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years ago. Since then, the approach has also received considerable attention in various life science studies, as a
remedial measure for covariance matrix estimation with insufficient observations of the underlying variables.
The approach is about taking a weighted average of the sample covariance matrix and a target matrix of the
same dimensions. The objective is to reach a weighted average that is closest to the true covariance matrix
according to an intuitively appealing criterion. This paper presents, from a pedagogic perspective, an
introduction to shrinkage estimation and uses Microsoft ExcelTM for its illustration. Further, some related
pedagogic issues are discussed and, to enhance the learning experience of students on the topic, some Excel-
based exercises are suggested.
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Abstract

Shrinkage estimation of the covariance matrix of asset returns was introduced to the �nance pro-
fession several years ago. Since then, the approach has also received considerable attention in
various life science studies, as a remedial measure for covariance matrix estimation with insu¢ cient
observations of the underlying variables. The approach is about taking a weighted average of the
sample covariance matrix and a target matrix of the same dimensions. The objective is to reach a
weighted average that is closest to the true covariance matrix according to an intuitively appealing
criterion. This paper presents, from a pedagogic perspective, an introduction to shrinkage esti-
mation and uses Microsoft ExcelTM for its illustration. Further, some related pedagogic issues
are discussed and, to enhance the learning experience of students on the topic, some Excel-based
exercises are suggested.

Keywords: Shrinkage estimation, sample covariance matrix.
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An Introduction to Shrinkage Estimation of the Covariance Matrix:
A Pedagogic Illustration

1 Introduction

For a given set of random variables, the corresponding covariance matrix is a symmetric matrix with

its diagonal and o¤-diagonal elements being the individual variances and all pairwise covariances,

respectively. When each variable involved is normalized to have a unit variance, such a matrix

reduces to a correlation matrix. The usefulness of these matrices for multivariate investigations is

well known across various academic disciplines. In �nance, for example, the covariance matrix of

asset returns is part of the input parameters for portfolio analysis to assist investment decisions.

Likewise, in life science research, when statistical techniques are applied to analyze multivariate

data from experiments, statistical inference can be made with information deduced from some

corresponding covariance and correlation matrices.

As the true values of the individual matrix elements are unknown, they have to be estimated

from samples of empirical or experimental data. To facilitate portfolio analysis in practice, for

example, historical asset returns are commonly used to estimate the covariance matrix. Under

the stationarity assumption of the probability distributions of asset returns, sample estimates of

the covariance matrix are straightforward. The computations involved can easily be performed by

using some of the built-in matrix functions in Microsoft ExcelTM :

As explained in Kwan (2010), for a covariance matrix of asset returns to be acceptable for

portfolio analysis, it must be positive de�nite. A positive de�nite matrix is always invertible, but

not vice versa. In the context of portfolio investment, with variance being a measure of risk, an

invertible covariance matrix is required for portfolio selection models to reach portfolio allocation

results. A positive de�nite covariance matrix always provides strictly positive variances of portfolio

returns, regardless how investment funds are allocated among the assets considered. This feature

ensures not only the presence of portfolio risk, but also the uniqueness of e¢ cient portfolio allocation

results as intended.

In case that the covariance matrix is estimated with insu¢ cient observations, it will not be

positive de�nite. Thus, for example, to estimate a 100 � 100 covariance matrix of monthly asset
returns requires more than 100 monthly return observations, just to ensure that the number of

observed returns exceed the number of the unknown matrix elements. To ensure further that

estimation errors be small enough for the sample covariance matrix to be acceptable as part of the
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input parameters for portfolio analysis, additional observations are required. However, the validity

of the stationarity assumption of asset return distributions will become a concern if an overly long

sample period is used for the estimation.

The reliance on higher frequency observations over the same sample period, such as the use of

weekly or daily asset returns, though e¤ective in easing one�s concerns about non-stationary asset

return distributions, does have its drawbacks. Higher frequency observations tend to be noisier,

thus a¤ecting the quality of the estimated covariance matrix. For covariance matrix estimation

that accounts for time-varying volatility of asset returns, some multivariate time series models

are available.1 However, such models are very complicated. Even the simplest versions of such

models are well beyond the scope of any investment courses for business students. A challenge

for instructors of investment courses that cover empirical issues in covariance matrix estimation,

therefore, is whether it is feasible to go beyond sample estimates without using statistical methods

that are burdensome for students.

Before seriously contemplating the above challenge, notice that, in life sciences and related �elds

where multivariate analysis is performed on experimental data, concerns about the adequacy of the

sample covariance and correlation matrices are from a very di¤erent perspective. As indicated in

Dobbin and Simon (2007) and Yao et al. (2008), biological studies often employ only small numbers

of observations, because either there are few available experimental data to use or data collection is

under budgetary or time constraints. Covariance matrices estimated with insu¢ cient observations

are known to be problematic. As explained by Schäfer and Strimmer (2005), in a study of gene

association networks using graphical Gaussian models (GGM�s), the partial correlation of any two

genes, which measures their degree of association after removing the e¤ect of other genes on them,

can be deduced from the inverse of a covariance matrix. An implicit requirement is that the

estimated covariance matrix be invertible.

In a recent cancer research study by Beerenwinkel et al. (2007), for example, pairwise partial

correlations of 78 cancer genes (for a total of 78� 77� 2 = 3; 003 partial correlations) are based on
only 35 available tumor samples. Obviously, the corresponding sample covariance matrix is not

positive de�nite and thus is not invertible. The relatively low number of experimental observations

has made it necessary for these authors to rely on some remedial measures. The remedial measures

as reported by Schäfer and Strimmer (2005), Beerenwinkel et al. (2007), and Yao et al. (2008),

as well as some other researchers facing similar challenges, are based on an innovative approach to

1See, for example, the survey articles by Bauwens, Laurent, and Rombouts (2006) and Silvennoinen and Teräsvirta
(2009) for descriptions of various multivariate time series models for covariance matrix estimation.
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estimate the covariance matrix, called shrinkage estimation, as introduced to the �nance profession

by Ledoit and Wolf (2003, 2004a, 2004b).

In investment settings, a weighted average of the sample covariance matrix of asset returns

and a structured matrix of the same dimensions is viewed as shrinkage of the sample covariance

matrix towards a target matrix. The shrinkage intensity is the weight that the target receives. In

the Ledoit-Wolf studies, the alternative targets considered include an identity matrix, a covariance

matrix based on the single index model (where the return of each asset is characterized as being

linearly dependent on the return of a market index), and a covariance matrix based on the constant

correlation model (where the correlation of returns between any two di¤erent assets is characterized

as being the same). In each case, the corresponding optimal shrinkage intensity has been derived

by minimizing an intuitively appealing quadratic loss function.2

For analytical convenience, the Ledoit-Wolf studies have relied on some asymptotic properties

of the asset return data in model formulation. Although stationarity of asset return distributions is

implicitly assumed, the corresponding analytical results are still based on observations of relatively

long time series. Thus, the Ledoit-Wolf shrinkage approach in its original form is not intended to

be a remedial measure for insu¢ cient observations. To accommodate each life science case where

the number of observations is far fewer than the number of variables involved, Schäfer and Strimmer

(2005) have extended the Ledoit-Wolf approach to �nite sample settings. The Schäfer-Strimmer

study has listed six potential shrinkage targets for covariance and correlation matrices. They

include an identity matrix, a covariance matrix based on the constant correlation model, and a

diagonal covariance matrix with the individual sample variances being its diagonal elements, as

well as three other cases related to these matrices.

