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Estimation Error in the Correlation of Two Random Variables: A
Spreadsheet-Based Exposition

Abstract
Although the statistical term correlation is well-known across many academic disciplines, estimation error in
the correlation has traditionally been considered to be a topic too difficult for students outside statistical
fields. This pedagogic study presents an approach for the estimation that does not require any advanced
statistical concepts. By using familiar spreadsheet functions to facilitate the required computations, it intends
to make the analytical material involved accessible to more students.
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Estimation Error in the Correlation of Two Random
Variables: A Spreadsheet-Based Exposition

1 Introduction

The statistical term correlation is well-known to students in many academic
disciplines. As a dimensionless quantity, with potential values ranging from
minus one to plus one, it captures how two random variables relate statis-
tically to each other. Analytically, it is de�ned as the covariance of the
two variables divided by the product of their standard deviations. Reliable
information about the correlation allows useful implications to be drawn. In
the context of investment, for example, if the random rate of return of an
asset is known to be positively and highly correlated with that of another
asset, a practical implication is that investing in both assets does not o¤er a
much better risk-return trade-o¤ than investing in only one of these assets.
When the correlation of two variables is estimated from a sample of ob-

servations, the observations can be viewed as random draws from a joint
distribution of the two variables. To estimate the correlation from such a
sample is straightforward. Currently available electronic spreadsheets all
have functions for this task; in the case of Microsoft Excel, for example, the
corresponding function is CORREL. However, to assess the accuracy of the
correlation that the sample provides is not as simple. This is because the
correlation, when expressed in terms of the variances and the covariance of
the two variables, is in an analytically inconvenient form.
If the observations for estimating correlations are based on some experi-

mental results, for example, an implicit requirement is that the experimental
conditions for generating the observations be the same. Likewise, if the
observations are deduced from empirical data, such as historical observa-
tions of some economic variables, it is implicitly assumed that the economic
conditions for generating the observations be the same.1 Thus, although esti-
mation error in the correlation tends to decrease as the sample size increases,
the reliance on large samples to bypass the issue of estimation error is not
always a viable option.

1The assumption of stationary distributions of the underlying economic variables can
be relaxed to allow time-varying variances, covariances, and correlations to be estimated.
However, this pedagogic study is con�ned to simple cases where the stationarity assump-
tion is deemed acceptable.
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There are ways to bypass the analytical inconvenience as noted above.
For example, it is well-known in statistics that, if the sample correlation
r is based on N observations of a bivariate normal distribution, r[(N �
2)=(1 � r2)]1=2 follows approximately a t-distribution with (N � 2) degrees
of freedom. This statistical feature allows the signi�cance of the sample
correlation to be tested. It is also well-known in statistics that the distrib-
ution of z = 1

2
ln[(1 + r)=(1� r)] � Fisher�s z-transformation of the sample

correlation � is approximately normal with the standard error of z being
(N � 3)�1=2: Here, the independence of the standard error of z from r re-
quires the assumption of a bivariate normal distribution of the underlying
random variables. Fisher�s z-transformation allows the con�dence intervals
of the correlation to be established.2 However, although these recipes are
easy to follow, their derivations do require statistical concepts unfamiliar to
most students outside statistical �elds.
Then, from a pedagogic perspective, if the issue of estimation error is to

be addressed, a challenging question for instructors to consider is whether
the topic can still be taught to students outside statistical �elds. This
pedagogic study is a response to such a challenge; it extends the statistical
approach in Schäfer and Strimmer (2005), originally for estimating the errors
in the individual variances and covariances from �nite samples, to estimating
the error in the correlation of two random variables. Speci�cally, we treat
each point estimate as a realization of the random variable in question. For
example, if the random variable in question is a sample covariance, we express
its sampling variance � an estimated variance of its sampling distribution
� in terms of the observations of the two underlying random variables. A
nice feature of the approach here is that there are no speci�c distributional
requirements on the two underlying variables. More importantly, from a
pedagogic perspective, the statistical concepts involved can be understood by
students outside statistical �elds. However, without specifying a bivariate
distribution, the approach here does not directly facilitate any signi�cance
tests of the sample correlation; nor does it facilitate the establishment of any
con�dence intervals.
To bypass the analytical di¢ culty in expressing exactly the sampling

variance of the correlation in terms of the observations of the two underlying
random variables, we rely on a linear approximation that a �rst-order Taylor
expansion provides. Speci�cally, we express it approximately as a linear
combination of the sampling variances and covariances of various random

