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Abstract 

The solution to the power-flow problem is of fundamental importance in power system analy-
sis and design. Transient stability studies and fault analysis in power systems demand solutions to 
a power-flow problem as a first step in the analysis. Although commercial software such as PSS/E 
(Power System Simulator for Engineers) or PowerWorld can be used for power flow calculations, 
such specialized programs may not be widely available in many universities or colleges. Spread-
sheets, on the other hand, provide an economic alternative for the implementation of the numerical 
algorithms encountered in power flows. 

Keywords: power flows, Gauss-Seidel method, Newton-Raphson method, power systems. 

1. Introduction 

The solution to the power-flow problem is of fundamental importance in power sys-
tem analysis and design. In transient stability studies and fault analysis, solutions to a 
power-flow problem constitute a necessary initial step in such analyses. 

The objective of the power-flow problem is to calculate the voltage magnitudes and 
phase angles at each bus or node in a given power system. Calculations are performed 
under the assumption of balanced three-phase steady-state conditions. In addition to 
voltages and angles, real and reactive power flows in equipment such as transformers 
and transmission lines can be also obtained from these calculations. 

The topics in this paper follow the treatment found in standard reference material on 
power system analysis and design [2—4]. In particular, two numerical methods, namely, 
the Gauss-Seidel and the Newton-Raphson methods are used to determine the power 
flows in a small-scale power system. The examples are simple enough so that readers 
can replicate hand calculations and reproduce the spreadsheet implementations. The 
application of spreadsheets for solving power flows and other related problems has been 
reported in the literature [1, 5, 6]. The emphasis of this paper is on the educational value 
of spreadsheets in the analysis of power systems. 

The paper is organized as follows: Section 2 presents the procedure for constructing 
the bus admittance matrix of a power network; Section 3 presents the description of the 
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general power-flow problem; Section 4 discusses the solution to the power-flow problem 
using the Gauss-Seidel method and presents a spreadsheet implementation of this tech-
nique; Section 5 provides the solution to the power-flow problem using the Newton-
Raphson method along with its spreadsheet implementation; and Section 6 presents 
concluding remarks.  

2. The bus admittance matrix of a power network 

The bus admittance matrix offers a convenient representation of the topology of a 
power network. A power network contains various components, namely, bus bars, ge-
nerators, transformers, transmission lines, loads, and so on. The network is described by 
the bus (or node) voltages and the equivalent admittances of components connected be-
tween buses or between buses and ground. In the following, we provide a simple con-
structive approach to determine the bus admittance matrix of a power network. This 
network representation is referred to as the primitive representation. The relation between 
the injected node currents and the (line-to-neutral) node voltages is given by 

 I = YbusV (1) 

where I is the vector of injected node currents, Ybus is the bus admittance matrix, and V 
is the vector of node voltages.  

Each component element of the interconnected network is referred to as a branch. 
The branch is connected between two nodes of the network, or between a node and the 
reference node (ground).  

Construction of Ybus by inspection  

• The Ybus matrix is symmetric. 
• The diagonal element Yii of Ybus is the self-admittance and is equal to the sum of 

the primitive admittances of all the components connected to the ith node. 
• The ijth off-diagonal element Yij of Ybus is equal to the negative of the primitive 

admittance of all components connected between nodes i and j.  

As an example, we consider the simple power system depicted in Figure 1. The sys-
tem consists of three buses: a synchronous generator connected to bus 1, a load con-
nected to bus 2, a voltage-regulated generator connected to bus 3, and transmission 
lines between buses 1 and 2, 2 and 3, and 1 and 3. The parameters for the network 
components are given in Tables 1 and 2. All parameters are expressed in per unit 
(p.u.) of a reference base. 

28 
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Figure 1: Three-bus power system. 

Table 1: Bus input data. 

Type Bus 
i 

Bus voltage 
|Vi| (p.u.)  δi (deg.) 

 Complex power (p.u.) 
  Pgi     Qgi     Pdi     Qdi 

Slack 
Load 

Constant voltage 

1 
2 
3 

1.0    0˚ 
—     — 

      1.0             — 

  —      —     0.0     0.0 
 0.0     0.0     2.0     0.5 
 1.0      —     0.0     0.0 

Table 2: Transmission line parameters. 