The emphasis of the Schäfer-Strimmer shrinkage approach is a special case where the target is

a diagonal matrix. Shrinkage estimation of the covariance matrix for this case is relatively simple,

from both analytical and computational perspectives. When all variables under consideration are

normalized to have unit variances, the same shrinkage approach becomes that for the correlation

matrix instead. Analytical complications in the latter case are caused by the fact that normalization

of individual variables cannot be based on the true but unknown variances and thus has to be

based instead on the sample variances, which inevitably have estimation errors. In order to retain

the analytical features pertaining to shrinkage estimation of the covariance matrix, the Schäfer-

2The word optimal used throughout this paper is in an ex ante context. Whether an analytically determined
shrinkage intensity, based on in-sample data, is ex post superior is an empirical issue that can only be assessed with
out-of-sample data.
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Strimmer study has assumed away any estimation errors in the variances when the same approach

is applied directly to a set of normalized data.

Opgen-Rhein and Strimmer (2006a, 2006b, 2007a, 2007b) have extended the Schäfer-Strimmer

approach by introducing a new statistic for gene ranking and by estimating gene association net-

works in dynamic settings to account for the time path of the data. In view of the analytical sim-

plicity of the Schäfer-Strimmer version of the Ledoit-Wolf shrinkage approach, where the shrinkage

target is a diagonal matrix, it has been directly applied to various other settings in life sciences

and related �elds. Besides the studies by Beerenwinkel et al. (2007) and Yao et al. (2008) as

referenced earlier, the following are further examples:

With shrinkage applied to the covariance matrix for improving the GGM�s, Werhli, Grzegorczyk,

and Husmeier (2006) have reported a favorable comparison of the shrinkage GGM approach over

a competing approach, called relevance networks, in terms of the accuracy in reconstructing gene

regulatory networks. In a study of information-based functional brain mapping, Kriegeskorte,

Goebel, and Bandettini (2006) have reported that shrinkage estimation with a diagonal target

improves the stability of the sample covariance matrix. Dabney and Storey (2007), also with the

covariance matrix estimated with shrinkage, have proposed an improved centroid classi�er for high-

dimensional data and have demonstrated that the new classi�er enhances the prediction accuracy

for both simulated and actual microarray data. More recently, in a study of gene association

networks, Tenenhaus et al. (2010) have used the shrinkage GGM approach as one of the major

benchmarks to assess partial correlation networks that are based on partial least squares regression.

The research in�uence of the Ledoit-Wolf shrinkage approach, however, is not con�ned to life

science �elds. The approach as reported in Ledoit�s working papers well before its journal publica-

tions already attracted attention of other �nance researchers. It was among the approaches for risk

reduction in large investment portfolios adopted by Jaggannathan and Ma (2003). More recently,

Disatnik and Benninga (2007) have compared empirically various shrinkage estimators (including

portfolios of estimators) of high-dimensional covariance matrices based on monthly stock return

data. In an analytical setting, where shrinkage estimation of covariance and correlation matrices

are with targets based on the average correlation of asset returns, Kwan (2008) has accounted for

estimation errors in all variances when shrinking the sample correlation matrix, thus implicitly

allowing the analytical expression of the Schäfer-Strimmer shrinkage intensity to be re�ned.
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2 A Pedagogic Approach and the Role of Excel in the Illustration
of Shrinkage Estimation

In view of the attention that shrinkage estimation has received in the various studies, of particular

interest to us educators is whether the topic is now ready for its introduction to the classroom. With

the help of Excel tools, this paper shows that it is indeed ready. In order to avoid distractions by

analytical complications, this paper has its focus on shrinkage estimation of the covariance matrix,

with the target being a diagonal matrix. Speci�cally, the diagonal elements of the target matrix

are the corresponding sample variances of the underlying variables. It is implicit, therefore, that

the shrinkage approach here pertains only to the covariances. Readers who are interested in the

analytical details of more sophisticated versions of shrinkage estimation can �nd them directly in

Ledoit and Wolf (2003, 2004a, 2004b) and, for extensions to �nite sample settings, in Schäfer and

Strimmer (2005) and Kwan (2008).

This paper utilizes Excel tools in various ways to help students understand shrinkage estimation

better. Before formally introducing optimal shrinkage estimation, we establish in Section 3 that a

weighted average of a sample covariance matrix and a structured target, such as a diagonal matrix,

is always positive de�nite. To avoid digressions, analytical support for some materials in Section

3 is provided in Appendix A. An Excel example, with a scroll bar for manually making weight

changes, illustrates that, even for a covariance matrix estimated with insu¢ cient observations, a

non-zero weight for the target matrix will always result in a positive de�nite weighted average.

The positive de�niteness of the resulting matrix is con�rmed by the consistently positive sign of

its leading principal minors (that is, the determinants of its leading principal submatrices). The

Excel function MDETERM, which is for computing the determinants of matrices, is useful for the

illustration. As any e¤ects on the leading principal minors due to weight changes are immediately

displayed in the worksheet, the idea of shrinkage estimation will become less abstract and more

intuitive to students.

Optimal shrinkage is considered next in Section 4, with analytical support provided in Appendix

B. As mentioned brie�y earlier, the idea is based on minimization of a quadratic loss function.

Here, we take a weighted average of the sample covariance matrix, which represents a noisy but

unbiased estimate of the true covariance matrix, and a target matrix, which is biased. Loss is

de�ned as the expected value of the sum of all squared deviations of the resulting matrix elements

from the corresponding true values. We search for a weighted average that corresponds to the

lowest loss. As there is only one unknown parameter in the quadratic loss function, which is the
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shrinkage intensity (i.e., the weight that the target matrix receives), its optimal value can easily be

found.

We then continue with the same Excel example to illustrate the computational task in shrinkage

estimation. In order to accommodate students with di¤erent prior experience with Excel, we use

alternative ways to compute the optimal shrinkage intensity. The most intuitive approach, which is

cumbersome for higher-dimensional cases, is to perform a representative computation for a cell in an

Excel worksheet and to use copy-and-paste to duplicate the cell formula elsewhere repeatedly, with

minor revisions when required. Students who have at least some rudimentary knowledge of Visual

Basic for Applications (VBA) can recognize that the use of a simple user-de�ned function is more

e¢ cient for performing the same computations. As shown in Appendix D, the VBA program here

uses three nested �for next�loops for the intended task. For convenience to users, the function has

only two arguments; they are for cell references of the required data for the computations involved.

Once de�ned, the function works just like any built-in Excel functions. Further, to enhance the

user-friendliness of the function, a simple Excel Sub procedure that calls the function directly is

also included. The procedure uses input boxes for entering cell references of the required data for

the computations and the intended location to show the �nal result.