2See, for example, Warner (2007, chapter 7) for descriptions of the above t-test and
Fisher�s z-transformation.
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variables, each of which can be estimated from observations of the two un-
derlying random variables. This study, which seeks to assess the precision
of the correlation that the sample provides, is a pedagogic version of some
analytical material in Kwan (2008), Scheinberg (1966), and Stuart and Ord
(1987, chapter 10).
In the approach here, we simplify notation (from that in the above refer-

ences), if needed, not only for ease of exposition, but also for orderly arrang-
ing the corresponding data into arrays in a spreadsheet for computational
convenience. Besides using familiar Excel functions such as VAR and CO-
VAR for computing various variances and covariances during the intermedi-
ate steps, we also use matrix functions in Excel such as TRANSPOSE and
MMULT for transposing and multiplying arrays of some data to compute
the �nal result. For students who are unfamiliar with matrix algebra, we
provide an equivalent, but more intuitive, computational approach as well.
In so doing, we intend to make the computations involved accessible to more
students in di¤erent academic disciplines.
The paper is organized as follows: Drawing on Schäfer and Strimmer

(2005), section 2 describes how sampling variances and covariances of their
point estimates (of variances and covariances) can be expressed in terms of
the observations of the two underlying random variables. Section 3 extends
the approach in section 2 to estimating the error in the sample correlation by
expressing its sampling variance as approximately a linear combination of var-
ious sampling variances and covariances. Section 4 provides a spreadsheet-
based illustration of the corresponding computations using Excel. Some
concluding remarks are provided in section 5.

2 Estimation Errors in Variances and Covari-
ances

Consider two random variables, x1 and x2; with N pairs of observations.
Each pair is labeled as x1n and x2n; for n = 1; 2; : : : ; N: The two sample
means are

xi =
1

N

XN

n=1
xin; for i = 1 and 2; (1)

Each (i; j)-element of the 2� 2 sample covariance matrix is

sij =
1

N � 1
XN

n=1
(xin � xi)(xjn � xj): (2)

Here, s11 and s22 are the sample variances of the two variables, and s12 = s21
is their sample covariance.
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As in Schäfer and Strimmer (2005), we treat s11; s12; s21; and s22 as
random variables. Speci�cally, we introduce a random variable wij for each
of i and j; which can be 1 or 2; and let

wijn = (xin � xi)(xjn � xj); for n = 1; 2 : : : ; N; (3)

be its N observations. This variable is the product of the underlying vari-
ables xi and xj with their sample means removed �rst. Noting that the
sample mean of wij is

wij =
1

N

XN

n=1
wijn; (4)

we can express the sample covariance of xi and xj; including cases where
i = j and i 6= j; equivalently as

sij =
N

N � 1wij: (5)

Given equation (5), the sampling variance of sij is

dV ar(sij) = N2

(N � 1)2
dV ar(wij): (6)

It is well-known in statistics that the distribution of the sample mean of a
random variable based on N observations has a sampling variance that is
only 1=N of the sampling variance of the variable.3 Thus, it follows from
equation (6) that dV ar(sij) = N

(N � 1)2
dV ar(wij): (7)

With wkl being the sample mean of the variable wkl; we also obtain from
equation (5) that

dCov (sij; skl) = N2

(N � 1)2
dCov(wij; wkl); (8)

3To explain this statistical concept to students, we take N random draws from the
distribution of a random variable u; for example. With the draws being u1; u2; : : : ; uN ;
the sample mean is u = (u1 + u2 + : : :+ uN )=N: The sampling variance of u is dV ar(u) =
(1=N2)dV ar(u1+u2+ : : :+uN ): The latter variance term can be written equivalently as a
covariance involving two identical sums of terms, with up and uq being their representative
terms. Here, each of p and q can be any of 1; 2; : : : ; N: Thus, when expressed explicitly,
the latter variance term consists of the sum of N �N terms of the form dCov(up; uq); with
each being the sampling covariance of up and uq: If p 6= q; dCov(up; uq) is zero, as the
two draws are independent of each other. Each case of p = q pertains to the same draw,
and thus the corresponding term dCov(up; uq) is the same as dCov(u; u) or, equivalently,dV ar(u): As there are N cases of p = q; it follows that dV ar(u) = (1=N)dV ar(u):
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where each of i; j; k; and l can be 1 or 2: Likewise, in a bivariate setting, the
joint distribution of the sample means of two random variables based on N
pairs of observations has a sampling covariance that is 1=N of the sampling
covariance of the two variables.4 Thus, equation (8) also leads to

dCov (sij; skl) = N

(N � 1)2
dCov (wij; wkl) : (9)

