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This paper demonstrates the use of a spreadsheet in teaching topics in elementary number theory. It
emphasizes both the power and deficiency of inductive reasoning using a number of historically significant
examples. The notion of computational experiment as a modern approach to the teaching of mathematics is
discussed. The paper, grounded in a teacher-student dialogue as an instructional method, is a reflection on the
author’s work over the years with prospective teachers of secondary mathematics.
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Abstract 

This paper demonstrates the use of a spreadsheet in teaching topics in elementary 

number theory. It emphasizes both the power and deficiency of inductive 

reasoning using a number of historically significant examples. The notion of 

computational experiment as a modern approach to the teaching of mathematics is 

discussed. The paper, grounded in a teacher-student dialogue as an instructional 

method, is a reflection on the author’s work over the years with prospective 

teachers of secondary mathematics. 

 

Key words: spreadsheet, number theory, inductive reasoning, experimental 

mathematics, dialogue, teacher education. 

 

1  Introduction 

 

The use of computers to support teaching topics in number theory to prospective teachers of 

mathematics as well as to high school students has been known in the United States for almost 

five decades [14]. Until the mid 1990s, the pioneers of computer oriented mathematics 

instruction focused on the use of different programming languages like BASIC [22], [21], [19] 

and PASCAL [6]. This resulted in augmenting, if not, by some accounts [10], distorting, 

mathematics curriculum with the learning of syntax and semantic of computer programming. 

The advent of various computer applications enabled a qualitatively new didactic approach, 

which, in many cases, shifted the attention from teaching about the computer to teaching with a 

computer. Nowadays, the pedagogy of teaching with computer is considered as the most efficient 
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way of using technology in mathematics education [15], [7], [27], [13]. Teaching mathematics 

with computer is often based on an appropriately designed computational experiment. 

 A powerful tool that enables easy access to ideas and concepts of number theory through 

a computational experiment is an electronic spreadsheet [3], [4], [24]. The tool represents one of 

the most popular general-purpose software used by educators for more than 30 years to promote 

the spirit of exploration and discovery by integrating experiment in the teaching of mathematics 

[5], [16], [23], [1]. Long before the computer age, the role of a mathematical experiment, 

especially in number theory, was emphasized by such mathematical giants as Euler and Gauss. 

Euler: “As we must refer the numbers to the pure intellect alone, we can hardly understand how 

observations and quasi-experiments can be of use in investigating the nature of the numbers. Yet, 

in fact, ... the properties of the numbers known today have been mostly discovered by 

observation, and discovered long before their truth has been confirmed by rigid demonstrations” 

(translated by Pólya [18, p3]. Gauss: “In arithmetic the most elegant theorems frequently arise 

experimentally as the result of a more or less unexpected stroke of good fortune, while their 

proofs lie so deeply embedded in darkness that they defeat the sharpest inquiries” (cited in [25]).  

 In the age of technology, an experimental approach to mathematics using a spreadsheet 

draws on the power of the tool to perform numerical computations and graphical constructions, 

thereby, enabling easy access to mathematical ideas and objects under study. The approach 

includes one’s engagement in recognizing numerical patterns formed by modeling data and 

formulating properties of the studied objects through interpreting the meaning of the patterns and 

their graphic representations. This makes it possible to balance formal and informal approaches 

to mathematics allowing teachers to learn how the two approaches complement each other. In 

particular, a computational (i.e., empirical) approach to the development of concepts of number 

theory follows the historical evolution of the ideas of this classic area of mathematics. Indeed, 

many results about properties of numbers were first discovered by observations and only later 

have been confirmed using the language of formal proof. This approach also included 

observations supported by inductive reasoning alone that turned out to be erroneous 

generalizations. These examples can be introduced by using a spreadsheet.  

 Whereas mathematical activities that can be motivated by and presented within a 

spreadsheet can be quite significant, the software allows for hiding some of the complexity and 

formal structure of mathematics involved. This feature is especially important in the context of 
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preparation of mathematics teachers for it enables their true engagement in rather advanced 

context without the need to have a rigorous understanding of the context expected from future 

professional mathematicians. In other words, using a spreadsheet, a prospective teacher can learn 

how mathematics can be approached initially through a computational experiment rather than 

through a less generally appreciated formal demonstration [7]. Many examples of such an 

approach to the preparation of secondary mathematics teachers can be found elsewhere [1]. 

 This paper includes several historically significant examples from number theory 

demonstrating both the power and deficiency of inductive reasoning, which nowadays is greatly 

enhanced by computers.  It demonstrates how a spreadsheet can be used in the classroom to 

support the empirical approach to the development of knowledge advocated by John Dewey— 

the most notable reformer of the modern era of American education—who argued that 

experience is educative only if it results in one’s intellectual growth. To this end, Dewey [8] 

promoted the pedagogy of reflective inquiry—a problem-solving method that blurs the 

distinction between knowing and doing. Through a teacher-guided reflection new knowledge can 

be developed, as students are encouraged to inquire about the meaning of their experience. In the 

modern classroom, such experience can be provided by the appropriate use of a spreadsheet that 

allows for very inexpensive yet extremely powerful experiments with numbers. Whereas the 

appropriate use of the tool is determined by the teacher, “the ideas should be born in students 

minds and the teacher should act only as midwife” [19, p104]. Working as midwife, or 

“scaffolding” [26] one’s thinking is grounded in an interaction between novice (student) and 

expert (teacher) aimed at carrying out a task beyond the novice’s unaided performance requiring 

the grasp of solution prior to its production. In other words, the scaffolding pedagogy should 

allow a student to recognize a solution before he or she is able to produce steps leading to its 

formal demonstration.  