Section 5 addresses some pedagogic issues and suggests some exercises for students. To en-

hance the learning experience of students, we consider it important for instructors to assign some

discipline-based Excel exercises on shrinkage estimation. Such exercises not only will provide

students with some hands-on experience with the speci�c technique, but also will enable them to

explore various estimation issues pertaining to the covariance matrix. In addition, some simulation-

based exercises are also suggested, with analytical support provided in Appendix C.

As this paper is not meant to provide quick recipes for students to perform shrinkage estimation,

it pays special attention to the underlying concepts. It also provides an alternative formulation

of the same approach that shrinks the sample correlation matrix towards an identity matrix. To

allow students to attempt shrinkage estimation of the correlation matrix, a simpli�ed version that

has been used in the various life science studies is suggested. The practical relevance of such an

approach, as well as the attendant analytical complications of a more sophisticated version, will

also be addressed in Section 5. Finally, Section 6 provides some concluding remarks.

Before proceeding to Section 3, notice that, although this paper is primarily a pedagogic paper,

with Excel tools utilized to illustrate shrinkage estimation that has been established elsewhere, it

still has a research contribution. As it will become clear in Section 4, the contribution pertains to
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the implementation of the shrinkage approach. Speci�cally, by drawing on a well-known statistical

relationship between the variance of a random variable and the expected value of the square of the

same variable, this paper is able to remove the upward bias in the estimated shrinkage intensity,

pertaining to �nite samples, which still exists in the literature of shrinkage estimation.

3 The Sample Covariance Matrix and its Shrinkage Towards a
Diagonal Target

Consider a set of n random variables, labeled as eR1; eR2; : : : ; eRn: For each variable eRi; where i =
1; 2; : : : ; n; we have T observations, labeled as Ri1; Ri2; : : : ; RiT : Each observation t actually consists

of the set of observations of R1t; R2t; : : : ; Rnt; for t = 1; 2; : : : ; T: Thus, the set of observations for

these random variables can be captured by an n� T matrix with each element (i; t) being Rit; for
i = 1; 2; : : : ; n and t = 1; 2; : : : ; T: The sample variance of variable i and the sample covariance of

variables i and j are

s2i =
1

T � 1
XT

t=1

�
Rit �Ri

�2
(1)

and

sij =
1

T � 1
XT

t=1

�
Rit �Ri

� �
Rjt �Rj

�
; (2)

respectively, where Ri = 1
T

PT
t=1Rit and Rj =

1
T

PT
t=1Rjt are the corresponding sample means.

3

Notice that the sample covariance sii is the same as the sample variance s2i : The n � n matrix,
where each element (i; j) being sij ; for i; j = 1; 2; : : : ; n; is the sample covariance matrix, labeled

here as bV: Notice also that bV is symmetric, with sij = sji; for i; j = 1; 2; : : : ; n:

3.1 Covariance Matrix Estimation with Insu¢ cient Observations

For the sample covariance matrix bV to be positive semide�nite, we must have x0 bV x � 0; for any
n-element column vector x; where the prime indicates matrix transposition. For bV to be also

positive de�nite, x0 bV x must be strictly positive for any x with at least one non-zero element. We
show in Appendix A that bV is always positive semide�nite. For bV to be positive de�nite, some

conditions must be satis�ed. As shown pedagogically in Kwan (2010), to be positive de�nite, the

sample covariance matrix bV must have a positive determinant. We also show in Appendix A that,

if bV is estimated with insu¢ cient observations (that is, with T � n); its determinant is always

zero. If so, it is not positive de�nite.
3Here and in what follows, we have assumed that students are already familiar with summation signs and basic

matrix operations. For students with inadequate algebraic skills, the materials in this section are best introduced
after they have acquired some hands-on experience with Excel functions pertaining to matrix operations.
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Notice that the sample covariance matrix bV is not always invertible even if it is estimated with

su¢ cient observations. To ensure its invertibility, the following conditions must hold: First, noeRi can be a constant, as this situation will result in both row i and column i of bV being zeros.

Second, no eRi can be replicated by a linear combination of any of the remaining n � 1 variables.
This replication will result in row (column) i of bV being a linear combination of some other rows

(columns), thus causing its determinant to be zero.4

3.2 A Weighted Average of the Sample Covariance Matrix and a Diagonal
Matrix

Suppose that none of eR; for i = 1; 2; : : : ; n; are constants. This ensures that sii be positive, for

i = 1; 2; : : : ; n: Now, let bD be an n � n diagonal matrix with each element (i; i) being sii: For
any n-element column vector x with at least one non-zero element, the matrix product x0 bDx is

always strictly positive. This is because, with xi being element i of vector x; we can write x0 bDx

explicitly as
Pn
i=1 x

2
i sii; which is strictly positive, as long as at least one of x1; x2; : : : ; xn is di¤erent

from zero.

The idea of shrinkage estimation of the covariance matrix is to take a weighted average of bV
and bD: With � being the weight assigned to bD; we can write the weighted average as

bC = (1� �) bV + �bD: (3)

We have already established that x0 bV x � 0 and x0 bDx > 0; for any n-element column vector x

with at least one non-zero element. Therefore, for 0 < � < 1; the weighted average bC is positive

de�nite, regardless of whether bV is estimated with insu¢ cient observations, because

x0 bC x = (1� �)x0 bV x+ �x0 bDx > 0: (4)

Notice that the case of � = 0 is where no shrinkage is applied to the sample covariance matrix.

This case retains the original bV as an estimate for the covariance matrix, together with all analytical

problems that bV may carry with it. In contrast, the case of � = 1; which indicates instead complete

shrinkage of all pairwise covariances, simply ignores the existence of any covariances of the random

4 In the context of portfolio investment, for example, a constant eRi in the �rst situation denotes the presence of a
risk-free asset. With the sample variance and covariances of returns pertaining to asset i indicated by sij = 0; for
j = 1; 2; : : : ; n; the determinant of bV is inevitably zero. The second situation, with eRi being equivalent to a linear
combination of the random returns of some other assets under consideration, is where asset i is a portfolio of such
assets. This situation also includes the special case where eRi = a + b eRj ; with a and b(6= 0) being parameters. In
such a case, as the random return of asset i is perfectly correlated with the random return of asset j; another asset
under portfolio consideration, the sample covariance matrix containing both assets i and j will not have a full rank
and thus is not invertible.
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variables considered. Cases where � < 0 or � > 1 are meaningless, from the perspective of shrinkage

estimation. Therefore, the shrinkage intensity that � represents is intended to be for 0 < � < 1: It

will be shown in Section 4 that, under the formulation of quadratic loss minimization, the optimal

shrinkage intensity will always correspond to 0 < � < 1:

3.3 An Excel Example

To illustrate covariance matrix estimation, let us consider a simple Excel example where there are

seven random variables (n = 7) and six observations (T = 6): The example is shown in Figure

1. Although the number of observations is obviously much too low for a meaningful estimation,

our purpose here is to illustrate �rst how insu¢ cient observations, with T < n; a¤ect the positive

de�niteness of the sample covariance matrix. We then illustrate in the same Excel example that a

weighted average of the sample covariance matrix and a diagonal matrix (with its diagonal elements

containing the corresponding sample variances) is always positive de�nite.