Given the individual observations of the random variables wij and wkl as
equation (3) provides, to compute dV ar(wij) and dCov (wij; wkl) using Excel is
straightforward. Given also equations (7) and (9), so are the computations
of the sampling variances and covariances of sij and skl for various cases of
i; j; k; and l:
Notice that, N=(1�N)2 varies asymptotically as 1=N: Notice also that,

for a given joint distribution of the two underlying variables x1 and x2; as
N approaches in�nity, dV ar(wij) and dCov (wij; wkl) still remain �nite. Thus,
according to equations (7) and (9), an increase in the number of observations
will tend to result in lower magnitudes of dV ar(sij) and dCov (sij; skl) : As
it will soon be clear, some of these sampling variances and covariances are
required for computing the sampling variance of the correlation. Further,
for the same joint distribution of the two underlying variables, an increase in
the number of observations will tend to result in a lower sampling variance
of their correlation.

3 Estimation Error in the Correlation of Two
Random Variables

The sample correlation of the random variables x1 and x2 is

r =
s12p
s11s22

: (10)

4To explain this statistical concept to students, we consider a joint-distribution of two
random variables, u and v; for example. We take N random draws from the distribution,
which are (u1; v1); (u2; v2); : : : ; (uN ; vN ): With the sample means of the two variables being
u = (u1 + u2 + : : :+ uN )=N and v = (v1 + v2 + : : :+ vN )=N; their sampling covariance isdCov(u; v) = (1=N2)dCov(u1+u2+ : : :+uN ; v1+v2+ : : :+vN ): When expressed explicitly,
the latter covariance term is the sum of N �N terms of the form dCov(up; vq); each being
the sampling covariance of up and vq: Among them, all cases of p 6= q will vanish, as
the two draws are independent of each other. For each of the N remaining cases where
p = q; which pertains to the same draw, the corresponding term dCov(up; vq) is the same
as dCov(u; v): Thus, we have dCov(u; v) = (1=N)dCov(u; v):
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Although this expression is in an analytically inconvenient form, we can still
approximate it linearly, by treating s12; s11; and s22 as the underlying vari-
ables. The approach involved, commonly called the delta method, requires
a �rst-order Taylor expansion of s12=

p
s11s22 around s12 = s�12; s11 = s

�
11; and

s22 = s
�
22; the corresponding point estimates that the sample provides. The

truncated Taylor series is

s12p
s11s22

=
s�12p
s�11s

�
22

� s�12
2s�11

p
s�11s

�
22

(s11 � s�11)

� s�12
2s�22

p
s�11s

�
22

(s22 � s�22) +
1p
s�11s

�
22

(s12 � s�12): (11)

We will show below that this approximate expression allows the sampling
variance of r to be estimated.
For students who are unfamiliar with multivariate di¤erential calculus,

here is a simple way to reach the above �rst-order Taylor expansion: For
notational convenience, let y1 = s11; y2 = s22; y3 = s12; y�1 = s

�
11; y

�
2 = s

�
22;

and y�3 = s
�
12: Let also 4y1 = y1 � y�1; 4y2 = y2 � y�2; and 4y3 = y3 � y�3 be

the deviations from the corresponding point estimates. With r = y3=
p
y1y2

and r� = y�3=
p
y�1y

�
2; their di¤erence is 4r = r� r�: The idea of a �rst-order

Taylor expansion here is to approximate4r as a linear function of4y1;4y2;
and 4y3: To this end, we write

4r =
y�3 +4y3p

(y�1 +4y1)(y�2 +4y2)
� y�3p

y�1y
�
2

=
(y�3 +4y3)

p
y�1y

�
2 � y�3

p
(y�1 +4y1)(y�2 +4y2)p

(y�1 +4y1)(y�2 +4y2)y�1y�2

=
(y�3 +4y3)2y�1y�2 � (y�3)2(y�1 +4y1)(y�2 +4y2)

d
; (12)

where

d =
p
(y�1 +4y1)(y�2 +4y2)y�1y�2 �h
(y�3 +4y3)

p
y�1y

�
2 + y

�
3

p
(y�1 +4y1)(y�2 +4y2)

i
: (13)

This expression allows us to view 4r as approximately the di¤erence
between (y�3 + 4y3)2y�1y�2 and (y�3)2(y�1 + 4y1)(y�2 + 4y2) in the numerator
scaled by the denominator d; which, as a scaling factor, can be approximated
as 2y�1y

