7:M11.The basic computational idea that enables
such a chart representation of the function relating the value of k to the number
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of solutions of the corresponding equation 3 is the use of a circular reference in a
spreadsheet formula (that is, a reference to a cell in which the formula is defined).
This circular reference makes it possible to keep the values of already computed
the number of solutions function unchanged as the value of k varies in the slider-
controlled cell C8. Alternatively, one can use the Data Table method described in
[29]. Although this method enables one to avoid carrying out manual iterations by
k in cell C8, the authors prefer using the circular references approach. The latter
approach allows one to see solutions of equation 2 for each value of k displayed
in the main table (range F6:M11); this information can be used as yet another
source for posing problems. Technically, in Excel 2008 (Mac) Preferences one has
to open the Calculation dialog box and check the bullets Automatically and Limit
iteration, limiting the number of iterations to, say, 100. Similarly, in Excel 2007
(Windows) Options, within the Formulas category one has to open the Calculation,
check Enable iterative calculation and set the limit.

8. Finally, by defining (T6)= =SUM(Q3:X3) one can find the total number of solutions
of equation (2). Note that the inequalities a1 > a2 > a3 (50 > 25 > 5 in Figure 6)
follow the order used in programming the three-dimensional spreadsheet of Part
1; yet the inequality a3 < a4 (5 < 10 in Figure 6), by defying the order, allows one
to minimize the number of iterations.

9. To begin iterations, one has to set zero in cells C8 and O3 by using sliders that
control the cells. The next step is to set one in cell O3 by using the corresponding
slider — this action generates a number in otherwise empty cell Q3. Finally, by using
the slider that controls cell C8, its content has to be varied until zero is displayed
in cell B7.

eJSiE 3(1): 1—19 19

19

Abramovich and Cho: Problem Posing

Published by ePublications@bond, 2008


	Spreadsheets in Education (eJSiE)
	July 2008

	On Mathematical Problem Posing by Elementary Pre-teachers: The Case of Spreadsheets
	Sergei Abramovich
	Eun Kyeong Cho
	Recommended Citation

	On Mathematical Problem Posing by Elementary Pre-teachers: The Case of Spreadsheets
	Abstract
	Keywords
	Distribution License


	On Mathematical Problem Posing by Elementary Pre-teachers: The Case of Spreadsheets