Line 
bus i to bus k 

Impedance 
Zik (p.u.) 

1—2 
2—3 
1—3 

j0.1 
j0.2 
j0.4 

To determine the Ybus matrix for the given system, we calculate the primitive admit-
tance of each branch in per unit: 
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With the primitive admittances just calculated, we determine the elements of Ybus: 

.5.2
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,10

,5.75.25
,15510

,5.125.210

133113

233223
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132333

231222
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Therefore, the bus admittance matrix for the network of Figure 1 is given by 

Ybus                        (2) 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−
=

5.755.2
51510
5.2105.12

jjj
jjj

jjj
.

3. The power-flow problem 

The power-flow problem discussed in this section will be presented in terms of the 
Ybus matrix whose elements are of the form 

Yik = |Yik|ejθik = |Yik|cosθik + j|Yik|sinθik = Gik + jBik           (3) 

for i, k = 1, 2, . . . , N. Let the voltage at bus i be denoted by  

   Vi = |Vi|ejδi = |Vi|(cosδi + jsinδi)           (4) 

for i = 1, 2, . . . , N.  
As indicated in Figure 2, the net current injected into the network at bus i in terms of 

the elements Yik of the Ybus is determined by 

  Ii  = Yi1V1 + Yi2V2 + . . . + YiNVN  = , i = 1, 2, . . . , N.          (5) k

N

k
ikVY∑

=1

Let Pi and Qi denote the net real and reactive power entering the network at bus i. 
Then the complex conjugate of the power injected at bus i is 

   Pi – jQi  = ej(θik + δk - δi) .          (6) ||
11

*
ki

N

k
ikk

N

k
iki VVYVYV ∑∑

==

=

From the preceding equation we obtain the following form of the power-flow equa-
tions: 

             cos(θik + δk - δi),           (7) ∑
=

=
N

k
kiiki VVYP

1
||
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          sin(θik + δk - δi).           (8) ∑
=

−=
N

k
kiiki VVYQ

1
||

Now let Pgi denote the scheduled power being generated at bus i and Pdi denote the 
scheduled power demand of the load at that bus.  Then the net scheduled power being in-
jected into the network at bus i is 

     Pi,sch = Pgi – Pdi.             (9) 

We define the mismatch ΔPi as the difference between the net scheduled power Pi,sch 
and the calculated value of Pi as given by Equation (7). That is, 

    ΔPi  = Pi,sch – Pi = (Pgi – Pdi) - Pi.         (10) 

Likewise, we may define the mismatch ΔQi for the reactive power as 

            ΔQi  = Qi,sch – Qi = (Qgi – Qdi) - Qi.         (11) 

When the mismatches ΔPi and ΔQi are zero at bus i, we have the power-balance equa-
tions 

       Pi – Pi,sch = Pi – (Pgi – Pdi) = 0,         (12) 
 
    Qi – Qi,sch = Qi – (Qgi – Qdi) = 0.         (13) 

The power-flow problem entails the computations of Pi and Qi for values of the un-
known bus voltages which cause the mismatches ΔPi and ΔQi to be equal to zero at 
each bus.  

At each bus i two of the four quantities δi, |Vi|, Pi, and Qi are specified and the re-
maining two are calculated. For convenience bus 1 is designated as the slack bus and the 
voltage angle of the slack bus serves as reference for the angles of all other bus voltages. 
The usual practice is to set δ1 = 0˚.  

4. Power-flow solution by the Gauss-Seidel method 

4.1 The Gauss-Seidel method 

In practice power-flow solutions are obtained by iterative methods. We consider the 
three-bus system shown in Figure 1 and derive the general equations for the iterations. 

With the slack bus designated as number 1, we start computations at bus 2. If P2,sch 
and Q2,sch are the scheduled real and reactive power, respectively, entering the network 
at bus 2, we have 

   P2,sch – jQ2,sch =  )( 323222121
*

2 VYVYVYV ++

and solving for the voltage at bus 2 
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   ⎥
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⎢
⎣

⎡
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−
= )(1

323121*
2
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22
2 VYVY

V
jQP

Y
V . 