�
2y
�
3

p
y�1y

�
2 by treating each of the 4y1; 4y2; and 4y3 terms there as

6
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zero. With all quadratic terms of 4y1; 4y2; and 4y3 in the numerator �
which include (4y1)(4y2) and (4y3)2 � ignored, equation (12) reduces to

r =
y�3p
y�1y

�
2

+
[(y�3)

2 + 2y�34y3] y�1y�2 � (y�3)2(y�1y�2 + y�24y1 + y�14y2)
2y�1y

�
2y
�
3

p
y�1y

�
2

=
y�3p
y�1y

�
2

� y�34y1
2y�1
p
y�1y

�
2

� y�34y2
2y�2
p
y�1y

�
2

+
4y3p
y�1y

�
2

; (14)

which is analytically equivalent to equation (11).
To estimate the sampling variance of r; it is more convenient to write

equation (11) or equation (14) equivalently as

r = �0 + �1y1 + �2y2 + �3y3; (15)

where

�0 =
y�3p
y�1y

�
2

; (16)

�1 = � y�3
2y�1
p
y�1y

�
2

; (17)

�2 = � y�3
2y�2
p
y�1y

�
2

; (18)

and �3 =
1p
y�1y

�
2

(19)

are coe¢ cients based on the point estimates y�1; y
�
2; and y

�
3: Given equation

(15), the sampling variance of r is

dV ar(r) = dCov(�1y1 + �2y2 + �3y3; �1y1 + �2y2 + �3y3); (20)

which, when expressed explicitly, is the sum of nine terms of the form �i�jdCov(yi; yj); where each of i and j can be 1; 2; or 3: With dV ar(yi) =dCov(yi; yi) and dCov(yi; yj) = dCov(yj; yi); we can write equation (20) ex-
plicitly as

dV ar(r) = �21
dV ar(y1) + �22dV ar(y2) + �23dV ar(y3) + 2�1�2dCov(y1; y2)

+2�1�3dCov(y1; y3) + 2�2�3dCov(y2; y3): (21)

After substituting s11; s22; and s12 for y1; y2; and y3; respectively, including
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the corresponding point estimates, equation (21) becomes

dV ar (r) = �
(s�12)

2

4(s�11)
3s�22

dV ar (s11) + (s�12)
2

4s�11(s
�
22)

3
dV ar (s22) + 1

s�11s
�
22

dV ar (s12)
+

(s�12)
2

2(s�11s
�
22)

2
dCov (s11; s22)� s�12

(s�11)
2s�22

dCov (s11; s12)
� s�12
s�11(s

�
22)

2
dCov (s22; s12)� : (22)

Analytically equivalent forms of equation (22) can be found in Kwan (2008),
Scheinberg (1966), and Stuart and Ord (1987, chapter 10).

4 Spreadsheet-Based Computations

Electronic spreadsheets can facilitate an e¢ cient computation of the sam-
pling variance of the correlation of two variables, thus making the analytical
material involved more accessible to students. Notably, spreadsheet func-
tions such as VAR and COVAR in Excel allow us to compute variances and
covariances directly. As the computation of dV ar (r) involves various sam-
pling variances and covariances of some underlying random variables, once
the relevant data are arranged in matrix forms in a spreadsheet, we can use
Excel functions such as TRANSPOSE and MMULT for matrix transposition
and multiplication, respectively, to reduce the computational burden even
further.
Speci�cally, by de�ning a 3-element column vector of coe¢ cients � =�
�1 �2 �3

�0
; where the prime indicates transposition of a matrix, and a

3� 3 matrix Z with each (i; j)-element there being dCov(yi; yj); we can write
equation (21) more compactly as

dV ar(r) = �0Z�: (23)

This equation allows us to use the Excel function MMULT to compute dV ar(r)
directly.
For students who are unfamiliar with matrix algebra, equation (21) is

best written as dV ar(r) =X3

i=1

X3

j=1
�i�jdCov(yi; yj) (24)

without using the results that dV ar(yi) = dCov(yi; yi) and dCov(yi; yj) =dCov(yj; yi): As each of i and j can be 1; 2; or 3; the double summation

8
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consists of the nine cases of �i�jdCov(yi; yj) implicitly covered by equation
(21). A pedagogic illustration of the computation involving the same alge-
braic form is available in Kwan (2007). In the current setting, we place the
three coe¢ cients and the nine covariances in a spreadsheet as follows:

�1 �2 �3
�1 dCov(y1; y1) dCov(y1; y2) dCov(y1; y3)
�2 dCov(y2; y1) dCov(y2; y2) dCov(y2; y3)
�3 dCov(y3; y1) dCov(y3; y2) dCov(y3; y3)

Once we multiply each covariance term by the corresponding coe¢ cients
in the same row and in the same column, we have the following:

�1�1dCov(y1; y1) �1�2dCov(y1; y2) �1�3dCov(y1; y3)
�2�1dCov(y2; y1) �2�2dCov(y2; y2) �2�3dCov(y2; y3)
�3�1dCov(y3; y1) �3�2dCov(y3; y2) �3�3dCov(y3; y3)

With each element in this 3 � 3 block being one of the nine cases of �i�jdCov(yi; yj) in equation (24), the sum is the sampling variance of r: The
computations involved can easily be performed on Excel as well.
Notice that, as equations (23) and (24) show, dV ar(r) is a linear function

of nine individual terms of the form dCov(yi; yj); where each of i and j can
be 1; 2; or 3: It is equivalent to a linear combination of various cases ofdCov (sij; skl) ; where each of i; j; k; and l can be 1 or 2: Given equations (7)
and (9), as well as y1 = s11; y2 = s22; and y3 = s12; we can also write dV ar(r)
as N=(1�N)2 multiplied by �0W�; where each element of the 3� 3 matrix
W is one of the various cases of dCov (wij; wkl) : With N=(1 � N)2 varying
asymptotically as 1=N and with �0W� being always positive and �nite, it
follows that, for a given joint distribution of the two underlying variables x1
and x2; an increase in the number of observations tends to result in a lowerdV ar(r):
For a numerical illustration with Excel, we use daily return data of the

Dow Jones Industrial Average (DJIA) of 30 U.S. stocks and the Financial
Times Stock Exchange Index (FTSE) of 100 U.K. stocks, over 25 trading
days from November 24, 2008 to December 31, 2008.5 As our main purpose

5Daily closing values of the two indices, under the ticker symbols ^DJI and ^FTSE,
are freely available from Yahoo! Finance <http://�nance.yahoo.com/> on the internet.
For this numerical illustration, a day is considered a trading day when the closing values
for both indices are available. For each index, the return on trading day n is the change
in the closing index values from trading day n� 1 to trading day n; as a proportion of the
closing index value at trading day n� 1:
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here is to illustrate the computational procedure, whether the use of only 25
pairs of return observations is adequate for the estimation is not an issue.
To illustrate the impact of changes in the number of observations on the
estimation results, we also attempt as many as 250 pairs of daily return
observations, from December 31, 2007 to December 31, 2008. Speci�cally,
for each of the cases involving 25; 26; 27; : : : ; 250 consecutive trading days,
the observations always end at December 31, 2008. Some essential results
will be provided subsequent to the Excel example.
In the Excel example in Figure 1, the daily return data, including the

corresponding dates, are displayed in A3:C27 of the spreadsheet. The num-
ber of observations, the sample mean, the sample variance, and the sample
standard deviation of each of the index returns are shown in B29:C32. The
corresponding cell formulas, along with those for the remaining computations
in this example, are listed in B56:C92. The sample covariance of the two
variables is provided in B34.6 The sample correlation is computed in two
equivalent ways; while B35 is based on the sample covariance divided by the
product of the two sample standard deviations, B36 is computed directly by
using the Excel function CORREL.
The 25 observations of w11; w22; and w12 under the headings of �1: DJIA,

DJIA, 2: FTSE,FTSE,�and �3: DJIA,FTSE,�each being a product of mean-
removed returns as de�ned in equation (3), are shown in E3:E27, F3:F27, and
G3:G27, respectively. As these headings contain the labels 1; 2; and 3; it is
implicit that y1 = s11; y2 = s22; and y3 = s12: The numbers of observations
as required for subsequent computations are displayed in E29:G29.
To compute the sampling variance of the correlation by matrix multipli-

cations, we �rst set up the row vector of coe¢ cients �0 =
�
�1 �2 �3

�
in E38:G38, where the three individual elements are as de�ned in equations
(17)-(19). The corresponding column vector �; as displayed in I40:I42, is
obtained by using the Excel function TRANSPOSE. The 3 � 3 matrix Z;
with each (i; j)-element being dCov(yi; yj); is placed in E40:G42. The com-
putations of these matrix elements are based on equations (7) and (9). The
sampling variance of r; as shown in E44, is the result of the matrix multi-
plication �0Z� by using the Excel function MMULT repeatedly. To show
more explicitly the magnitude of the error relative to the estimated value r�;

we also provide in E45:E46 the standard error SE(r) =
qdV ar(r) and the

coe¢ cient of variation, which is the ratio SE(r)=r�:

6As the Excel function COVAR treats each sample as its population, a multiplicative
factor N=(N � 1) is required to correct the bias in the estimated covariance from N pairs
of observations. (See B63:C63 and B78:C80.)
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1
A B C D E F G H I

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
2424
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

0 0 0 0 0

Returns Products of Mean-Removed Returns
Date DJIA FTSE 1: DJIA,DJIA 2: FTSE,FTSE 3: DJIA,FTSE
24/11/2008 0.049335 0.098387 0.002069292 0.008392686 0.004167364
25/11/2008 0.004273 0.004406 0.000000183 0.000005610 -0.000001013
26/11/2008 0.029146 -0.004459 0.000640099 0.000126205 -0.000284225
28/11/2008 0.011738 0.032581 0.000062286 0.000665957 0.000203666
01/12/2008 -0.077013 -0.051889 0.006538083 0.003441472 0.004743483
02/12/2008 0.033133 0.014119 0.000857730 0.000053931 0.000215076
03/12/2008 0.020501 0.011424 0.000277406 0.000021613 0.000077430
04/12/2008 -0.025077 -0.001535 0.000836486 0.000069053 0.000240338
05/12/2008 0.030942 -0.027428 0.000734235 0.001169862 -0.000926798
08/12/2008 0.034597 0.061910 0.000945657 0.003039906 0.001695496
09/12/2008 -0.027182 0.018883 0.000962714 0.000146609 -0.000375689
10/12/2008 0.008064 -0.003195 0.000017799 0.000099410 -0.000042064
11/12/2008 -0.022408 0.004900 0.000689271 0.000003516 0.000049227
12/12/2008 0.007541 -0.024677 0.000013657 0.000989233 -0.000116233
15/12/2008 -0.007550 -0.000654 0.000129847 0.000055193 0.000084656
16/12/2008 0.041988 0.007364 0.001454872 0.000000347 0.000022461
17/12/2008 -0.011183 0.003504 0.000225861 0.000010698 0.000049157
18/12/2008 -0.024857 0.001503 0.000823856 0.000027793 0.000151319
19/12/2008 -0.003008 -0.010114 0.000046965 0.000285235 0.000115741
22/12/2008 -0.006926 -0.008794 0.000116028 0.000242403 0.000167707
23/12/2008 -0.011761 0.001600 0.000243563 0.000026778 0.000080760
24/12/200824/12/2008 0 005819.005819 0 009258- .009258 0 000003893.000003893 0 000257044.000257044 0 000031634- .000031634
29/12/2008 0.001824 0.024380 0.000004085 0.000309928 -0.000035581
30/12/2008 0.021742 0.016970 0.000320294 0.000103936 0.000182456
31/12/2008 0.012459 0.009447 0.000074193 0.000007142 0.000023019

No. of Obs. 25 25 25 25 25
Mean 0.003846 0.006775
Variance 0.000754 0.000815
St. Dev. 0.027453 0.028542

Covariance 0.000436
Correlation 0.556007
Cor. (Direct) 0.556007

Coef. -368.8607 -341.2558 1276.2066
Coef.

Matrix of Sampl. Variances & Covariances 0.00000007550 0.00000005419 0.00000006001 -368.8607
0.00000005419 0.00000014358 0.00000008542 -341.2558
0.00000006001 0.00000008542 0.00000007186 1276.2066

Sampling Var. of Cor. (by Mat. Mult.) 0.026770
Standard Error of Correlation 0.163616
Coefficient of Variation 0.294269

Figure 1: An Excel Example of Estimation Error in the Correlation of Two
Variables.
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47
A B C D E F G H I

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
7070
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

t

Prod. of Coef.'s & Sampl. Var.'s or Cov.'s 0.010273 0.006821 -0.028252
0.006821 0.016721 -0.037201

-0.028252 -0.037201 0.117040

Sampling Var. of Cor. (by Summation) 0.026770
Standard Error of Correlation 0.163616
Coefficient of Variation 0.294269

Formulas: B29 =COUNT(B3:B27)
B30 =AVERAGE(B3:B27)
B31 =VAR(B3:B27)
B32 =SQRT(B31)

Copy B29:B32 to B29:C32
Copy B29 to E29:G29

B34 =COVAR(B3:B27,C3:C27)*B29/(B29-1)
B35 =B34/(B32*C32)
B36 =CORREL(B3:B27,C3:C27)