The 6�7 blocks of cells, B3:H8, show the set of observations, with each column there containing
the observations for each variable. With the individual sample means shown in B10:H10, a set

of mean-removed observations is then generated, as shown in B14:H19. Speci�cally, the formula

for cell B10, which is =AVERAGE(B3:B8), is pasted to cells B10:H10; likewise, the formula for

cell B14, which is =B3-B$10, is pasted to cells B14:H19. For the remainder of the worksheet,

copy-and-paste operations are also used to generate analogous cell formulas. The individual cell

formulas can be found in the supplementary Excel �le (shrink.xls).

The 7� 7 sample covariance matrix, as shown in cells B22:H28, is generated for computational
convenience according to equation (A3) in Appendix A. To do so, we combine Excel functions

for matrix transposition (TRANSPOSE) and multiplication (MMULT), as well as for counting

numbers (COUNT), which is {=MMULT(TRANSPOSE(B14:H19),B14:H19)/(COUNT(B14:B19)-

1)}. Notice that, to perform MMULT, as well as other matrix operations, the destination cells

must be selected in advance. To enter the function, the �Shift+Ctrl+Enter� keys are pressed

simultaneously. As expected, the sample covariance matrix thus generated is symmetric.

Next, we verify whether the sample covariance matrix is positive de�nite by checking the signs

of all its leading principal minors. By de�nition, the i-th leading principal minor of an n � n
matrix is the determinant of the submatrix containing its �rst i rows and its �rst i columns, for

i = 1; 2; : : : ; n: Thus, there are seven leading principal minors in a 7� 7 sample covariance matrix.
As illustrated in Kwan (2010), all leading principal minors of a positive de�nite matrix are positive,

and a positive de�nite matrix has all positive leading principal minors.
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1
A B C D E F G H I J

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
2828
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

7 6 2 4 0 8 6 8 2

Obs\Var 1 2 3 4 5 6 7
1 10 12 9 2 17 8 12
2 9 11 2 5 7 2 2
3 16 5 8 5 18 8 9
4 6 3 6 13 1 4 2
5 1 4 9 5 8 16 1
6 12 1 2 22 11 6 10

Mean 6 1 3 2 8 2 5

Mean Removed
Obs\Var 1 2 3 4 5 6 7

1 4 11 6 4 9 6 7
2 15 12 1 7 15 0 7
3 10 4 5 3 10 6 4
4 0 4 3 15 7 2 3
5 5 3 12 3 0 18 6
6 6 2 1 20 3 4 5

Cov Mat 1 2 3 4 5 6 7 Lead Pr Min
1 80.4 47.4 28.6 44.8 75.8 39.6 46.6 80.4
2 47.4 62.0 10.4 16.2 68.2 4.0 32.2 2738.04
3 28.6 10.4 43.2 20.6 19.0 56.8 25.4 87071.056
4 44.8 16.2 20.6 141.6 52.8 2.0 32.0 5836124.52
5 75.8 68.2 19.0 52.8 92.8 22.4 48.8 11958160.4
6 39.6 4.0 56.8 2.0 22.4 83.2 37.6 1.74E 08
7 46 646. 32 232. 25 425. 32 032. 48 848. 37 637. 36 836. 2 3747E 22.3747E 22

Scroll Bar 2000 (from 0 to 10000)
Shrink Int 0.200

Covariance Matrix after Shrinkage
1 2 3 4 5 6 7 Lead Pr Min

1 80.40 37.92 22.88 35.84 60.64 31.68 37.28 80.4
2 37.92 62.00 8.32 12.96 54.56 3.20 25.76 3546.8736
3 22.88 8.32 43.20 16.48 15.20 45.44 20.32 129639.83
4 35.84 12.96 16.48 141.60 42.24 1.60 25.60 13673532.3
5 60.64 54.56 15.20 42.24 92.80 17.92 39.04 396669294
6 31.68 3.20 45.44 1.60 17.92 83.20 30.08 1.2585E+10
7 37.28 25.76 20.32 25.60 39.04 30.08 36.80 1.3575E+11

Figure 1 An Excel Example Illustrating Weighted Averages of the Sample Covariance
Matrix and a Diagonal Matrix.
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As Excel has a function (MDETERM) for computing the determinant, it is easy to �nd all

leading principal minors of a given matrix. A simple way is to use cut-and-paste operations for the

task. With the formula for cell J22, which is =MDETERM($B$22:B22), �rst pasted to cells K23,

L24, M25, N26, O27, and P28 diagonally, we can subsequently move these cells back to column J to

allow J22:J28 to contain all seven leading principal minors. Not surprisingly, the �rst �ve leading

principal minors are all positive, indicating that the 5 � 5 sample covariance matrix based on the
�rst �ve random variables (n = 5) has been estimated with su¢ cient observations (T = 6): When

the remaining variables are added successively, we expect the determinants of the corresponding

6 � 6 and 7 � 7 sample covariance matrices to be zeros. However, due to rounding errors in the

computations, two small non-zero values are reached instead. As the product of the seven sample

variances in the example is about 8:66� 1012; the last two leading minors, which are �1:74� 10�8

and 2:37� 10�22; are indeed very small in magnitude.
To illustrate the e¤ect of shrinkage, we insert a scroll bar to the worksheet from the Insert

tab of the Developer menu. With the scroll bar in place, we can adjust the shrinkage inten-

sity manually and observe the corresponding changes to the estimated covariance matrix and

the seven leading principal minors. Figure 1 shows in cell B31 the case where � = 0:200;

indicating that a 20:0% weight is assigned to the diagonal matrix. The formula for cell B35,

which is =IF(COUNT($B$22:B$22)=COUNT($B$22:$B22),B22,(1-$B$31)*B22), is copied to cells

B35:H41. Notice that, as expected, the magnitudes of all covariances have been attenuated.

The seven leading principal minors of the covariance matrix after shrinkage are computed in

the same manner as those in cells J22:J28. All of them are now positive. Although not shown in

Figure 1, we have con�rmed that, for any 0 < � < 1; the corresponding leading principal minors are

all positive, illustrating that shrinkage is e¤ective as a remedial measure for insu¢ cient observations

in sample estimation of the covariance matrix.

4 Shrinkage Estimation of the Covariance Matrix

For an n � n covariance matrix, there are n variances and n(n � 1) covariances in total. To

introduce the idea of optimal shrinkage, let us start with a simple case where shrinkage is con�ned

to only one of these covariances. Suppose that the sample covariance in question is sij ; where

j 6= i; and that the corresponding true covariance is �ij : Suppose also that a weighted average is
taken between zero and sij with weights being � and 1� �; respectively.