 The paper is structured as a series of (non-verbatim) vignettes of prospective teachers of 

secondary mathematics learning classic mathematical ideas using spreadsheets under the 

guidance of “the more knowledgeable other.” Such a structure was chosen to emphasize the 

importance of the teachers’ knowledge of mathematics for their students’ learning. The paper 

concludes with a brief discussion of how mathematics of Euler and Fermat can be connected to 

that of Pythagoras and Euclid through the use of a spreadsheet. It is a reflection on the author’s 

work over the years with the teachers in a number of computer-enhanced courses. 
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2  Developing basic summation formulas 

 

One of the problems in number theory that goes back to the 

B.C.—600 B.C.) is the summation of squares of counting numbers

sum of the squares of the integers from 1 to 10 was given as though they [Babylonians] have 

applied the formula 
  
12
+ 22

+ ...+

special cases treated in their texts

a numerical approach made poss

numerically model the partial sums 

closed formula for the general case of the sum of the first 

constructing a five-column spreadsheet 

details), the teacher (T) begins a 

 

Figure 1: Numerical approach to finding the sum of consecutive squares.

T: What are the numbers in column 

S: They are consecutive counting numbers.

T: What are the numbers in column 

S: They are the sums of consecutive counting numbers.

 

Developing basic summation formulas  

One of the problems in number theory that goes back to the Babylonian mathematics

is the summation of squares of counting numbers. According to Kline

sum of the squares of the integers from 1 to 10 was given as though they [Babylonians] have 

+ n
2
= (1⋅

1

3
+ n ⋅

2

3
)(1+ 2 + ...+ n). No derivation 

texts” [12, p10]. Nowadays, a similar result can be obtained through 

a numerical approach made possible by the use of a spreadsheet. For example, o

sums of consecutive perfect squares with the goal

the general case of the sum of the first n squares of counting numbers

spreadsheet shown in Figure 1 (see Appendix for programming 

 dialogue with the student (S). 

Numerical approach to finding the sum of consecutive squares.

 

What are the numbers in column A? 

They are consecutive counting numbers. 

What are the numbers in column B? 

are the sums of consecutive counting numbers. 

athematics (3000 

. According to Kline, “... the 

sum of the squares of the integers from 1 to 10 was given as though they [Babylonians] have 

 accompanied the 

similar result can be obtained through 

For example, one can 

with the goal to construct a 

squares of counting numbers. After 

(see Appendix for programming 

 

Numerical approach to finding the sum of consecutive squares. 
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T: Exactly! How can one generate numbers in column B from numbers in column A? For 

example, how to get 3 (cell B3) from 2 (cell A3)? 

S: Number 3 is 2 times 3 divided by 2, that is, 
 
3=

2 ⋅3

2
. 

T: Well! And, in general, what is the factor that transforms the counting number n into the 

sum of the first n counting numbers? 

S: This factor is [writes on the board] 
  

n +1

2
. 

T:  How does the formula for the sum of the first n counting numbers look like? 

S:         Here is the formula [writes on the board] 

 

  
1+ 2 + 3+ ...+ n =

n(n +1)

2
       (1) 

  

T:  How can this be explained? That is, what is the meaning of the map
  
n→ n ⋅

n +1

2
 that turns 

any counting number n into the sum of the first n counting numbers? 

S: I have to think about this question. 

T: Good, we will discuss this later. But now, ... what are the numbers in column C? 

S: They are the sums of squares of counting numbers starting from one. 

T: How to generate numbers in column C from numbers in column B? In other words, how 

to generate the sums of squares from triangular numbers? For example, how to get 5 (cell 

C3) from 3 (cell B3), how to get 14 (cell C4) from 6 (cell B4), and so on? 

S: Number 5 is 3 times 5 divided by 3, number 14 is 6 times 14 divided by 6, and so on. 

That is, 
 
5 = 3 ⋅

5

3
, 14 = 6 ⋅

14

6
, 30 = 10 ⋅

30

10
, 55 = 15 ⋅

55

15
.  

T: Could you please reduce the fractions? 

S: [writes on the board] 5/3, 7/3, 3, 11/3 . 

T: Well, how to make 3 a number with the denominator 3? 
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S: I multiply 3 by 3 and divide by 3, that is, 
 
3=

9

3
. Thus, the above four fractions that 

transform the sums of counting numbers into the sums of their squares have the form 5/3, 

7/3, 9/3, and 11/3. 

T: What do the numerators 5, 7, 9, 11 have in common? 

S: They are consecutive odd numbers. 