Similarly, at load bus 3 we have 
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⎦

⎤
⎢
⎣

⎡
+−

−
= )(1

232131*
3
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33
3 VYVY

V
jQP

Y
V . 

The iterations are based on the scheduled real and reactive power at buses 2 and 3, 
the scheduled slack bus voltage V1 = |V1|ejδ1, and initial voltage estimates  and 

at the other buses. The corrected voltage  is calculated from 

)0(
2V

)0(
3V )1(

2V
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⎢
⎣

⎡
+−

−
= )(1 )0(

323121)*0(
2
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22

)1(
2 VYVY

V
jQP

Y
V . 

The corrected voltage  is then used to calculate the value of V  )1(
2V )1(

3

   ⎥
⎦

⎤
⎢
⎣

⎡
+−

−
= )(1 )1(

232131)*0(
3
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)1(
3 VYVY

V
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Y
V . 

The procedure is repeated until the amount of correction in voltage at every bus is 
less than some predetermined precision index. This process of solving the power-flow 
equations is known as the Gauss-Seidel iterative method. 

For an N-bus system the general equation for the calculated voltage at any bus I 
where P and Q are scheduled is given by 

  ⎥
⎦

⎤
⎢
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⎡
−−

−
= ∑∑

+=

−
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=
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N

ik

m
kik
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m
i VYVY
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Y
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1

)1(
1

1

)(
)*1(

sch,sch,)( 1
.        (14) 

In the following we show the calculations for the first iteration of the Gauss-Seidel 
method for the three-bus system of Figure 1. The bus admittance matrix Ybus for this sys-
tem is given by Equation (2). The input data and unknowns at each bus can be inferred 
from Table 1 and are summarized in Table 3. 

 

Table 3: Input data and unknowns for the power system of Figure 1. 

Type Bus 
i Input data Unknowns 

Slack 1 |V1| = 1.0 p.u., δ1 = 0˚ Psch,1 = Pg1 -  Pd1 = Pg1, 
Qsch,1 = Qg1 -  Qd1 = Qg1 

Load 2 Psch,2 = Pg2-  Pd2 = -2.0 p.u., 
Qsch,2 = Qg2 -  Qd2 = -0.5 p.u. |V2|, δ2 

Constant voltage 3 |V3| = 1.0 p.u., 
Psch,3 = Pg3 -  Pd3 = 1.0 p.u. 

δ3, 
Qsch,3 = Qg3 -  Qd3 = Qg3 

32 
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We assume initial guesses for the voltages  = 1.0ej0˚ = 1.0 and  = 1.0ej0˚ = 1.0 
at buses 2 and 3, respectively. Using Equation (14) we determine an improved value for 
V2: 

)0(
2V )0(

3V

ojejjj
j

V 853.7)1(
2 9758.0)0.1)(5()0.1)(10(

0.1
5.02

15
1 −=⎥⎦

⎤
⎢⎣
⎡ −−

+−
−

= . 

With at hand, we then proceed to find  and . Since bus 3 is a voltage-
controlled bus, we can either use Equation (6) or (8) to compute the reactive power at 
that bus. In the spreadsheet implementation of the Gauss-Seidel method discussed in the 
next section, we use Equation (6) to compute both the real and reactive power at the 
buses of interest. We observe that the real power is the real part of the right-hand side of 
Equation (6), while the reactive power is given by the negative of the imaginary part of 
the right-hand side of that equation. Here we show how to use Equation (6) to compute 
the reactive power at bus 3: 

)1(
2V )1(

3Q )1(
3V

[ ]}{ )0.1)(5.7()9758.0)(5()0.1)(5.2(0.1Im 0853.700)1(
3

oooo jjjj ejejejeQ −++−= −−  

          p.u. 1667.0=

With the preceding value of reactive power, we use Equation (14) once again to cal-
culate an improved value of V3: 

oo jj eejjj
j

V 545.2853.7)1(
3 0010.1)9758.0)(5()0.1)(5.2(

0.1
1667.01

5.7
1

=⎥⎦
⎤

⎢⎣
⎡ −−
−

−
= − . 

