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Teaching the Logistic Growth Difference Equation Using Spreadsheets

Abstract
The logistic growth difference equation is often used in biology to model population growth. The terms that
satisfy the difference equation have many remarkable mathematical properties such as exhibiting chaotic
behavior. Using spreadsheet modeling tools, the properties of logistic growth can be investigated by students
in a user friendly environment. Students will learn about useful computational and modeling tools, while also
learning about a new area of mathematics that has fascinated many (e.g. James Gleick’s Chaos: Making a New
Science is a national best seller). Moreover, the model has many real world applications in biology.
Unfortunately, many mathematics and computer science students do not see the logistic growth model
because it does not appear in the standard set of required courses. In this paper we describe a how to
implement the logistic growth model, and describe related applications and student exercises.
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Abstract

The logistic growth difference equation is often used in biology to model popula-
tion growth. The terms that satisfy the difference equation have many remarkable
mathematical properties such as exhibiting chaotic behavior. Using spreadsheet
modeling tools, the properties of logistic growth can be investigated by students in
a user friendly environment. Students will learn about useful computational and
modeling tools, while also learning about a new area of mathematics that has fasci-
nated many (e.g., James Gleick’s Chaos: Making a New Science is a national best
seller). Moreover, the model has many real world applications in biology. Unfor-
tunately, many mathematics and computer science students do not see the logistic
growth model because it does not appear in the standard set of required courses. In
this paper we describe a how to implement the logistic growth model, and describe
related applications and student exercises.

Submitted September 2009, revised and accepted January 2010.
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1 Introduction

Predicting the size of a population is a fundamental concern in the study of population
ecology. One model often used to make predictions is a geometric growth model which
assumes that a population grows by the same percentage every year. Such models have
no limit on the size of a population. This is unrealistic in the long run because geometric
growth models ignore issues such as competition for food and living space that act to
limit the size of a population. These aspects may be safely ignored with negligible
error when the population is small. But as the population grows larger, as competition
for resources becomes more pronounced, it becomes unlikely that the population will
continue to grow by the same percentage that occurred when the population was small.
Hence, ecologists attempt to identify the maximum population that a given habitat can
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sustain. This is known as the carrying capacity which we shall denote as K. Using
K, ecologists seek to construct a model that has a population whose growth rate slows
down when the population is close to K, and the growth rate becomes negative when
the population exceeds K.

To model population dynamics consider the sequence Nt, where Nt is the population
size at time period t, and N0 is the starting population satisfying 0 < N0 < K. The
intrinsic rate of growth r is defined to be the difference between the birth rate and the
death rate. In the logistic growth model, we will assume that r remains constant, but
the actual rate of change in Nt will depend on how close Nt is to K. In particular, the
rate of change in Nt from one period to another is given by the product r(K −Nt). The
complete logistic growth difference equation model is as follows.

Nt+1 = r(K −Nt)Nt

For example, consider, the difference equationNt+1 = 0.000025(90, 000−Nt)Nt discussed
in [3] to model the population of fish in a lake. Here, the carrying capacity is K = 90, 000
and the intrinsic rate of growth is r = 0.000025. If Nt = 50, 000, then 0.000025(90, 000−
Nt) = 1. In this case the population does not grow at all. When Nt < 50, 000, the
population will grow larger, and when Nt > 50, 000 the population will decrease. The
population of 50,000 is sometimes called a steady state value or an equilibrium.

Whenever an ecologist studies population dynamics it is common to determine if a
population reaches an equilibrium, and if so, what is the size of the equilibrium popula-
tion? In other words, we want to know if there a positive integer T such that Nt+1 = Nt,
for every t ≥ T . When an equilibrium value exists, we shall denote it by N . If there
is no equilibrium, then one might seek a small set of values that Nt cycles through. It
turns out that answers to these questions depend on r and K. For example, consider
the equation Nt+1 = r(1−Nt)Nt, where N0 = .90. Here, we use K = 1 for the carrying
capacity and think of Nt as the density of a population with respect to its carrying
capacity. Using a starting population of N0 = .90 implies that at time designated by
t = 0, the population is at 90% of its carrying capacity. Graphs of the first 50 values are
given for the cases r = 2.90 and r = 3.55 in Figures 1 and 2 respectively. Observe that
the terms {Nt} for r = 2.90 displayed in Figure 1 converge to a single value N = 0.655,
whereas the terms for r = 3.55 in Figure 2 cycle through the eight values: 882, .370,
.828, .506, .887, .335, .813, .540, for t > 10.