T: Wonderful. How are they related to numbers in column A? 

S:  They are twice the corresponding numbers in column A increased by one: 

 5 = 2 ⋅2 +1, 7 = 2 ⋅3+1, 9 = 2 ⋅4 +1, 11= 2 ⋅5+1.  

T: Exactly! What is the factor that transforms the sum of the first n counting numbers into 

the sum of their squares? 

S: This factor is [writes on the board] 
  

2n +1

3
. 

T:  How can this be explained? That is, what is the meaning of the map

  
(1+ 2 + 3+ ...+ n)→ (1+ 2 + 3+ ...+ n)

2n +1

3
 that turns the sum of the first n counting 

numbers into the sum of their squares? 

S: Once again, I have to think about this question. 

T: Very well. But what is the sum of the first n squares of counting numbers? 

S: This sum is [writes on the board] 
  

n(n +1)(2n +1)

6
. 

 Comparing the obtained result to formula (1) one can represent the sum of the first n 

squares of counting numbers, sn,  as follows 

    
  
s

n
=

2n +1

3
⋅
n(n +1)

2
      (2) 

or, in the language of Babylonians,  

  
s

n
= (1⋅

1

3
+ n ⋅

2

3
)(1+ 2 + 3+ ...+ n)  

 Note that in much the same way the formula for the sum of perfect cubes  

    
  
c

n
= (1+ 2 + 3+ ...+ n)2

     (3) 
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can be conjectured by expanding the spreadsheet 

partial sums of consecutive cubes of counting numbers

 Relations (2) and (3) show an important role that

counting numbers—plays in the development of 

(1)-(3) can be proved by the method of mathematical induction supported by a spreadsheet as 

well. The use of a spreadsheet in aiding mathematical induction proof is described elsewhere 

3  Answering outstanding questions

The meaning of the map n → n

(where n = 5) that reflects a geometric idea of making a rectangle out of two triangles

which represents the sum of the first 

between its side lengths equal to one and the factor 1/2 is responsible for taking half of the 

rectangle; this half being a representation of the required sum.

 

 

 

 

 

 

 

Figure 2: 

Similarly, the meaning of the map 

drawing the diagram in Figure 

rectangle out of three quasi-triangles each of which represents the sum of the first 

counting numbers. The rectangle has the side lengths equal to 

factor 1/3 is responsible for reducing the rectangle to a 

 

by expanding the spreadsheet in Figure 1 to include a column filled with 

partial sums of consecutive cubes of counting numbers. 

) show an important role that a lower concept—the sum

in the development of higher concepts of number theory.

can be proved by the method of mathematical induction supported by a spreadsheet as 

well. The use of a spreadsheet in aiding mathematical induction proof is described elsewhere 

 

questions 

n ⋅
n +1

2
 can be explained by drawing the diagram 

reflects a geometric idea of making a rectangle out of two triangles

which represents the sum of the first n counting numbers. The rectangle has the difference 

between its side lengths equal to one and the factor 1/2 is responsible for taking half of the 

gle; this half being a representation of the required sum. 

 

Figure 2: Doubling the sum 1 + 2 + 3 + 4 + 5. 

Similarly, the meaning of the map n → (1+ 2+ 3+ ...+ n) ⋅
2n +1

3
 can be explained by 

Figure 3 (where n = 4) that reflects a geometric idea of making a 

triangles each of which represents the sum of the first 

counting numbers. The rectangle has the side lengths equal to 1+ 2 + 3+ ...+ n

reducing the rectangle to a single representation of the required sum

Figure 1 to include a column filled with 

the sum of the first n 

r theory. Formulas 

can be proved by the method of mathematical induction supported by a spreadsheet as 

well. The use of a spreadsheet in aiding mathematical induction proof is described elsewhere [2]. 

can be explained by drawing the diagram in Figure 2 

reflects a geometric idea of making a rectangle out of two triangles each of 

counting numbers. The rectangle has the difference 

between its side lengths equal to one and the factor 1/2 is responsible for taking half of the 

 

can be explained by 

reflects a geometric idea of making a 

triangles each of which represents the sum of the first n squares of 

n and 2n + 1; the 

representation of the required sum. 

7

Abramovich: Number Theory, Dialogue, Spreadsheets in Teacher Education

Published by ePublications@bond, 2011



 

 

 

 

 

 

 

 

 

Figure 

4  Constructing the Sieve of Eratosthenes

  

Another powerful application of 

among counting numbers. Recall that counting numbers with exactly two

called prime numbers. As Gauss

composite numbers and of resolving the latte

most important and useful in arithmetic”

fundamental in number theory 

mathematics [11]. 

 In the 3rd century B.C., a Greek scholar Eratosthenes

prime numbers among counting numbers.

allows one to obtain all the prime numbers less than any given integer 

the set of all counting numbers

  INT ( N ). All numbers that remain undeleted are the primes sought

needs to know the smallest integer with exactly two different divisors. Obviously, the number 2 

is such an integer; in other words, the smallest prime number.  This introduction initiates the 

following dialogue between the teacher and the student

Figure 3: Tripling the sum  1
2
+ 22

+ 32
+ 42 . 