 
As indicated in Table 3, |V3| = 1 at bus 3 and, therefore, we set for next 
iteration. This concludes the first iteration of the Gauss-Seidel method. The calculations 
are repeated in a similar manner with updated values until convergence can be dis-
cerned. We next show how to implement the above calculations using a spreadsheet. 

ojeV 545.2)1(
3 0.1=

4.2  Spreadsheet implementation of the Gauss-Seidel method 

We begin by inputting the entries that form the bus admittance matrix given in Equ-
ation (2) . Also, we input the known data shown in Table 3. This step is shown in the 
screen capture of Figure 2. The actual Microsoft Excel commands used to generate the 
input data is presented in Figure 3. 
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Figure 2: Bus admittance matrix and input data for the power system of Figure 1. 

 

 

Figure 3: Microsoft Excel commands used to generate the input data. 

The calculations of the Gauss-Seidel method are shown in Figure 4 as the cell range 
H1:T11 in the spreadsheet. The entries in row 3 extending from cell H3 to T3 correspond 
to initial estimates for the numerical algorithm.  The  basic  formulas  are  found in row 4  
and extend from H4 to T4. The formulas in row 4 are copied to the rows below as many 
times as needed until convergence is reached. We note that some columns were omitted 
in Figure 4 for clarity; these columns simply contain intermediate calculations. The cal-
culations reveal that convergence is reached after 8 iterations for a precision index of 10-5 
for the bus voltages and 10-4 for the angles. A final calculations section is also shown in 
Figure 4; the section covers the cell range V1:AC3, but columns V and W were left out as 
these columns contain intermediate calculations. The solution to the power-flow prob-
lem at hand is summarized in Table 4. 

To conclude this section, we provide in Table 5 all the formulas used in the imple-
mentation of the Gauss-Seidel method. Formulas corresponding to hidden columns are 
also included for completeness. 
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Figure 4: Gauss-Seidel iterations showing relevant quantities in the power system of Figure 1. 

Table 4: Steady-state power flows and bus voltages for the system in Figure 1. Except for the an-
gles, all other quantities are expressed in per unit (p.u.). 

Bus i Input data (given) Unknowns (calculated) 
1 |V1| = 1.0, δ1 = 0˚ Psch,1 = 1.0, Qsch,1 = 0.1935 
2 Psch,2 = -2.0, Qsch,2 = -0.5 |V2| 0.9549,  δ2 = -6.902˚ 
3 |V3| = 1.0, Psch,3 = 1.0 δ3 = 3.383˚, Qsch,3 = 0.3066 

 

Table 5: Microsoft Excel formulas for implementing the Gauss-Seidel method. 

Cell Formula Comments 
H3:H11 List of numbers from 0 to 8. Iteration number. 
H2:T2 Labels for various quantities. Gauss-Seidel section. 
I3, J3 Blank cells. No calculations. 
K3 =COMPLEX(1,0,"j") Initial guess for V2. 
L3 =IMABS(K3) Magnitude of initial V2. 
M3 =180*IMARGUMENT(K3)/PI() Angle of initial V2 in deg. 

N3:P3 Blank cells. No calculations. 

Q3 =COMPLEX(1,0,"j") 
Initial value for calculated 
V3. 

R3 =COMPLEX(1,0,"j") 
Initial value for correctedV3; 
magnitude must be constant. 

S3 =IMABS(R3) 
Magnitude of initial cor-
rected V3. 

T3 =180*IMARGUMENT(Q3)/PI() 
Angle of initial calculated V3 
in deg. 
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Table 5 (continued): Microsoft Excel formulas for implementing the Gauss-Seidel method. 

Cell Formula Comments 

I4 =IMDIV(COMPLEX($E$10,-$F$10,"j"), 
IMCONJUGATE(K3)) 

The term )*1(
2

sch,2sch,2
−

−
mV

jQP
 of 

Equation (14). 

J4 =IMSUM(IMPRODUCT($B$4,$C$9), 
IMPRODUCT($D$4,R3)) 

The term Y21V1 + Y23V   
of Equation (14). 

)1(
3

−m

K4 =IMDIV(IMSUB(I4,J4),$C$4) 

Completes the calculation of 
in Equation (14) using 

intermediate results in cells 
I4 and J4. 