After working with the logistic growth model students will see how critical it is to find
the correct value of r when modeling growth. As one can see from the figures, for some
values of r, {Nt} will converge to an equilibrium. For other values of r, {Nt} may cycle
among two or more values. Moreover, there exist threshold values for r for which the
behavior of the terms {Nt} changes radically. Hence, it is natural to ask, for what

values of r does Nt+1 = r(1−Nt)Nt, with N0 = .90, converge to one value, two values,
three values, and so on? It turns out that a spreadsheet is an ideal computing

environment to numerically and graphically introduce students to the behavior of the
logistic growth equation. This is because it is easy to compute values of a difference
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Figure 1: The first 50 periods for the Logistic Growth Model with r = 2.90

Figure 2: The first 50 periods for the Logistic Growth Model with r = 3.55
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equation, create graphs and vary key parameters with a spreadsheet. In addition, we
can insert a scroll bar, which is an excellent way to vary a parameter such as r, and
watch what happens to the graphs as the numbers are varied. In the next section we
discuss the construction of the spreadsheet model. In Section 3 we will discuss some
mathematical investigations for student exploration. Section 4 discusses specific

applications and extensions of the model recently studied by ecologists.

2 Developing the spreadsheet model

The models described in this paper were developed in Excel 2007, and this version is
assumed in the description to follow. An illustration of an Excel spreadsheet model
implementing the logistic growth equation Nt+1 = r(1−Nt)Nt is given in Figure 3. The
initial term is N0 = .90 and we input this by entering 0.900 in cell C16. For convenience,
we assume that the values are scaled and K is kept constant at 1. In cell C17 the Excel
formula "=$C$12*(1−C16)*C16" is entered and then copied down in column C from C18
to C66. To study how sensitive the model is to changes in r, we insert a scroll bar which
will be used to control the values of r.

Before a scroll bar is inserted we must first obtain the "Developer" tab in the Excel
Ribbon. To do this, begin by clicking on the Offi ce Button located in the top left corner.
Then click on Excel Options. Under "Top options for working with Excel" click on the
box next to "Show Developer tab in the Ribbon". Then click on OK. Now the Developer
tab should be visible. Next click on the Developer tab, and then click on the triangle
below Insert. This should display a table labeled "Form Controls." Now click on the
Scroll Bar control option, and then use the mouse to trace out a scroll bar making it
any size you wish. The last step is to "Format Control" of the scroll bar which links the
scroll bar to a spreadsheet cell. To format control we place the mouse pointer on the
scroll bar and make a right click, followed by a left click on the "Format Control" option.
In the dialog box we must enter minimum and maximum values, which we choose to be
0 and 500. The incremental change must be an integer, so we set it equal to 1. For the
cell link, we enter G12, then click OK. Notice that G12 acts as an auxiliary cell. This is
because we want the scroll bar to control cell C12 which contains our value of r, but an
incremental change value less than one is not allowed. So we use the scroll bar to vary
cell G12 from 0 to 500, and in cell C12 we use the formula "=G12/100". This allows us
to vary r from 0 to 5 using two decimal place resolution.

The graph is obtained by highlighting the values of t (cells B15 to B66) and the values
of Nt (cells C15 to C66). Then click on Insert, and choose the "Scatter" option. Next
choose a subtype that plots points connected by line segments (top right). Complete
the chart by selecting a chart layout and entering appropriate titles. Once the chart is
completed, one can rescale the axes by pointing the mouse to an axis and then double
click. Next, go to the Scale option and make any desired changes.