 

Constructing the Sieve of Eratosthenes 

Another powerful application of a spreadsheet deals with the identification of prime numbers 

among counting numbers. Recall that counting numbers with exactly two different factors are 

As Gauss noted, “The problem of distinguishing prime numbers from 

composite numbers and of resolving the latter into their prime factors is known to be one of the 

ortant and useful in arithmetic” [9, p396]. The importance of prime numbers in not only 

 (alternatively, arithmetic), but it is important to the whole of 

a Greek scholar Eratosthenes designed a simple method of finding 

prime numbers among counting numbers. This method, known as the Sieve of Eratosthenes, 

to obtain all the prime numbers less than any given integer N, by crossing out from 

counting numbers less than N the multiples of each of the primes up to

. All numbers that remain undeleted are the primes sought. To start the process, one 

integer with exactly two different divisors. Obviously, the number 2 

is such an integer; in other words, the smallest prime number.  This introduction initiates the 

between the teacher and the student. 

identification of prime numbers 

different factors are 

The problem of distinguishing prime numbers from 

r into their prime factors is known to be one of the 

The importance of prime numbers in not only 

, but it is important to the whole of 

designed a simple method of finding 

known as the Sieve of Eratosthenes, 

, by crossing out from 

the multiples of each of the primes up to the 

To start the process, one 

integer with exactly two different divisors. Obviously, the number 2 

is such an integer; in other words, the smallest prime number.  This introduction initiates the 
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T: How do we know if the number 3 is a prime or not? 

S: It is not divisible by any number except itself and one. 

T: Very well. But how can one test that formally? 

S: Dividing 3 by 2 yields a non-integer greater than one; the next number used in the test is 

3 and because in that case the quotient is equal to one, the test terminates, thereby, 

identifying 3 as a prime number.  

T: Good. How do we know that the number 4 is not a prime? 

S: Dividing 4 by 2 yields an integer. Therefore, 4 is not a prime number. 

T: But dividing 3 by 3 resulted in an integer also. Yet the number 3 was identified as a 

prime number. 

S: Oh, I see the difference. Dividing 4 by 2 yielded an integer greater than 1, which is 

another divisor of 4 besides 2 and 1. 

T: What about 25? How does one test if the number 25 has more than two different divisors? 

S: Well, first we divide 25 by 2; because the result is a non-integer greater than 1, the test 

continues. That is, it shows that 25 is not divisible by 2; finally, 25 turns out to be 

divisible by 5 with an integer quotient, 5, greater than 1. The test terminates identifying 

25 as a composite number. 

T: Very well. But should one test whether 4 divides 25 if 25 failed the test of divisibility by 

2? 

S: Oh, I understand. This is not necessary. We should use in the test prime numbers only! 

T: Great! So, using only four primes—2, 3, 5, and 7—how many integers one can correctly 

test for primality? 

S: All integers smaller than 121 because  121= 11⋅11; therefore, 121 is the least composite 

number that survived divisibility by 2, 3, 5, and 7. In other words, all multiples of 2, 3, 5, 

and 7 which are smaller than 121 can be eliminated without using 11 (or any prime 

number greater than 11). 

T: The test we have discussed can be implemented in the form of a chart. Similarly to the 

multiplication table one can create a division table (chart), which involves two integral 

variables—a tested integer n and prime number p that divides n. Let us create such chart. 

S: [After working on the chart]. Here it is (Figure 4). 
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Figure 4: A chart for identifying prime numbers. 

 

T: Why do we identify the number 2 as a prime? 

S: Because one gets an integer quotient in the cell with the coordinates (n, p) = (2, 2).  

T: Good. But how can one instruct a computer to conclude that  2 ÷ 2 is an integer and  3÷ 2 

is not? 

S: In the case  2 ÷ 2 the remainder is zero; in the case  3÷ 2 the remainder is not zero.  

T: Wonderful. So, one can carry out a logical test using either the greatest integer function, 

which, when applied to a number returns the largest integer smaller than the number.  

S: If the value of the greatest integer function of the ratio 

 

n

p
 is equal to 

 

n

p
, then the test 

terminates otherwise it continues. Alternatively, if the remainder from the division  n ÷ p  

is zero, then the test terminates otherwise it continues. 

T: Exactly! We can use a spreadsheet (Figure 5) to do this test using the function IF with the 

function INT embedded into it. Indeed, like in the chart, let us fill column A (beginning 

from cell A2) with consecutive positive integers n (numbers to be tested) and row 1 with 

consecutive prime numbers p (testing numbers); then, giving the number in the range 

B1:M1 name p, in cell B2 we define the formula =IF(INT(A2/p)=A2/p,0,A2). 

Furthermore, the spreadsheet can be set not to display zero values. To do that, one should 

2 3 5 7 11 13

2 1 PRIME

3 3/2 1 PRIME

4 2 COMPOSITE

5 5/2 5/3 1 PRIME

6 3 COMPOSITE

7 7/2 7/3 7/5 1 PRIME

8 4 COMPOSITE

9 9/2 3 COMPOSITE

10 5 COMPOSITE

11 11/2 11/3 11/5 11/7 1 PRIME
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enter the Excel Preferences

Values box, and click OK. 