)(
2

mV

L4 =IMABS(K4) Magnitude of updated V2. 
M4 =180*IMARGUMENT(K4)/PI() Angle of updated V2 in deg. 

N4 
=IMSUM(IMPRODUCT($B$5,$C$9), 
IMSUM(IMPRODUCT($C$5,K4),  
IMPRODUCT($D$5,R3))) 

The term ∑  of Equa-

tion (6). 

k

N

k
kVY

=1
3

O4 =IMDIV(COMPLEX($E$11,-P4,"j"),  
IMCONJUGATE(R3)) 

The term )*1(
3

sch,3sch,3
−

−
mV

jQP
 of 

Equation (14). 

P4 =-IMAGINARY(IMPRODUCT(  
IMCONJUGATE(R3),N4)) 

Q3 computed as the negative 
of the imaginary part of 

 as indicated in 

Equation (6). 

k

N

k
kVYV ∑

=1
3

*
3

Q4 =IMDIV(IMSUM(IMSUB(O4,N4),  
IMPRODUCT($D$5,R3)),$D$5) 

Updated value V  calcu-
lated from Equation (14). 
Observe that in the cell for-
mula Y was added back 
since this term is not present 
explicitly in Equation (14). 
The reason is that cell N4 
uses Y  when computing 
Q3 according to Equation (6), 
but this term has to be ex-
cluded when computing V . 

)(
3

m

333V

333V

3

R4 =COMPLEX(S4*COS(IMARGUMENT(
Q4)),S4*SIN(IMARGUMENT(Q4)),"j") 

Corrects V  to match the 
voltage magnitude at bus 3. 
The angle (argument) is the 
same as in cell Q4. 

)(
3

m

S4 =S3 
Copies the constant voltage 
magnitude at bus 3. 

T4 =180*IMARGUMENT(Q4)/PI() Angle of updated V3 in deg. 
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Table 5 (continued): Microsoft Excel formulas for implementing the Gauss-Seidel method. 

Cell Formula Comments 

I5:T11 Copies of cell range I4:T4. 
Replicates cell formulas in 
rows below until conver-
gence is achieved. 

V2:AC2 Labels for various quantities. Final calculations section. 

V3 
=IMSUM(IMPRODUCT($B$4,$C$9), 
IMSUM(IMPRODUCT($C$4,K11), 
IMPRODUCT($D$4,R11))) 

The term ∑  of Equa-

tion (6). 

k

N

k
kVY

=1
2

W3 
=IMSUM(IMPRODUCT($B$5,$C$9), 
IMSUM(IMPRODUCT($C$5,K11),  
IMPRODUCT($D$5,R11))) 

The term ∑  of Equa-

tion (6). 

k

N

k
kVY

=1
3

X3 =IMREAL(IMPRODUCT( 
IMCONJUGATE(K11),V3)) 

P2 computed as the real part 

of V  according to 

Equation (6). 

k

N

k
kVY∑

=1
2

*
2

Y3 =-IMAGINARY(IMPRODUCT( 
IMCONJUGATE(K11),V3)) 

Q2 computed as the negative 
of the imaginary part of 

 according to Eq-

uation (6). 

k

N

k
kVYV ∑

=1
2

*
2

Z3 =IMREAL(IMPRODUCT( 
IMCONJUGATE(R11),W3)) 

P3 computed as the real part 

of V  according to 

Equation (6). 

k

N

k
kVY∑

=1
3

*
3

AA3 =-IMAGINARY(IMPRODUCT( 
IMCONJUGATE(R11),W3)) 

Q3 computed as the negative 
of the imaginary part of 

 according to Eq-

uation (6). 

k

N

k
kVYV ∑

=1
3

*
3

AB3 =-X3-Z3 
Real power P1 at slack bus 
(balance of real power). 

AC3 =-Y3-AA3 
Reactive power Q1 at slack 
bus (balance of reactive 
power). 