At this point it is always a good idea to begin experimenting with some extreme
values. Try setting r = 0. The result should be a horizontal line at 0. Next try setting
r = 5. Now, one must look carefully at what is going on. The graph will show a spike
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A B C D E F G H I J K L

1 Logistic Growth Model
2
3
4 Model Parameters
5
6    The initial term is N 0  = 0.90.
7 r  is varied by the scroll bar with lower bound of 0.00 and upper bound of 5.00
8    The first 50 terms are calculated.
9

10
11
12 r = 3.93 Scroll bar cell link 393
13
14
15 t N t
16 0 0.900
17 1 0.354
18 2 0.898
19 3 0.359
20 4 0.904
21 5 0.341
22 6 0.883
23 7 0.407
24 8 0.948
25 9 0.193
26 10 0.611
27 11 0.934
28 12 0.243
29 13 0.723
30 14 0.788
31 15 0.658
32 16 0.885
33 17 0.400
34 18 0.943
35 19 0.210
36 20 0.651
37 21 0.893
38 22 0.377
39 23 0.923
40 24 0.279
41 25 0.791
42 26 0.649
43 27 0.895
44 28 0.370
45 29 0.916
46 30 0.303

Logistic Growth Model
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Figure 3: Spreadsheet implementation of the Logistic Growth Model

and very large numbers on the vertical scale of the graph. What happens is that the
numbers Nt "blow up"; that is, they become unbounded. When numbers get very large,
Excel displays #NUM! in the cell and actually stores the number as 0. So instead of the
graph displaying an unbounded behavior, we see the graph return to 0. This in itself is
a valuable lesson. One should always be careful because assumptions are made by the
software designers that a user must be aware of.

3 Mathematical investigations using the model

There are many interesting aspects of the logistic growth equation. So far, we have
seen that values from the equation Nt+1 = r(1 − Nt)Nt, with N0 = .900, can either
be constant (r = 0), converge to a unique value (r = 2.9), cycle through eight values
(r = 3.55), or become unbounded (r = 5). We begin with a question that is useful in
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population growth studies.
Question 1. For which values of r does {Nt} reach an equilibrium? Can you

determine the equilibrium value as a function of r and K?

To help guide students it may be useful to have them fill out a table containing values
of r in increments of say 0.2, together with equilibrium values when they exist. Students
should be able to quickly see that as r gets close to 3.0, there are significant changes in
the behavior of the terms. It may also help to extend the model described above to look
at the first 200 terms instead of just the first 50 terms. There is a known result in [3]
that states:

Theorem Suppose that a logistic growth model has the difference equation
Nt+1 = r(K−Nt)Nt and N0 is between 0 and K. Then if 1 < rK < 3, the population

will eventually level off at an equilibrium value of K − 1
r .

For example, when r = 2 and K = 1, the equilibrium value is 0.50. Chaos is often
described as a dynamic system that has a sensitive dependence on its parameters and
initial conditions. In particular, small errors or changes in the parameters or starting
values lead to vastly different long term behaviors. In the next set of questions students
can observe this in a "hands on" manner.

Question 2. What happens to the cycle lengths of {Nt} as r varies between 3 and
4? Does {Nt} ever cycle between 8 values? Does the length of the cycles necessarily
increase as r varies from 3 to 4? What happens to the terms when r > 4?

With the proper scaling of the graph and enough terms of {Nt} students should
notice the period (i.e., cycle length) repeatedly double from 1 to 2, to 4, and then to
8, as r increases past 3. When r = 4, the terms {Nt} are all between 0 and 1. But
at r = 4.01, the terms become unbounded! Every time the qualitative behavior of the
solution of a difference equation changes as the result of a change in a parameter such
as r, we say a bifurcation has occurred. The period doubling that we see as r increases
for the logistic difference equation is called the period doubling route to chaos and is a
common effect when chaos occurs for a difference equation.

With basic algebra, students can determine for themselves why the theorem states
the equilibrium value isK− 1r . The algebraic method of solving a difference equation is to
substitute N for every term Nt in the difference equation, and then solve the equation for
N . So for the logistic difference equation Nt+1 = r(K−Nt)Nt, we get N = r(K−N)N .
Solving for N, gives either N = 0 or N = K − 1

r . Thus, there are two equilibria for
the equation. One of these (N = 0) is an equilibrium that is called a source. Only a
set of terms starting with this value will converge to it. The other equilibrium is an
attracting equilibrium called a sink. Since the nontrivial equilibrium is attractive, the
terms will eventually converge to it rather than the source. Regarding equilibria, one
other possibility exists (although it does not occur for the logistic equation) and that is
called a "node". A node equilibrium is attractive from one direction and repelling from
the other direction.
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A B C D E F G H I J K L M N
1 Modeling Growth With an Ecological Forcing
2 N0