The squared deviation of the weighted average from �ij ; which is [(1 � �)sij � �ij ]2; can be
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viewed as a loss. With sij being a random variable, we are interested in �nding a particular � that

provides the lowest expected value of the squared deviation, labeled as Ef[(1��)sij��ij ]2g: Here,
E is the expected value operator, with E(�) indicating the expected value of the random variable

(�) in question. Notice that the reliance on quadratic loss minimization is quite common because of
its analytical convenience. A well-known example is linear regression, where the best �t according

to the ordinary-least-squares approach is that the sum of squared deviations of the observations

from the �tted line is minimized.

The same idea can be extended to account for all individual covariances. As the covariance

matrix is symmetric, we only have to consider the n(n � 1)=2 covariances in its upper trian-
gle, where j > i (or, equivalently, in its lower triangle, where j < i): Analytically, we seek a

common weighting factor � that minimizes the expected value of the sum of squared deviations,

with each being [(1 � �)sij � �ij ]2; for i = 1; 2; : : : ; n � 1 and j = i + 1; i + 2; : : : ; n: The loss

function under this formulation, E
nPn�1

i=1

Pn
j=i+1[(1� �)sij � �ij ]2

o
; can be expressed simply as

E
nP

j>i[(1� �)sij � �ij ]2
o
; with an implicit understanding that

P
j>i stands for a double sum-

mation to account for all n(n� 1)=2 cases of j > i:
As shown in Appendix B, the optimal shrinkage intensity based on minimization of the loss

function is

� =

P
j>i V ar(sij)P

j>i[V ar(sij) + �
2
ij ]
: (5)

Notice that, the variance V ar(�) of any random variable (�); de�ned as Ef[(�)�E(�)]2g; can also be
written as E[(�)2] � [E(�)]2: Then, with V ar(sij) = E(s2ij) � [E(sij)]2 and E(sij) = �ij ; equation
(5) is equivalent to

� =

P
j>i V ar(sij)P
j>iE(s

2
ij)

: (6)

To determine the optimal shrinkage intensity � with either equation (5) or equation (6) requires

that V ar(sij) and �2ij [or, equivalently, E(s
2
ij)] for all j > i be estimated. Before addressing

the estimation issues, notice that both the numerator and the denominator in the expression of

� in equation (5) are positive. With the denominator being greater, we must have 0 < � < 1 as

intended. This analytical feature ensures positive weights on both the sample covariance matrix

and the diagonal target. It also ensures that the resulting covariance matrix be positive de�nite,

as illustrated in Section 3.
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4.1 Estimation Issues

The estimation of V ar(sij) can follow the same approach as described in Kwan (2009), which draws

on Schäfer and Strimmer (2005). The idea is as follows: We �rst introduce a random variableewij ; with observations being the product of mean-removed eRi and eRj : That is, the observations ofewij ; labeled as wijt; are (Rit �Ri)(Rjt �Rj); for t = 1; 2; : : : ; T: The sample mean of ewij is
wij =

1

T

XT

t=1
(Rit �Ri)(Rjt �Rj); (7)

which, when combined with equation (2), leads to

sij =
T

T � 1wij : (8)

In view of equation (8), the sampling variances of sij and wij ; labeled as dV ar(sij) and dV ar(wij);
respectively, are related by dV ar(sij) = T 2

(T � 1)2
dV ar(wij): (9)

As the distribution of the sample mean of a random variable based on T observations has a sampling

variance that is only 1=T of the sampling variance of the variable, it follows from equation (9) that5

dV ar(sij) = T

(T � 1)2
dV ar( ewij) = T

(T � 1)3
XT

t=1
(wijt � wij)2: (10)

This equation allows each of the variance terms, V ar(sij); in equation (5) to be estimated.

In various studies involving the shrinkage of the sample covariance matrix towards a diagonal

target, including those based on the Schäfer-Strimmer approach as referenced in Section 1, each

E(s2ij) in equation (6) has been approximated directly by the square of the corresponding point

estimate sij : However, recall that E(s2ij) = V ar(sij) + [E(sij)]
2: Such an approximation, which

implicitly assumes the equality of E(s2ij) and [E(sij)]
2; has the e¤ect of understating the denomi-

nator in the expression of � in equation (6). In turn, it has the e¤ect of overstating the optimal

shrinkage intensity �:

To avoid the above bias, this paper stays with equation (5) instead for any subsequent compu-

tations. With E(sij) = �ij ; the sample covariance sij provides an unbiased estimate of �ij : The

optimal shrinkage intensity can then be reached by estimating each �2ij in equation (5) with the

square of the corresponding sij : To show the improvement here, let �� be the estimated � according

to equation (5), where each �2ij is estimated by s
2
ij : Let also �

# be the estimated � according to

equation (6), where each E(s2ij) is approximated directly by s
2
ij : Denoting � =

P
j>i

dV ar(sij) and
5See, for example, Kwan (2009) for a pedagogic illustration of this statistical concept.
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� =
P
j>i s

2
ij ; we can write �

� = �=(�+�) and �# = �=�: As 1=�� = 1+�=� = 1+�#; it follows

that �# = ��=(1� ��) > ��:

4.2 An Excel Example

The same Excel example in Figure 1 is continued in Figure 2. We now illustrate how equation (5)

can be used to determine the optimal shrinkage intensity. For this task, we �rst scale the sample

covariance matrix in B22:H28 by the factor (T � 1)=T; which is 5=6; to obtain a 7 � 7 matrix
consisting of wij ; for i; j = 1; 2; : : : ; 7: The resulting matrix is placed in B46:H52. This step

requires the cell formula for B46, which is =B22*(COUNT($B$3:$B$8)-1)/COUNT($B$3:$B$8),

to be pasted to B46:H52.

We then paste the cell formula for B54, which is =IF(COUNT($B$22:B$22)=COUNT($B$22:

$B22),"",B22*B22), to B54:H60, so that the squares of the sample covariances can be summed and

stored in A115 later. The idea of using an IF statement here to allow a blank cell is that, as the

sample variances are not required for equation (5), there is no need to place their squares in the

diagonal cells of the 7 � 7 block B54:H60. Notice that, although the summations in equation (5)

are for 7� 6� 2 (= 21) cases where j > i for computational e¢ ciency, symmetry of the covariance
matrix allows us to reach the same shrinkage intensity by considering all 42 cases of j 6= i instead.
As wijt = wjit; for i; j = 1; 2; : : : ; 7 and t = 1; 2; : : : ; 6; displaying all 42 cases explicitly will enable

us to recognize readily any errors in subsequent cell formulas pertaining to the individual wijt:

The individual cases of (wijt � wij)2; for i 6= j; are stored in B62:H109. For this task, we

paste the cell formula for B62, which is =IF(COUNT($B14:B14)=1,"",($B14*B14-B$46)^2), to

B62:H67; the cell formula for B69, which is =IF(COUNT($B14: B14)=2,"",($C14*B14-B$47)^2),

to B69:H74; the cell formula for B76, which is =IF(COUNT($B14:B14)=3,"",($D14*B14-B$48)^2),

to B76:H81; and so on. The use of an IF statement here to allow a blank cell is to omit all cases of

(wiit � wii)2: Notice that each column of six cells here containing (wijt � wij)2 displays the same
corresponding numbers as that containing (wjit � wji)2; as intended.