S: Is it possible to preserve prime numbers along all columns?

T: I have been awaiting this question. In other words, you want to distinguish between two 

cases of integral quotient

when this quotient is not equal to one

S: This is correct. 

T: Well, what is the difference between tested and testing numbers when one gets into a 

prime and composite numbers, respective

S: In the case of a prime number this difference is zero, otherwise it is greater than zero.

T: There is the function sign

assumes, respectively, three va

preserve primes. Indeed, if we change the content of cell 

=IF(INT(A2/

 then in the case of a prime number in cell 

must be taken is to display content of cell 

Figure 5: A 

Excel Preferences menu, click at the View dialogue box, uncheck the 

box, and click OK.  

Is it possible to preserve prime numbers along all columns? 

I have been awaiting this question. In other words, you want to distinguish between two 

cases of integral quotient—one case when this quotient is equal to one and another case 

when this quotient is not equal to one, don’t you? 

Well, what is the difference between tested and testing numbers when one gets into a 

prime and composite numbers, respectively? 

In the case of a prime number this difference is zero, otherwise it is greater than zero.

sign(x), which, depending on whether x > 0, x

three values only: 1 , -1, or 0. The use of this function can help to 

preserve primes. Indeed, if we change the content of cell B2 to  

=IF(INT(A2/p)*sign(A2-p)=A2/p,0,A2), 

in the case of a prime number in cell A2, the condition is false and the action that 

must be taken is to display content of cell A2, i.e., this preserves a prime number. 

 

A spreadsheet-based Sieve of Eratosthenes. 

 

dialogue box, uncheck the Zero 

I have been awaiting this question. In other words, you want to distinguish between two 

case when this quotient is equal to one and another case 

Well, what is the difference between tested and testing numbers when one gets into a 

In the case of a prime number this difference is zero, otherwise it is greater than zero. 

x < 0, or x = 0, 

. The use of this function can help to 

, the condition is false and the action that 

, i.e., this preserves a prime number.  
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 In order to find the smallest composite number which would be identified as a prime 

number by using all the primes from 2 to 37, one has to square the smallest prime number greater 

than 37. In that way, all the numbers smaller than 1681 = 412 will be correctly tested for 

primality using   just the first twelve primes. 

 

5  Fermat primes and Euler’s factorization method 

 

One of the topics appropriate for a History of Mathematics course is a story about the so-called 

Fermat primes. Fermat—a French mathematician of the 17th century, one of the founders of 

modern number theory—conjectured that for all n = 0, 1, 2, ... the expression   2
2n

+1 yields 

prime numbers only. This conjecture was based on inductive reasoning, as the cases n = 0, 1, 2, 

3, and 4, indeed produce prime numbers 3, 5, 17, 257, and 65537, respectively. So Fermat 

believed that the number 232 + 1 also does not have divisors different from one and itself. 

However, a century later, Euler, using a factorization method that now bears his name, 

demonstrated that the case n = 5 produces a composite number. The method is based on the 

assertion that if an integer can be represented as a sum of two squares in two different ways, it is 

a composite number. The following dialogue introduces Euler’s factorization method, which 

then will be applied to factoring 232 + 1 by using a spreadsheet. 

 

T:  Let N be an odd integer (otherwise, with the exception of two, N is a composite number) 

with two different representations as a sum of two squares,    N
2
= a

2
+ b

2   and 

  N
2
= c

2
+ d

2 , where a and c are even numbers and, thus, b and d are odd numbers.  How 

can the four numbers a, b, c, and d be connected? 

S:         This is easy, [writes on the board] 

  a
2
+ b

2
= c

2
+ d

2        (4) 

T: Is it possible to represent relation (4) as equality between the products of two factors? 

S: A sum of two squares is not factorable. 

T:  What about a difference of two squares? 

S: If I had   a
2
− b

2 , it could be factored as   (a − b)(a + b) . 

T: Could the terms in relation (4) be rearranged to allow for factoring its both sides? 
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S: [Writes on the board]   a
2
− c

2
= d

2
− b

2  whence 

    (a − c)(a + c) = (d − b)(d + b)                  (5) 

T: Very good! Now, I will help you a little bit to proceed from here. It is possible that a – c 

and d – b have common factors. Let   k = GCF(a − c,d − b) . Then  a − c = kl  and 

 d − b = km . What can be said about l and m? Do they have common factors? 

S: If they do, then k is not the greatest common factor.  

T: Nice! How do we call numbers with no common factors different from one? 

S: Relatively prime numbers. 

T: Exactly. Thus, we can write 

      GCF(l,m) = 1      (6) 

 and it follows from (5) that   kl(a + c) = km(d + b)  or, after cancelling out k, 

    l(a + c) = k(d + b)        (7) 

 In turn, relation (7) implies that  a + c = nm and  d + b = nl ; therefore 

  

N =
1

4
(2a

2
+ 2b

2
+ 2c

2
+ 2d

2 ) =
1

4
[(a + c)2

+ (a − c)2
+ (b + d)2

+ (d − b)2]

=
1

4
(n

2
m

2
+ k

2
l

2
+ n

2
l

2
+ k

2
m

2 ) =
1

4
(k

2
+ n

2 )(l 2
+ m

2 ).