3 Model Parameters 10,029
4 N0   = 10,029 rd,0

5 rd,0  = 2.82 282
6 K0  = 67,458 K0

7 Er   = 0.30% 22,486
8 Ek  = 0.15% Er

9 296
10 EK

11 150
12

13 t Nt Kt rd,t
14 0 10,029.0 67458.0 2.820
15 1 34028.6 67356.8 2.812
16 2 81156.9 67255.8 2.803
17 3 33860.8 67154.9 2.795
18 4 80572.2 67054.2 2.787
19 5 35036.1 66953.6 2.779
20 6 81229.4 66853.2 2.770
21 7 32572.5 66752.9 2.762
22 8 78438.0 66652.7 2.754
23 9 39976.2 66552.8 2.746
24 10 83580.2 66452.9 2.738
25 11 24350.7 66353.3 2.730
26 12 66263.5 66253.7 2.721
27 13 65966.8 66154.3 2.713
28 14 66205.3 66055.1 2.705
29 15 65530.3 65956.0 2.697
30 16 66404.7 65857.1 2.689
31 17 64654.4 65758.3 2.681
32 18 67300.9 65659.7 2.673
33 19 62540.6 65561.2 2.666
34 20 69960.3 65462.8 2.658
35 21 56926.6 65364.6 2.650
36 22 76145.0 65266.6 2.642
37 23 42362.1 65168.7 2.634
38 24 81189.3 65070.9 2.626
39 25 28128.8 64973.3 2.619
40 26 69726.3 64875.9 2.611
41 27 55863.1 64778.6 2.603
42 28 75629.7 64681.4 2.595
43 29 42159.6 64584.4 2.588
44 30 79820.9 64487.5 2.580
45 31 30616.7 64390.8 2.572
46 32 71748.5 64294.2 2.565
47 33 50168.6 64197.7 2.557
48 34 77970.9 64101.4 2.550
49 35 34722.9 64005.3 2.542
50 36 74914.4 63909.3 2.535
51 37 41981.6 63813.4 2.527
52 38 78065.0 63717.7 2.520
53 39 33546.3 63622.1 2.512

Logistic Growth With Erosion (50 Periods)
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Figure 4: A graph of the logistic growth model with erosion parameters

7

Rispoli et al.: Logistic Growth

Published by ePublications@bond, 2010



To illustrate the different types of equilibria, consider the difference equation Nt+1 =
(2−Nt)(Nt)2. Solving for equilibria, we get N = (2−N)(N)2. From which we can see
that either N = 0, or 1 = (2 − N)(N). Hence, the nontrivial equilibria must satisfy
N
2 − 2N + 1 = 0, which has the solution N = 1. In order to determine whether an

equilibrium is a sink, source, or node, an approach analogous to the first derivative test
from calculus is used. We rewrite the difference equation in the form Nt+1 = Ntf(Nt).
When f(Nt) > 1, the solution increases (i.e. Nt+1 > Nt) and when f(Nt) < 1, the
solution decreases. For this difference equation,

f(Nt) = Nt(2−Nt).

When Nt > 1 and f(Nt) < 1, the terms decrease. If the initial term is greater than
1 and suffi ciently close 1, then the terms converge to 1. The set of points for which
the terms of a solution will converge to an equilibrium is called the basin of attraction.
When 0 < Nt < 1, we have f(Nt) < 1 and the solution decreases away from N = 1 and
towards N = 0. This makes N = 1 a node and N = 0 a sink (on the given domain). If
this were modeling the population of a species, it might indicate a minimum population
level is needed for the species to survive (and also that there are only enough resources
to sustain this minimum level, quite a dangerous situation for this species!).

Question 3. Construct a spreadsheet model for the difference equation Nt+1 =
(2−Nt)(Nt)2, where 0 ≤ N0 ≤ 2. Insert a scroll bar that controls N0 using two decimal
place resolution, with a minimum of 0 and a maximum of 2. Use the model to find the
basin of attraction of the equilibria N = 0 and N = 1. Can you formulate an algebraic
argument that proves your conjecture concerning the basin of attraction?