E3 =(B3-B$30)*(B3-B$30)
F3 =(C3-C$30)*(C3-C$30)
G3 =(B3-B$30)*(C3-C$30)

C E3 G3 t E3 G27Copy E3:G3 o E3:G27

E38 =-B34/(2*B31*SQRT(B31*C31))
F38 =-B34/(2*C31*SQRT(B31*C31))
G38 =1/SQRT(B31*C31)

I40:I42 {=TRANSPOSE(E38:G38)}

E40 =COVAR($E$3:$E$27,E$3:E$27)*E$29*E$29/((E$29-1)*(E$29-1)*(E$29-1))
E41 =COVAR($F$3:$F$27,E$3:E$27)*E$29*E$29/((E$29-1)*(E$29-1)*(E$29-1))
E42 =COVAR($G$3:$G$27,E$3:E$27)*E$29*E$29/((E$29-1)*(E$29-1)*(E$29-1))

Copy E40:E42 to E40:G42

E44 =MMULT(E38:G38,MMULT(E40:G42,I40:I42))
E45 =SQRT(E44)
E46 =E45/B36

E48 =E$38*$I40*E40
Copy E48 to E48:G50

E52 =SUM(E48:G50)
E53 =SQRT(E52)
E54 =E53/B36

Figure 1: An Excel Example of Estimation Error in the Correlation of Two
Variables (continued).
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As an alternative to matrix multiplication, we compute dCov(r) by sum-
ming the nine cases of �i�jdCov(yi; yj) in E48:G50. As expected, the sum in
E52 is the same as what is shown in E44. The computations of the standard
error SE(r) and the coe¢ cient of variation SE(r)=r�; which have been per-
formed in E45:E46, are repeated in E53:E54. Students who are unfamiliar
with matrix operations can skip rows 44 to 46 of the spreadsheet.
With the estimated correlation r� = 0:556007; the sampling variancedV ar(r) = 0:026770; the standard error SE(r) = 0:163616; and the coe¢ cient

of variation SE(r)=r� = 0:294269; estimation error in the correlation based
on 25 pairs of observations accounts for nearly 30% of its estimated value.
Once 250 pairs of observations are used instead, we have r� = 0:526081;dV ar(r) = 0:004497; SE(r) = 0:067058; and SE(r)=r� = 0:127467: Not
surprisingly, an increase of the number of observations by an order of magni-
tude (from 25 to 250) has resulted in a decrease of dV ar(r) by nearly an order
of magnitude (from 0:026770 to 0:004497): As the standard error based on
250 pairs of observations still accounts for over 12% of its estimated value,
estimation error in the correlation is far from being negligible here.
Figure 2 shows graphically how the standard error SE(r) varies with the

number of observations N: As N increases gradually from 25; the graph of
SE(r) exhibits some initial �uctuations but with a clear downward trend; the
trend becomes much less prominent when N reaches about 75: Such results
suggest that, under the stationarity assumption of the joint distribution of
daily returns of the two market indices considered, at least approximately 75
observations are required for a reasonable estimate of the correlation. How-
ever, as the case ofN = 75 � which is based on daily returns from September
15, 2008 to December 31, 2008 � gives us r� = 0:546767; dV ar(r) = 0:007356;
SE(r) = 0:085766; and SE(r)=r� = 0:156861; the standard error still ac-
counts for over 15% of the estimated correlation.7

7Given the recent changes in the global economic conditions, which have evolved into a
global stock market turmoil, the return observations since October 2008 could be viewed
as being from a di¤erent joint distribution of the two underlying variables. Under such a
view, the reliance on more historical return data for the estimation to bypass the issue of
estimation error would not be a viable option, as long as one�s interest is in knowing the
current correlation. As indicated earlier, this numerical example is intended to illustrate
pedagogically the computational detail. Thus, although the stationarity assumption of
the joint distribution of the two underlying variables is required for the estimation results
to be meaningful, to test for the validity of such an assumption is outside the scope of this
pedagogic study.
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Figure 2: A Graph of the Standard Error (the Square Root of the
Sampling Variance of the Estimated Correlation) versus the Number of
Observations, Based on 25 to 250 Daily Returns of the Dow Jones
Industrial Average (DJIA) and the Financial Times Stock Exchange Index
(FTSE).
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5 Concluding Remarks