5. Power-flow solution by the Newton-Raphson method 

5.1 The Newton-Raphson method 

To set up the Newton-Raphson numerical method, we employ the power-flow ex-
pressions given by Equations (7) and (8). These equations are more convenient than Eq-
uation (6)  during the computation of the Jacobian matrix, as we will show later. 
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For simplicity of discussion, we will assume that we have N buses and that all buses, 
except the slack bus (i  = 1), are load buses with prescribed demands Pdi and Qdi. Denot-
ing the specified values |V1| and δ1 for the slack bus, then each of the remaining buses 
in the network has the two state variables |Vi| and δi to be determined by the power-
flow solution. The objective of the Newton-Raphson method is to produce values for 
|Vi| and δi that will match the prescribed Pdi and Qdi as determined from Equations (7) 
and (8).  

At each iteration of the method, new estimates of |Vi| and δi for the non-slack buses 
(i  = 2, 3, … , N) are generated. At the end of each iteration, the power mismatch is given 
by 

     ΔPi = Pi,sch - Pi,           (15) 

               ΔQi = Qi,sch - Qi.           (16) 

 To understand the formulation of the method, we consider a three-bus system. Bus 1 
is the slack bus, while buses 2 and 3 are load buses. The basic idea is to view the power 
mismatches at the load buses as first-order variations resulting from a Taylor series ex-
pansion. In this case, the mismatch equations for the real power at the load buses (i = 2, 
3) are 

  3
3

2
2

3
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2
2
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δ
δ
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Similarly, the reactive power mismatch for i = 2, 3 are 
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3
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Equations (17) and (18) can be written in matrix form, 

        

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

Δ
Δ
Δ
Δ

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

Δ
Δ
Δ
Δ

3

2

3

2

3

3

2

3

3

3

2

3

3

2

2

2

3

2

2

2

3

3

2

3

3

3

2

3

3

2

2

2

3

2

2

2

3

2

3

2

||
||

||||

||||

||||

||||

δ
δ

δδ

δδ

δδ

δδ

V
V

QQ
V
Q

V
Q

QQ
V
Q

V
Q

PP
V
P

V
P

PP
V
P

V
P

Q
Q
P
P

.        (19) 

The 4x4 matrix in Equation (19) is the Jacobian and it will be denoted by J. We can 
summarize the numerical algorithm as follows: 

1. Provide initial estimates for )0(|| iV  and )0(
iδ , i = 2, 3, …, N.  

2. Use these estimates to calculate )0(
iP , )0(

iQ , )0(
iPΔ , )0(

iQΔ , and the elements of the Ja-
cobian matrix J. 

38 
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3. Solve for the initial corrections )0(|| iVΔ  and )0(
iδΔ  using Equation (19). This step re-

quires matrix inversion of J. 

4. Obtain new estimates 

    ,          (20) )0()0()1( |||||| iii VVV Δ+=

         .          (21) )0()0()1(
iii δδδ Δ+=

5. Use the new values of )1(|| iV  and )1(
iδ  as starting values for iteration 2 and repeat the 

above steps. In more general terms, calculate 

    ,          (22) )()()1( |||||| m
i

m
i

m
i VVV Δ+=+

                    (23) )()()1( m
i

m
i

m
i δδδ Δ+=+

until a prespecified precision index is satisfied. 

We now apply the procedure outlined above to the power system of Figure 1. Since 
bus 3 is a constant voltage bus and not a load bus, we need to modify the preceding 
formulation slightly. For this power system, the variables of interest are |V2|, δ2, and δ3. 
Taking into account that |V1| = 1.0 p.u., δ1 = 0°, |V3| = 1.0 p.u., and the Ybus matrix of 
Equation (2), we write out the equations that need to be solved in accordance with Equa-
tions (7) and (8): 

   —2 = (10)(|V2|)(1.0)cos(90° + 0° — δ2) + (15)(|V2|)(|V2|)cos(—90° + δ2  — δ2)  

       + (5)(|V2|)(1.0)cos(90° + δ3 — δ2), 

—0.5 = —(10)(|V2|)(1.0)sin(90° + 0° — δ2)  — (15)(|V2|)(|V2|)sin(—90° + δ2  — δ2)  

        — (5)(|V2|)(1.0)sin(90° + δ3 — δ2), 

      1 = (2.5)(1.0)(1.0)cos(90° + 0° — δ3) + (5)(1.0)(|V2|)cos(90° + δ2  — δ3)  

       + (7.5)(1.0)(1.0)cos(—90° + δ3 — δ3). 