The sum of all cases of dV ar(sij); which is =SUM(B62:H110)*COUNT(B14:B19)/(COUNT(B14:
B19)-1)^3 according to equation (10), is stored in A112. The optimal shrinkage intensity, which

is =A112/(A112+A115), as stored in A119. The covariance matrix after shrinkage and its leading

principal minors, which are shown in B123:H129 and J123:J129, respectively, can be established

in the same manner as those in B35:H41 and J35:J41. As expected, the seven leading principal

minors are all positive; the covariance matrix after shrinkage is positive de�nite, notwithstanding

the fact that the sample covariance matrix itself is based on insu¢ cient observations.
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45
A B C D E F G H I J

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
7272
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

4

w ij bar 1 2 3 4 5 6 7
1 67.00 39.50 23.83 37.33 63.17 33.00 38.83
2 39.50 51.67 8.67 13.50 56.83 3.33 26.83
3 23.83 8.67 36.00 17.17 15.83 47.33 21.17
4 37.33 13.50 17.17 118.00 44.00 1.67 26.67
5 63.17 56.83 15.83 44.00 77.33 18.67 40.67
6 33.00 3.33 47.33 1.67 18.67 69.33 31.33
7 38.83 26.83 21.17 26.67 40.67 31.33 30.67

Sq Cov
1 2246.76 817.96 2007.04 5745.64 1568.16 2171.56
2 2246.76 108.16 262.44 4651.24 16.00 1036.84
3 817.96 108.16 424.36 361.00 3226.24 645.16
4 2007.04 262.44 424.36 2787.84 4.00 1024.00
5 5745.64 4651.24 361.00 2787.84 501.76 2381.44
6 1568.16 16.00 3226.24 4.00 501.76 1413.76
7 2171.56 1036.84 645.16 1024.00 2381.44 1413.76

Square of Mean Removed w 1jt
1 20.25 0.03 2844.44 738.03 81.00 117.36
2 19740.25 78.03 4578.78 26190.03 1089.00 4378.03
3 0.25 684.69 53.78 1356.69 729.00 1.36
4 1560.25 568.03 1393.78 3990.03 1089.00 1508.03
5 2970.25 1308.03 2738.78 3990.03 3249.00 78.03
6 2652.25 890.03 6833.78 2040.03 81.00 78.03

Square of Mean Removed w 2jt
1 20.25 3287.111 3306.25 1778.028 3927.111 2516.694
2 19740.25 11.11111 4970.25 15170.03 11.11111 3268.028
3 0.25 128.4444 2.25 283.3611 427.1111 117.3611
4 1560 251560.25 427 1111427.1111 2162 252162.25 831 3611831.3611 128 4444128.4444 220 0278220.0278
5 2970.25 1995.111 20.25 3230.028 3287.111 2010.028
6 2652.25 44.44444 2862.25 3948.028 128.4444 1356.694

Square of Mean Removed w 3jt
1 0.03 3287.11 46.69 1456.69 128.44 434.03
2 78.03 11.11 584.03 0.69 2240.44 200.69
3 684.69 128.44 1034.69 1167.36 300.44 1.36
4 568.03 427.11 774.69 1356.69 1708.44 910.03
5 1308.03 1995.11 354.69 250.69 28448.44 2584.03
6 890.03 44.44 8.03 354.69 2635.11 684.69

Square of Mean Removed w 4jt
1 2844.444 3306.25 46.69444 6400 498.7778 2988.444
2 4578.778 4970.25 584.0278 3721 2.777778 498.7778
3 53.77778 2.25 1034.694 196 386.7778 215.1111
4 1393.778 2162.25 774.6944 3721 802.7778 336.1111
5 2738.778 20.25 354.6944 1936 2738.778 1995.111
6 6833.778 2862.25 8.027778 256 6669.444 5377.778

Figure 2 An Excel Example Illustrating the Determination of the Optimal Shrinkage
Intensity.
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89
A B C D E F G H I J

90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

130
131
132

116
117
118
119
120
121
122
123
124
125
126
127
128
129

Square of Mean Removed w 5jt
1 738.03 1778.03 1456.69 6400.00 1248.44 498.78
2 26190.03 15170.03 0.69 3721.00 348.44 4138.78
3 1356.69 283.36 1167.36 196.00 1708.44 0.44
4 3990.03 831.36 1356.69 3721.00 1067.11 386.78
5 3990.03 3230.03 250.69 1936.00 348.44 1653.78
6 2040.03 3948.03 354.69 256.00 44.44 658.78

Square of Mean Removed w 6jt
1 81.00 3927.11 128.44 498.78 1248.44 113.78
2 1089.00 11.11 2240.44 2.78 348.44 981.78
3 729.00 427.11 300.44 386.78 1708.44 53.78
4 1089.00 128.44 1708.44 802.78 1067.11 1393.78
5 3249.00 3287.11 28448.44 2738.78 348.44 5877.78
6 81.00 128.44 2635.11 6669.44 44.44 128.44

Square of Mean Removed w 7jt
1 117.36 2516.69 434.03 2988.44 498.78 113.78
2 4378.03 3268.03 200.69 498.78 4138.78 981.78
3 1.36 117.36 1.36 215.11 0.44 53.78
4 1508.03 220.03 910.03 336.11 386.78 1393.78
5 78.03 2010.03 2584.03 1995.11 1653.78 5877.78
6 78.03 1356.69 684.69 5377.78 658.78 128.44

Sum of All Estimated Var S ij
25786.91

Sum of All S ij Squared
66802.72

Optimal Shrinkage Intensity
Using Above Results Using Function (SHRINK) Using Macro (Shortcut: Ctrl + s)
0.278508 0.278508 0.278508

Covariance Matrix after Shrinkage
1 2 3 4 5 6 7 Lead Pr Min

1 80.40 34.20 20.63 32.32 54.69 28.57 33.62 80.4
2 34.20 62.00 7.50 11.69 49.21 2.89 23.23 3815.24605
3 20.63 7.50 43.20 14.86 13.71 40.98 18.33 144483.064
4 32.32 11.69 14.86 141.60 38.09 1.44 23.09 16512423.7
5 54.69 49.21 13.71 38.09 92.80 16.16 35.21 639771526
6 28.57 2.89 40.98 1.44 16.16 83.20 27.13 2.6442E+10
7 33.62 23.23 18.33 23.09 35.21 27.13 36.80 3.7954E+11

Figure 2 An Excel Example Illustrating the Determination of the Optimal Shrinkage
Intensity (Continued).
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Although the computations as illustrated above are straightforward, the size of the worksheet

will increase drastically if the sample covariance matrix is based on many more observations. The

increase is due to the need for a total of n2T cells to store the individual values of (wijt�wij)2; for
i; j = 1; 2; : : : ; n and t = 1; 2; : : : ; T: For students who have at least some rudimentary knowledge of

generating user-de�ned functions in Excel, we can bypass the use of these n2T cells for the intended

computations.