 

S: How can this be explained numerically? 

T: Well, consider the number 65. We have  65 = 82
+12

= 42
+ 72 . So, 

 

65 =
1

4
(2 ⋅82

+ 2 ⋅12
+ 2 ⋅42

+ 2 ⋅72 ) =
1

4
[(8 + 4)2

+ (8− 4)2
+ (1+ 7)2

+ (1− 7)2 ]

=
1

4
(122

+ 42
+ 82

+ 62 ) =
1

4
(42

⋅32
+ 22

⋅22
+ 42

⋅22
+ 22

⋅32 )

=
1

4
(42

+ 22 )(32
+ 22 ) =

1

4
⋅4 ⋅ (22

+12 )(32
+ 22 ) = 5 ⋅13.

 

 Note that both factors of 65 are prime numbers and, along with their product, are 

congruent to one with modulus four; that is, when divided by four give the remainder one. [This 

observation is of a special importance for a discussion that follows]. 

 In order to apply this method to  2
32
+1, a spreadsheet can be used. Figures 6-9 show how 

using Euler’s factorization method the following remarkable factorization can be found:  

 2
32
+1= 4294967297 = 641⋅6700417 . 
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 It should be noted that one can find the two factors without much difficulty by using 

on-line computational engine WolframAlpha

of using a spreadsheet in this context is not 

classic gem from the history of mathematics

use WolframAlpha to find out that both numbers, 641 and 6700417, are prime numbers.

 

Figure 6: Locating the first sum of squares, 

 

 

Figure 7

 

Figure 8: Locating the second sum of squares, 

 

It should be noted that one can find the two factors without much difficulty by using 

WolframAlpha (www.wolframalpha.com). However, the purpose 

of using a spreadsheet in this context is not the factoring per se, but rather the demonstration of a 

from the history of mathematics—Euler’s factorization method. Likewise, one can 

find out that both numbers, 641 and 6700417, are prime numbers.

Locating the first sum of squares,   a
2
+ b

2 . 

Figure 7: Entering a and b into the spreadsheet. 

Locating the second sum of squares,   c
2
+ d

2 . 

It should be noted that one can find the two factors without much difficulty by using an 

). However, the purpose 

but rather the demonstration of a 

Euler’s factorization method. Likewise, one can 

find out that both numbers, 641 and 6700417, are prime numbers. 
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Figure 9: Completing prime factorization of 

 

6  Connecting number theory to geometry

 

Using the spreadsheet in Figure 6 one can find two unique representations of 

factors,  641= 252
+ 42and  6700417

  (a
2
+ b

2 )(c2
+ d

2 ) = (ac + bd )2

this implies that their product would have two such representations

already discovered. However, the very factors, while could 

spreadsheet, have resulted from the use of a spreadsheet in demonstrating Euler’s factorization 

method.  

 Note, that both the fifth Fermat “prime” and its factors are of the form 4

in mind, one can construct a spreads

2, 3, ... , to the number of their representations as a sum of two squares. Such a spreadsheet is 

shown in Figure 10. The number 65

smallest number of the form 4n 

spreadsheet in Figure 10 shows that

squares, 82 + 232 (cells A10 and B10), and that such a representation is unique (cell E1). The 

uniqueness of the representation of a number of the form 

guarantee that the number is a prime number. For example, 

can add up to 45, yet 45 is a composite number. By the same token, the form 

guarantee a representation of the corresponding number

Completing prime factorization of  2
32
+1 after locating c and 

Connecting number theory to geometry 

Figure 6 one can find two unique representations of 

6700417 = 25562
+ 4092 .  Due to the identities 

2
+ (ad − bc)2

 and   (a
2
+ b

2 )(c2
+ d

2 ) = (ac − bd )

their product would have two such representations, something that we have 

already discovered. However, the very factors, while could have been found without using a 

spreadsheet, have resulted from the use of a spreadsheet in demonstrating Euler’s factorization 

the fifth Fermat “prime” and its factors are of the form 4

ne can construct a spreadsheet to relate consecutive numbers of the form 4

to the number of their representations as a sum of two squares. Such a spreadsheet is 

he number 65, used to illustrate Euler’s factorization method,

 + 1 that has two representations as a sum of two squares. 

shows that, for example, the number 593 (cell A1) is the sum of two 

(cells A10 and B10), and that such a representation is unique (cell E1). The 

uniqueness of the representation of a number of the form 4n + 1 as a sum of two squares does 

guarantee that the number is a prime number. For example,  45 = 62
+ 32 , no other two squares 

can add up to 45, yet 45 is a composite number. By the same token, the form 

of the corresponding number as a sum of two squares. C

 

and d. 