After some experimenting with the model, students should find the basin of attraction
for N = 1 is [1, φ], where φ is the famous golden ratio φ ≈ 1.62. The basin of attraction
for N = 0 is [0, 1)∪ (φ, 2]. A proof of this can be obtained by setting (2−N)(N)2 equal
to 1, and then solving for N .

4 Ecological extensions and applications

Many natural populations exhibit population cycles, and ecologists have long been in-
terested in understanding what causes cyclic population behavior (e.g., see [5] and [6],
and references therein). Over time, the number of field-collected population time series
have increased, with as many as 30% exhibiting cyclicity of some sort [5]. Even with
field-collected time series in hand, there are still several questions that population ecol-
ogists must tackle. First, is there really a cycle? Natural populations are notoriously
noisy; to detect cycles ecologists employ a number of sophisticated statistical techniques
to see if recognizable patterns emerge through the noise. Though mathematically chal-
lenging and fascinating, we do not address this aspect of ecology at this time. Second,
what are the underlying biological mechanisms that drive these dynamics? Ecologists
may offer predator-prey dynamics, parasite-host dynamics and lag effects as some of the
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many possible drivers of cycles [5]. This work is often incredibly time consuming be-
cause making connections between population growth, the natural histories of predators
and prey requires a great deal of biological expertise plus extensive field studies. This
kind of information, while valuable and informative in explaining aspects of population
dynamics, is often simply not available. Nonetheless, even in the presence of stochas-
tic noise and mechanistic ignorance, we know that organisms mate, reproduce and die.
Thus, ecologists tackle a third question. If there is a cycle, is it consistent with a reason-
able mathematical model of population growth? “Only mathematical models can show
which factors are even capable of generating cyclic dynamics; without such models the
experimental approach will not be able to solve the question of population cycles” [5].
It is this third question that we will address in this paper. In particular, we will develop
an ecological scenario in which students may use the spreadsheet model to explore the
implications of varying a given set of parameters.

With the model developed in Section 2, one can easily generate cycles. Although
the behavior of the population growth displayed in Figure 3 exhibits chaotic behavior,
it is still bounded and cyclic. A population with this underlying structure could persist
indefinitely. However, natural populations may exhibit extreme changes and emerge
from the bounded situation to yield either a boom or a bust year, perhaps even driving
to extinction. Sometimes the reasons for an extinction event are obvious; for instance, a
deforestation event will clearly lead to local extinction of a forest (e.g., see [7]). In other
cases, dramatic declines are not so easy to explain. In such instances, ecologists have
historically made the assumption that large population declines must be the result of
some dramatic ecological or environmental change. Indeed, Vandermeer and Yodzis [7]
argue that this assumption leads to the obverse assumption: “. . . that gradual secular
changes in environmental parameters lead to gradual secular changes in populations and
communities,”they go on to say, “Frequently, gradual secular changes in environmental
parameters can also lead to sudden and dramatic changes in population and community
variables.”Given the sensitive nature of the model we developed in section 2, it is not
unreasonable to expect that small perturbations in the model parameters could have
dramatic mathematical effects. If that is so, then gradual secular changes, sometimes
referred to as “forcings,”may radically alter the behavior of the population dynamics.

Recently, population ecologists have been examining the issue of climate forcing. “It
has been shown that just a few more days with above zero temperatures during the win-
ter may dramatically lower the survival rate of voles (small arctic rodents) and disrupt
the dynamics of populations”[6]. This has been noted in other studies as well, and many
suggest that increased CO2 levels and global climate change, which has been happening
gradually since the 1800’s, may have driven these dynamic changes. To examine popu-
lation growth, we use a variation of the models presented in Section 2; however, now we
examine how the numbers of individuals change over time rather than population den-
sity. Though the behavior of the model is the same with regard to cyclicity, populations
can now cycle above and below K as they often do in nature. For our ecological scenario,
we start with the following model as presented in [2]: Nt+1 = Nt + rd,tNt(1 − Nt

Kt
),

where rd,t is the discrete rate of growth at time t, and Kt is the carrying capacity at
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time t. To this model we introduce two new parameters related to population "erosion":
Er and Ek. These erosion parameters represent a gradual decline in the discrete rate
of growth rd,t and the carrying capacity Kt respectively. These parameters are used to
model a slow gradual decline in rd,t and Kt, perhaps due to some environmental effect
such as increased temperature arising from climatic forcing. Incorporating the erosion
parameters gives the following difference equation:

Nt+1 = Nt + (rd,t − Er)Nt(1−
Nt

(Kt − Ek)
).