By programming in Visual Basic for Applications (VBA), we can compute directly, via a user-

de�ned function with three nested �for next� loops, the cumulative sum of (wijt � wij)2 as the
integers i; j; and t are to increase over their corresponding ranges. Speci�cally, we place in the

computer memory an initial sum of zero. We vary i from 1 to n � 1; which is 6 in the example.
For each case of i; we vary j from i+1 to n; which is 7 in the example. For each case of j; we vary

t from 1 to T; which is 6 in the example. Starting with i = 1; j = i + 1 = 2; and t = 1; we add

(wijt�wij)2 = (w121�w12)2 to the initial sum, which is zero, thus resulting in a cumulative sum of
(w121�w12)2: The subsequent terms to be accumulated to the sum are, successively, (w122�w12)2;
(w123 � w12)2; : : : ; (w126 � w12)2; just to exhaust all 6 cases of t for i = 1 and j = 2: Then, we

continue with i = 1 and j = i+ 2 = 3 and add all 6 cases of (w13t � w13)2 to the cumulative sum.
The procedure continues until all 6 cases of (w67t � w67)2 are �nally accounted for.

We can use two of the above three nested loops in the same user-de�ned function to compute

the sum of s2ij ; for i; j = 1; 2; : : : ; n and i 6= j; as well. The idea is to have a separate cumulative

sum, which is also initialized to be zero in the computer memory. By going through all cases of

i from 1 to n � 1 and, for each i; all cases of j from i + 1 to n; the cumulative sum will cover

all n(n � 1)=2 cases of s2ij : With such a function in place, there will be no need for B54:H60 and
B62:H109 in the worksheet to display the individual values of s2ij and (wijt � wij)2; respectively.

The VBA code of this user-de�ned function, named SHRINK, as described above, is provided in

Appendix D. The cell formula for D119, which uses the function, is =SHRINK(B14:H19,B46:H52).

The two arguments of the function are the cell references of the T � n matrix of all mean-removed
observations and the n� n matrix with each element (i; j) being wij : In essence, by retrieving the
row numbers and the column numbers of the stored data in the worksheet, we are able to use the

information there to provide the cumulative sums of s2ij and (wijt � wij)2: As expected, the end
results based on the two alternative approaches, as shown in A119 and D119, are the same.

A more intuitive way to call the function SHRINK is to use a Sub procedure, which is an Excel

macro de�ned by the user, that allows the user to provide, via three input boxes, the cells for the
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two arguments as required for the function to work, as well as the cell for displaying the end result.

The VBA code of this Sub procedure is also provided in Appendix D. Again, as expected, the end

result as shown in G119 is the same to those in A119 and D119.

5 Related Pedagogic Issues and Exercises for Students

In this paper, we have illustrated that shrinkage estimation for potentially improving the quality

of the sample covariance matrix can be covered in classes where estimation issues of the covariance

matrix are taught. From a pedagogic perspective, it is useful to address the issue of estimation

errors in the sample covariance matrix before introducing shrinkage estimation. Students ought

to be made aware of the fact that the sample covariance matrix is only an estimate of the true but

unknown covariance matrix. As each of the sample variances and covariances of the set of random

variables in question is itself a sample statistic, knowledge of the statistical concept of sampling

distribution will enable students to appreciate more fully what V ar(sij) is all about. Simply stated,

the sampling distribution is the probability distribution of a sample statistic. By recognizing that

each sij is a sample statistic, students will also recognize that it has a distribution and that the

corresponding V ar(sij) represents the second moment of the distribution.

For a given set of random variables, how well each sample covariance sij is estimated can be

assessed in terms of standard error, which is the square root of the sampling variance that dV ar(sij)
represents, relative to the point estimate itself. For example, as displayed in C22 of the Excel

worksheet in Figure 2, we have s12 = 47:4: According to equation (10), the sampling variance

of s12; which is dV ar(s12); can be computed by multiplying the sum of the six cells in C62:C67

with the factor T=(T � 1)3; where T = 6; The standard error of s12; which is
qdV ar(s12) =

p
1; 293:29 = 35:96; is quite large relative to the point estimate of s12 = 47:4: Given that the

covariance estimation here is based on only six observations, a large estimation error is hardly a

surprise. However, this example does illustrate the presence of estimation errors in the sample

covariance matrix.

To enhance the learning experience of students, some exercises are suggested below. The �rst

two types of exercises are intended to help students recognize, in a greater depth, the presence of

errors in covariance matrix estimation and the impact of various factors on the magnitudes of such

errors. The third type of exercises extends the shrinkage approach to estimating the correlation

matrix. Such an extension is particularly relevant when observations of the underlying random

variables are in di¤erent measurement units, as often encountered in life science studies.
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5.1 Estimation of the Covariance Matrix with Actual Observations

Students can bene�t greatly from covariance matrix estimation by utilizing actual observations that

are relevant in their �elds of studies. Depending on the �elds involved, the observations can be in

the form or empirical or experimental data. In �nance, for example, stock returns can be generated

from publicly available stock price and dividend data. Small-scale exercises for students, such as

those involving the sample covariance matrix of monthly or weekly returns of the 30 Dow Jones

stocks or some subsets of such stocks, estimated with a few years of monthly observations, ought to

be manageable for students. The size of the corresponding Excel worksheet for each exercise will

be drastically reduced if a user-de�ned function, similar to the function SHRINK above, is written

for the computations of the sampling variances of sij ; for i; j = 1; 2; : : : ; n; with n � 30: From

such exercises, students will have hands-on experience with how the sampling variance that eachdV ar(sij) represents tends to vary as the number of observations for the estimation increases.
5.2 Estimation of the Covariance Matrix with Simulated Data

In view of concerns about the non-stationarity of the underlying probability distributions in em-

pirical studies or budgetary constraints for making experimental observations, the reliance on sim-

ulations, though tending to be tedious, is a viable way to generate an abundant amount of usable

data for pedagogic purposes. An attractive feature of using simulated data is that we can focus

on some speci�c issues without the encumbrance of other confounding factors. For example, with

everything else being the same, the more observations we have, the closer tends to be between the

sample covariance matrix and the true one. The use of a wide range of numbers of random draws

will allow us to assess how well shrinkage estimation really helps in small to large sample situations.

Further, simulated data are useful for examining issues of whether shrinkage estimation is more

e¤ective or less e¤ective if the underlying variables are highly correlated, or if the magnitudes of

the variances of the underlying variables are highly divergent. It will be up to the individual

instructors to decide which speci�c issues are to be explored by their students.

To facilitate a simulation study, suppose that, under the assumption of a multivariate normal

distribution, the true covariance matrix of the underlying random variables is known. From this

distribution, we can make as many random draws as we wish. These random draws as simulated

observations, in turn, will allow us to estimate the covariance matrix. To illustrate the idea of

simulations in the context of covariance matrix estimation, consider a four-variable case, where the
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true covariance matrix is

V =

2664
36 12 24 36
12 64 32 24
24 32 100 48
36 24 48 144

3775 ; (11)

where each element is denoted by �ij ; for i; j = 1; 2; 3; 4: The positive de�niteness of V can easily

be con�rmed with Excel, by verifying the positive sign of each of its four leading principal minors.