Simplifying the right-hand sides of the preceding expressions yields 

    = 10 sin(δ2) — 5 sin(δ3 — δ2), 2P || 2V || 2V

   = —10 | cos(δ2)  + 15  — 5 cos(δ3 — δ2), 2Q | 2V 2
2 ||V || 2V

    = 2.5sin(δ3) — 5 sin(δ2  — δ3) . 3P || 2V

Thus, the elements of the Jacobian matrix are given by 
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∂
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The above partial derivatives form the Jacobian matrix 
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For the initial estimates  = 1.0 p.u., , and , the initial Jacobian 
matrix becomes 

|| 2V o
2 0=δ o

3 0=δ

40 
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−
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The initial power mismatches are 

0.20.200.222 =+=+=Δ PP , 

5.05.005.022 =+=+=Δ QQ , 

0.10.100.133 −=−=−=Δ PP . 

Consequently, the corrected values after the first iteration are 
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Although we assumed that , and  for simplicity, these angles must be 
converted to radians before performing the necessary matrix operations. The procedure 
is repeated until the variables of interest satisfy a prescribed precision index. Once this is 
achieved, we use the values of |V2|, δ2, and δ3 given by the algorithm to compute Q3 
from Equation (8). This completes the solution process. 

o
2 0=δ o

3 0=δ

5.2 Spreadsheet implementation of the Newton-Raphson method 

In this section we present a spreadsheet implementation of the Newton-Raphson 
method. Again, we take the power system of Figure 1. The input data section is identical 
to that of the Gauss-Seidel method discussed in Section 4.2 (see Figures 2 and 3).  

The power-flow solution is shown in Figure 5. The calculations reveal that accepta-
ble solutions are attained after 3 iterations for a precision index of 10-5. As expected, the 
solutions agree with those obtained by the Gauss-Seidel method (see Table 4). In gener-
al, the Newton-Raphson method converges to the solution faster than the Gauss-Seidel 
method. In some instances, ill-conditioned problems lead to divergence by either me-
thod. 

As can be seen in Figure 5, the Newton-Raphson method covers the cell range 
H1:T15. A complete list of Microsoft Excel formulas is given in Table 6. 
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Figure 5: Spreadsheet implementation of the Newton-Raphson method for determining the pow-
er flows in the network of Figure 1. 

Table 6: Microsoft Excel formulas for the Newton-Raphson method. 

Cell Formula Comments 

H3:H14 List of numbers from 0 to 3. Iteration number. Some cells 
are blank. 

H2:T2 Labels for various quantities. Newton-Raphson section. 

I15:K15 Labels to highlight angles in 
radians and degrees. No calculations. 

I3:I14 Labels for variables of inter-
est. |V2|, δ2, δ3. 

J3:J14 
Numerical values corres-
ponding to variables of in-
terest. 

δ2 and δ3 in radians. 

K3:K14 
Numerical values corres-
ponding to variables of in-
terest. 

δ2 and δ3 in degrees. 

L3:N14 Jacobian matrices. All matrices are 3x3. 
O3:Q14 Inverse of Jacobian matrices. All matrices are 3x3. 

R3:R14 Labels for power mis-
matches. ΔP2, ΔP3, ΔQ2. 

S3:S14 
Numerical values corres-
ponding to power mis-
matches. 

ΔP2, ΔP3, ΔQ2. 

T3:T14 Correction terms. || 2VΔ , 2δΔ , 3δΔ . 

J3:J5 Initial estimates for variables 
of interest. 

)0(
2 ||V )0(

2δ
)0(

3δ, , . 

K3 =J3 Copies the value of | . )0(
2 |V

K4 =J4*180/PI() Converts  to degrees. )0(
2δ

K5 =J5*180/PI() Converts  to degrees. )0(
3δ
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Table 6 (continued): Microsoft Excel formulas for the Newton-Raphson method. 

Cell Formula Comments 

L3 =10*SIN(J4)-5*SIN(J5-J4) Jacobian element 
|| 2

2

V
P

∂
∂

. 

M3 =10*J3*COS(J4)+5*J3*COS(J5-J4) Jacobian element 
2

2

δ∂
∂P

. 