We acknowledge that this is somewhat biologically naïve [5] as we have provided no
biological mechanism to explain the decline. However, we submit that this model is
not inconsistent with a natural world in which habitat destruction, pollution and global
climate change are realities. Moreover, we argue that students will readily understand
the underlying biological principle as it applies to the model.

In Figure 4 a spreadsheet model similar to the one produced in Figure 3 is presented,
but with several modifications. First, we have added additional scroll bars to give greater
control for the basic parameters of initial population sizeN0, initial carrying capacityK0,
as well as the discrete rate of growth rd,t. Because the model is quite sensitive to starting
conditions, these extra scroll bars allow students to undertake a greater exploration of
the parameter space. We have also added two additional scroll bars to control the erosion
parameters Er and Ek. The scroll bars should be set with the following ranges: for N0,
we use 0 to 30, 000; for K0, we use 0 to 30, 000; for rd,t, we use 0 to 3.00; for Er, 0 to
1, 000; and finally for Ek, we use 0 to 1, 000. The starting starting conditions of the model
and the erosion values are listed in the upper left corner under "Model Parameters" and
linked to an appropriate auxiliary cell, which is always to the immediate left of the scroll
bars. The initial population size is set to exactly match the N0 scroll bar value, located
in cell F3.

The initial discrete rate of growth rd,0 is set to equal the scroll bar value, located
in cell F5, divided by 100 so that the range of rd,t falls between 0.0 and 3.0. Since the
scroll bars have a maximum value of 30, 000, and we would like a greater number of
individuals for this example, we set K0 under "Model Parameters" to equal three times
the value of the K0 scroll bar located in cell F7. For both erosion values, under "Model
Parameters" we set them equal to the scroll bar values located in the auxiliary cells for
Er and Ek (cells F9 and F11 respectively) divided by 100, 000. The high resolution is
used to model a very small incremental decline. Such small declines are consistent with
a nearly imperceptible, gradual secular decline as described by Vandermeer and Yodzis
[7]. In Figure 4, we show one interesting result of the model. With both Er and Ek
set at a low rate of about a third of one percent, the model shows a markedly different
short term and long term behaviors. Running the model out 500 periods shows that the
population size converges to a glide path that will ultimately lead to extinction. What
is interesting about this model output is that if you view the behavior over the first
50 years, there would likely be no way for an ecologist measuring this in the field, to
predict the ultimate demise of the population in the future. This result is superficially
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similar to the pattern of decline in arctic foxes, in which a series of seemingly stable
cycles suddenly takes a turn for a tight downward path (as noted in [6]).

Question 4 Consider the scenario displayed in Figure 4. Suppose that after 75
years a conservation effort is implemented. You are faced with a choice. Is it better to
rear a large batch of individuals and supplement the population with an infusion of new
individuals, or is it better to focus on ecoremediation to stabilize rd,t and Kt?

If a student were to insert, say 20,000 individual in year 79 simply by adding to the
formula in cell B79, the model output shows us that it will have no effect on the final
outcome. The population is still doomed. Reducing the erosion of rd,t from 0.30% to
0.15% also does not change the fate of the population; however, the cyclic nature of the
population becomes more apparent as Er declines. It is only with the stabilization of K
that the population takes on a more favorable population trajectory. Reducing Ek by
about half to 0.15% dramatically slows the population decline. Based on these results an
ecologist might argue that preserving and maintaining an ecosystem, thereby stabilizing
the ability of a habitat to support a population, is by far the most useful application of
money and effort.

5 Conclusion

As demonstrated above, there are many interesting aspects of the logistic growth model
and here we have just given a brief introduction. The interested reader can learn more
from the references listed below. It should now be clear from the above models that
spreadsheet software is an ideal computational tool to introduce students to this model.
Our spreadsheet model is available at the Spreadsheets in Education website. If the
reader has any questions, do not hesitate to send the first author an email.
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