Figure 6 one can find two unique representations of the two prime 

)2
+ (ad + bc)2 , 

, something that we have 

found without using a 

spreadsheet, have resulted from the use of a spreadsheet in demonstrating Euler’s factorization 

the fifth Fermat “prime” and its factors are of the form 4n + 1. With this 

of the form 4n + 1, n = 1, 

to the number of their representations as a sum of two squares. Such a spreadsheet is 

, used to illustrate Euler’s factorization method, is the 

+ 1 that has two representations as a sum of two squares. The 

is the sum of two 

(cells A10 and B10), and that such a representation is unique (cell E1). The 

as a sum of two squares does 

no other two squares 

can add up to 45, yet 45 is a composite number. By the same token, the form 4n + 1 does 

sum of two squares. Consider the 
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range O3:P18—a part of the table relating an integer 

representations as a sum of two squares.

progression) cannot be represented as the sum of two squares. 

is: Would this property continue with the growth of the terms of this arithmetic series? 

Figure 10: Counting the number of representations as a sum of two squares.

 

 One can also find out that the number 1105, which is the product 

number of the form 4n + 1 that is expressible as a sum of two squares in four ways. Note, that 

just like 5 and 13, the number 17 is a prime number of the form 4

multiplying prime numbers of the form 4

number of representations of which as a sum of two squares doubles with each new factor. 

computational experiments can 

proposition inductively discovered by Fermat and 

  

 THEOREM: A prime number of the form 4n+1 is expressible as 

only one way, the product of two different primes of the form 4n+1 is expressible as 

squares in two ways, the product of three different primes of the form 4n+1 is expressible as 

sum of two squares in four ways, the product of four different 

expressible as a sum of two squares in eight ways.

the form 4n + 1 is expressible as a sum of two squares in 

 

a part of the table relating an integer of the form 4n + 1 to its number of 

representations as a sum of two squares. The numbers 9, 21, 33, 49, 57 (being in an arithmetic 

ted as the sum of two squares. An interesting question to explore 

ould this property continue with the growth of the terms of this arithmetic series? 

 

Counting the number of representations as a sum of two squares.

One can also find out that the number 1105, which is the product  5 ⋅13 ⋅17

+ 1 that is expressible as a sum of two squares in four ways. Note, that 

just like 5 and 13, the number 17 is a prime number of the form 4n + 1. One can observe that 

multiplying prime numbers of the form 4n + 1 yields a composite number (also of that form) the 

number of representations of which as a sum of two squares doubles with each new factor. 

computational experiments can facilitate the introduction of the following 

red by Fermat and only 100 years later formally proved by Euler

A prime number of the form 4n+1 is expressible as a sum of two 

only one way, the product of two different primes of the form 4n+1 is expressible as 

squares in two ways, the product of three different primes of the form 4n+1 is expressible as 

sum of two squares in four ways, the product of four different primes of the form 

sum of two squares in eight ways. In general, the product of k different primes of 

the form 4n + 1 is expressible as a sum of two squares in   2
k −1ways. 

to its number of 

(being in an arithmetic 

An interesting question to explore 

ould this property continue with the growth of the terms of this arithmetic series?  

Counting the number of representations as a sum of two squares. 

17, is the smallest 

+ 1 that is expressible as a sum of two squares in four ways. Note, that 

+ 1. One can observe that 

a composite number (also of that form) the 

number of representations of which as a sum of two squares doubles with each new factor. These 

the following remarkable 

proved by Euler. 

sum of two squares in 

only one way, the product of two different primes of the form 4n+1 is expressible as a sum of two 

squares in two ways, the product of three different primes of the form 4n+1 is expressible as a 

primes of the form 4n+1 is 

ral, the product of k different primes of 
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 Note that the fact that every prime number of the form 4n + 1 can be represented as the 

sum of two squares in one and only one way, Fermat called the fundamental theorem of right 

triangles. The reason Fermat called his discovery the fundamental theorem of right triangles is 

that, as was known from the time of Euclid, the length side of the hypotenuse of a right triangle 

is a sum of two squared integers. Using the formulas   c = n
2
+ m

2 , b = 2nm, a = m
2
− n

2 , known 

already to Euclid—the most prominent Greek mathematician of the 3rd century B.C., for the 

elements of a Pythagorean triple (a, b, c), with c being the largest one, each such representation 

uniquely determines the side lengths of the legs. For example, when the side length of the 

hypotenuse of a right triangle is equal to 593, we have  593 = 232
+ 82  and, thereby, 

 232
− 82

= 465 , and 2 ⋅23 ⋅8 = 368 . From here, the triple of side lengths (465, 368, 593) of a 

Pythagorean triangle results.  

 At the same time, the number 1105 has four different representations as a sum of two 

squares and, therefore, there exist four different Pythagorean triangles with the hypotenuse equal 

to 1105. The spreadsheet pictured in Figure 11 demonstrates how those four triangles can be 

found computationally. In that way, several classic ideas of number theory and geometry that 

cover the time span of more than two thousand years have come together in a modern 

spreadsheet environment.  
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Figure 11: There exist four Pythagorean triangles with 

 

7    Conclusion 

 

The paper described the use of a spreadsheet in teaching topics in elementary number theory 

through a teacher-student dialogue. Both the power and deficiency of inductive reasoning has 

been demonstrated. The focus was on the experimental approach to mathematical idea

possible by the use of a spreadsheet. In turn, an experiment motivates introduction

understanding of formal theory. Such an approach appears to be especially instructive in the 

context of preparation of mathematics teachers.