N3 =-5*J3*COS(J5-J4) Jacobian element 
3

2

δ∂
∂P

. 

L4 =-5*SIN(J4-J5) Jacobian element 
|| 2

3

V
P

∂
∂

. 

M4 =-5*J3*COS(J4-J5) Jacobian element 
2

3

δ∂
∂P

. 

N4 =2.5*COS(J5)+5*J3*COS(J4-J5) Jacobian element 
3

3

δ∂
∂P

. 

L5 =-10*COS(J4)+30*J3-5*COS(J5-J4) Jacobian element 
|| 2

2

V
Q

∂
∂

. 

M5 =10*J3*SIN(J4)-5*J3*SIN(J5-J4) Jacobian element 
2

2

δ∂
∂Q

. 

N5 =5*J3*SIN(J5-J4) Jacobian element 
3

2

δ∂
∂Q

. 

O3:Q5 =MINVERSE(L3:N5) 
Inverse of Jacobian matrix in 
cell range L3:N5. 

S3 =10*J3*SIN(J4)-5*J3*SIN(J5-J4)-$E$10 Power mismatch 2PΔ . 
S4 =2.5*SIN(J5)-5*J3*SIN(J4-J5)-$E$11 Power mismatch 3PΔ . 

S5 =-10*J3*COS(J4)+15*J3^2-
5*J3*COS(J5-J4)-$F$10 Power mismatch 2QΔ . 

T3:T5 =MMULT(O3:Q5,S3:S5) 

Computes correction terms 
, )0( , . 

Multiplies the inverse of the 
Jacobian in O3:Q5 by the 
vector of power mismatch in 
S3:S5. 

)0(
2 ||VΔ 2δΔ

)0(
3δΔ

J6 =J3-T3 New estimate | . )1(
2 |V

J7 =J4-T4 New estimate . )1(
2δ

J8 =J5-T5 New estimate . )1(
3δ

K6:T8 Copies of the formulas in cell 
range K3:T5. 

Completes calculations for 
iteration 1. 

J9:T14 Copies of the formulas in cell 
range J6:T8. 

Replicate formulas as 
needed until solutions are 
within some precision index. 
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6. Classroom experience and pedagogical insights 

The Gauss-Seidel and the Newton-Raphson methods are among the most popular 
numerical techniques encountered in power system courses. The authors introduce these 
techniques to their undergraduate students when discussing the power-flow problem. 
To reinforce conceptual understanding of these methods, the students are asked to ana-
lyze the power flows in a small three-bus system, such as the one given in Figure 1. To 
facilitate computer implementation, the authors make the spreadsheets described in this 
paper available to their students. This approach has pedagogical advantages since stu-
dents are relieved from the burden of learning new software. By simply modifying the 
necessary spreadsheet cells, the students can easily determine solutions to their assigned 
problem. 

From the authors’ experience throughout the years, students express positive atti-
tudes toward the spreadsheet implementation of their power-flow project. Ease of im-
plementation; widespread availability of spreadsheets; convenient tracking and display-
ing of numerical results; transparency of results that are often obscured by specialized 
power system analysis programs, are among the most cited comments.  

The authors recommend the use of the spreadsheet approach to solve only small 
power systems, perhaps up to three buses. Large systems are more suitably analyzed us-
ing specialized software such as PSS/E or PowerWorld. The spreadsheet approach is ef-
fective in other respects such as gaining insight into the numerical techniques, making 
sense of the convergence or divergence of computer-generated solutions, and develop-
ing intuition about well- or ill-conditioned systems. 

7.    Conclusions 

In this paper we have presented spreadsheet implementations of two widely used 
methods for solving power-flow problems. The Gauss-Seidel and the Newton-Raphson 
numerical methods are introduced to students in power system analysis courses. Al-
though the mathematical underpinnings are found in courses such as numerical analy-
sis, power systems provide a suitable real-world application upon which constructivist 
activities can be designed by instructors. Spreadsheets provide students with an easily 
accessible tool with which mathematical models of real systems can be built and ana-
lyzed. Furthermore, spreadsheets lend themselves to answering “what if” questions 
when quantities such as real power, reactive power, or bus voltage change to new quies-
cent operating conditions. 
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