The statistical term correlation is well-known across many academic disci-
plines. Researchers use estimated correlations of variables from experimental
or empirical data to draw implications relevant to their own research �elds.
Students are taught how to estimate correlations and to interpret the corre-
lation results. However, the derivations of signi�cance tests (for the sample
correlation) and con�dence intervals, even under simplifying assumptions for
analytical convenience, still require statistical concepts that are unfamiliar
to most students outside statistical �elds. Given the practical importance of
the concept of correlation, therefore, a challenging question for instructors
to consider is whether it is possible to teach students estimation error in the
correlation by using only familiar mathematical and statistical tools.
In this pedagogic study, we have presented an approach to estimate the

error in the sample correlation, with the required statistical concepts set at
a level suitable for students outside statistical �elds. We have presented
the same approach with and without using multivariate di¤erential calculus.
Thus, prior knowledge of advanced calculus is not essential for understanding
the analytical material here. Students with general algebraic skills are ex-
pected to be able to follow all the material involved. Consider, for example,
undergraduate commerce students who have taken an introductory �nance
course. These students already know how to express the variance of a linear
combination of a small number of variables � in the context of expressing
an investment portfolio�s random return as a weighted average of the random
returns of the underlying assets � in terms of the variances and covariances
of these variables. In fact, the expressions in equations (23) and (24) are in
the same algebraic forms as those for an investment portfolio�s variance of re-
turns, although the coe¢ cients and the covariances here and those pertaining
to an investment portfolio are in two very di¤erent contexts.8

The analytical expression of estimation error in the correlation as derived
in this study has no speci�c distributional requirements on the two random
variables, apart from the implicit assumption of stationarity, which allows
the individual observations in a sample to be treated as random draws. Un-
der the stationarity assumption, this study has assessed the accuracy of the
sample correlation (in terms of its sampling variance) as an estimator of the
unknown population correlation. Further, this study has applied familiar
statistical concepts to a setting that utilizes analytical tools for error prop-

8See, for example, Kwan (2007) for the corresponding algebraic expressions in the
context of portfolio theory.
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agation. Science and engineering students, for example, are expected to be
aware of various experimental settings where each variable of interest can
be expressed as a function of some other variables, for which experimental
values are available. As experimental values are inevitably subject to mea-
surement errors, so are the variables of interest. A common approach in
analyzing error propagation is by using a �rst-order Taylor expansion of the
function involved. In the case of the estimated correlation, it is a function
of the estimated variances and covariance of the two underlying variables,
for which the individual estimation errors are available. From a pedagogic
perspective, therefore, it is useful for instructors to remind students the sim-
ilarity between the approach here (pertaining to the Taylor expansion) and
what students likely have learned about error propagation elsewhere.
As electronic spreadsheets such as Excel are now well-known computa-

tional tools, we as instructors are becoming less constrained in our e¤orts
to cover relevant topics that have traditional been considered to be too ad-
vanced or computationally too tedious for students. Estimation error in the
correlation of two variables is one of such topics.9 What this pedagogic study
intends to achieve does go beyond providing a simple recipe for estimating
the error in the sample correlation. At a more fundamental level, it reminds
students that point estimates from a sample of observations � whether they
pertain to estimates of variances, covariances, or correlations � are subject
to estimation errors and that the magnitudes of such errors depend on the
data involved. It then provides the analytical detail for computing such er-
rors. By using Excel functions that students are already familiar with for the
required computations, it also makes the corresponding analytical material

9The choice of computer software for pedagogic purposes depends on many factors.
Besides cost and functionality considerations, an important factor is the familiarity of its
available features, not only to the instructor of the course involved, but also to the teaching
assistants and technical support sta¤. As Excel is part of Microsoft O¢ ce, installed by
many educational institutions for their students to access, its basic features are likely to
have been familiar to many students (prior to enrolling in courses requiring certain speci�c
knowledge of its more advanced features). With some technical support, students can
acquire the necessary skills to perform the computational tasks in such courses. Although
spreadsheets, such as Excel, are not as versatile as many other available computational
packages in terms of functionality, their operational simplicity, nonetheless, is a practi-
cal advantage. Indeed, from the classroom experience of the author, as an instructor
of various �nance and investment courses, familiar Excel features are already adequate
for facilitating the delivery of many advanced topics in these courses. In contrast, if
the selected computational software also requires students to learn a new programming
language, then much more extensive technical support would be required. This language
burden could potentially undermine the instructor�s e¤orts to introduce challenging but
relevant topics to students.
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less abstract and thus accessible to more students across di¤erent academic
disciplines.

Acknowledgement: The author wishes to thank the anonymous reviewers
for helpful comments and suggestions.
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