 

 

 

 

There exist four Pythagorean triangles with hypotenuse 1105.

The paper described the use of a spreadsheet in teaching topics in elementary number theory 

student dialogue. Both the power and deficiency of inductive reasoning has 

been demonstrated. The focus was on the experimental approach to mathematical idea

possible by the use of a spreadsheet. In turn, an experiment motivates introduction

of formal theory. Such an approach appears to be especially instructive in the 

context of preparation of mathematics teachers. 

1105. 

The paper described the use of a spreadsheet in teaching topics in elementary number theory 

student dialogue. Both the power and deficiency of inductive reasoning has 

been demonstrated. The focus was on the experimental approach to mathematical ideas made 

possible by the use of a spreadsheet. In turn, an experiment motivates introduction and facilitates 

of formal theory. Such an approach appears to be especially instructive in the 
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Appendix 

 

All computational environments presented in this paper are based on Excel 2008 (Mac)/2007 

(Windows) versions. Note that syntactic versatility of the software enables the construction of 

both visually and computationally identical environments using syntactically different formulas. 

Below the notation (A1)→ will be used to present a formula defined in cell A1.  

 

Figure 1. 

(A2)→ = 1; (A3)→ =A2+1—replicated down column A; (B2)→ = 1; (B3)→ =B2+A3—

replicated down column B; (C2)→ =A2^2; (C3)→ =A3^2+C2—replicated down column C; 

(D2)→ =B2/A2—replicated down column D; (E2)→ = C2/B2—replicated down column E. 

 

Figure 6.  

(A1)→  = 2^32+1 

Cell A2 is slider-controlled and set to display numbers congruent to one modulo 1000;  

(A3)→  =A2+1—replicated to cell A1001; (B2)→ = A2^2—replicated to cell B1001; 

(C2)→  =IF(A$1-B2>0,A$1-B2," ")—replicated to cell C1001; 

(D2)→ =IF(OR(C4=" ",C4<B4)," ",IF(SQRT(C4)=INT(SQRT(C4)),SQRT(C4)," "))—replicated 

to cell D1001;  

(E2)→ =IF(COUNT(D2)>0,1," ");  

(F2)→ =COUNTIF(D2:D30000,">0"); 

(G2)→ =IF(SUM(E2:E1001)=0," ",LOOKUP(1,E2:E1001,D2:D1001)); 

(H2) → =IF(SUM(E2:E1001)=0," ",LOOKUP(1,E2:E1001,A2:A1001)); 

(I2)→ =IF(G2=" "," ",IF(G2^2+H2^2=A1,"YES"," ")). 
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Figure 7. 

(A1005)→ =IF(COUNT(D2)>0,G2,A1005);  

(A1007)→ =IF(COUNT(D2)>0,SQRT(A1-A1005^2),A1007); 

(A1009)→ =A1; (B1005)→ =IF(D2=G2," ",IF(COUNT(F2)>0,G2,C1005)); 

(B1007)→ =IF(B1005=" "," ",SQRT(A1-B1005^2)); 

(B1009)→ =IF(B1005=" ", " ", (F1004/2)^2+(F1007/2)^2); 

(C1005)→ =IF(B1005=" "," ",A1005-B1005); (C1007)→ =IF(B1005=" "," ",B1007-A1007); 

(C1009)→ =IF(B1005=" "," ", F1006^2+F1005^2); 

(D1005)→ =IF(B1005=" "," ",A1005+B1005); (D1007)→ =IF(B1005=" "," ", A1007+B1007); 

(F1004)→ =IF(B1005=" "," ",GCD(C1005,C1007));  

(F1005)→ =IF(B1005=" "," ", C1005/F1004); (F1006)→ =IF(B1005=" "," ", C1007/F1004);  

F(1007)→ =IF(B1005=" "," ",D1007/F1005). 

 

Figures 10 and 11. 

 

(A1)→ =4*C1+1; cell A1 is given name n; (A3)→ =1; (A4)→ =A3+1—replicated down column 

A; cell C1 is slider-controlled; 

(B3)→ =IF(AND(n-a^2>0),IF(AND(a<=SQRT(n-a^2),SQRT(n-a^2) 

=INT(SQRT(n-a^2))),SQRT(n-a^2)," ")," ")—replicated down column B; 

(C3)→ =IF(B3=" "," ",B3^2-A3^2)—replicated down column C; 

(D3)→ =IF(B3=" "," ",(n^2-C3^2)^0.5); 

(E1)→ =COUNT(B3:B1000); (E3)→ =IF(B3=" "," ",IF(n^2=C3^2+D3^2,"PT"," ")); 

(F3)→ =4*A3+1—replicated down column F;  

(E3)→ =IF(n<5," ",IF(F3=n,E$1,G3))—replicated down column E. 
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