The analytical details pertaining to the generation of simulated observations for estimating V ; from

the underlying probability distribution, are provided in Appendix C.

In this illustration, where n = 4; we consider T = 5; 6; 7; : : : ; 50: The lowest T is 5; because

it is the minimum number of observations to ensure that the 4 � 4 sample covariance matrix be
positive de�nite. For each T; the random draws to generate a set of simulated observations Rit; for

i = 1; 2; 3; 4 and t = 1; 2; : : : ; T; and the corresponding sample covariance matrix bV are repeated

100 times. The average of the 100 values of each estimated covariance sij is taken, for all j > i:

Let s12; s13; s14; s23; s24; and s34 be such averages.

For each value of the shrinkage intensity, with � = 0:2; 0:4; and 0:6; we take the di¤erence

between jsij � �ij j and j�sij � �ij j for all j > i: We then take the average of all such di¤erences,
denoted in general by

D =
2

n(n� 1)
X

j>i
(jsij � �ij j � j�sij � �ij j) : (12)

Here, n(n� 1)=2 is the number of covariances in the upper triangle of the covariance matrix. This
average can be interpreted as the di¤erence in the mean absolute deviations for the two estimation

methods. A positive D indicates that shrinkage provides an improvement. Figure 3 shows

graphically how D varies with T for the three values of �:

Some general patterns can be noted. The e¤ectiveness of shrinkage to improve the quality of

the estimated covariance matrix declines as the number of observations increases. The higher the

number of observations, the more counter-productive is the reliance on heavy shrinkage to attenuate

the errors in the sample covariances. However, if the number of observations is low, shrinkage is

bene�cial in spite of the strong bias that exists in the shrinkage target. The lower the number

of observations, a higher shrinkage intensity will tend to result in a greater improvement in the

estimated covariances.

5.3 Estimation of the Correlation Matrix

For analytical convenience, the pedagogic illustration in this paper has been con�ned to shrinkage

estimation of the sample covariance matrix towards a diagonal target matrix with its diagonal ele-
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Figure 3 Differences in Mean Absolute Deviations from the True Covariances for
Three Shrinkage Intensities from s Simulation Study, with a Positive Difference
Indicating an Improvement by Shrinkage Estimation.
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ments being the corresponding sample variances. An extension of the same approach to shrinkage

estimation of the correlation matrix towards an identity matrix is simple, provided that the sim-

plifying assumption in Schäfer and Strimmer (2005) is also imposed. That is, if estimation errors

in all sample variances are ignored.

The idea is that, if we start with a set of n random variables, eR1=s1; eR2=s2; : : : ; eRn=sn; the
element (i; j) of the n � n sample covariance matrix will be sij=(sisj); for i; j = 1; 2; : : : ; n: That
is, if each of the n random variables is normalized by the corresponding sample standard deviation

si; the resulting sample covariance matrix is the same as the sample correlation matrix of the

original random variables. For this set of normalized random variables, shrinkage estimation of its

covariance matrix towards a diagonal target matrix is equivalent to shrinking the sample correlation

matrix of the original random variables, eR1; eR2; : : : ; eRn; towards an identity matrix.
For shrinkage estimation of the correlation matrix instead, equation (5) can be written as

� =

P
j>i V ar(rij)P

j>i[V ar(rij) + �
2
ij ]
; (13)

where rij = sij=(sisj) is the sample correlation of the original random variables i and j; with

�ij representing their true but unknown correlation. Under the assumption that s1; s2; : : : ; sn

are without estimation errors as in the Schäfer-Strimmer study, each V ar(rij) in equation (13) is

simply V ar(sij); divided by the product of the sample estimates sii and sjj : Likewise, �2ij can be

approximated by s2ij=(siisii); the square of the sample estimate sij ; also divided by the product of

the sample estimates sii and sjj : In view of the simplicity of this revised formulation of shrinkage

estimation, its small-scale implementation with actual observations is also suitable as an exercise

for students. However, to relax the above assumption by recognizing the presence of estimation

errors in the individual sample variances is a tedious analytical exercise.6

Why is shrinkage estimation of the sample correlation matrix relevant in practice? In portfolio

investment settings, for example, to generate input data for portfolio analysis to guide investment

decisions, if the individual expected returns and variances of returns are, in whole or in part, based

on the insights of the security analysts involved, the correlation matrix is the remaining input

whose estimation requires historical return data. If so, although the correlation matrix can still

6Besides the issue of estimation errors in the sample variances that already complicates the estimation of V ar(rij);
there is a further analytical issue. As indicated in Zimmerman, Zumbo, and Williams (2003), the sample correlation
provides a biased estimate of the true but unknown correlation. However, as Olkin and Pratt (1958) show, the bias
can easily be corrected if the underlying random variables are normally distributed. The correction for bias will
make equation (13) more complicated. See, for example, Kwan (2008, 2009) for analytical details pertaining to the
above issues.
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be deduced from the shrinkage results of the covariance matrix, to estimate the correlation matrix

instead is more direct.

Another justi�cation for directly shrinking the sample correlation matrix does not apply to

portfolio investment settings. Rather, it pertains to experimental settings, such as those in the

various life science studies, where di¤erent measurement units are used for the underlying variables.

Measurement units inevitably a¤ect the magnitudes of the elements in each sample covariance

matrix. When a quadratic loss function is used to determine the optimal shrinkage intensity,

sample covariances with larger magnitudes tend to receive greater attention. Thus, to avoid the

undesirable e¤ects of the choice of measurement units on the optimal shrinkage results, it becomes

necessary to normalize the random variables involved. However, as indicated earlier, doing so

will also lead to analytical complications. Nevertheless, such issues ought to be mentioned when

shrinkage estimation is introduced to the classroom.

6 Concluding Remarks

This paper has illustrated a novel approach, called shrinkage estimation, for potentially improving

the quality of the sample covariance matrix for a given set of random variables. The approach,

which was introduced to the �nance profession, including its practitioners, only a few years ago,

has also received considerable attention in some life science �elds where invertible covariance and

correlation matrices are used to analyze multivariate experimental data. Although the implemen-

tation of the approach can be based on various analytical formulations, with some formulations

being analytically cumbersome, the two most common versions as reported in various life science

studies are surprisingly simple. Speci�cally, in one version, an optimal weighted average is sought

between the sample covariance matrix and a diagonal matrix with the diagonal elements being the

corresponding sample variances. The other version involves the sample correlation matrix and an

identity matrix of the same dimensions instead, under some simplifying assumptions.

This paper has considered, from a pedagogic perspective, the former version, which involves the

sample covariance matrix. In order to understand shrinkage estimation properly, even for such a

simple version, an important concept for students to have is that the sample covariance matrix,

which is estimated with observations of the random variables considered, is subject to estimation

errors. Once students are aware of this statistical feature and know its underlying reason, they

can understand why a sample covariance of two random variables is a sample statistic and what

the sampling variance of such a statistic represents. The use of Excel to illustrate shrinkage
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estimation will allow students to follow the computational steps involved, thus facilitating a better

understanding of the underlying principle of the approach.

The role of Excel in this pedagogic illustration is indeed important. As all computational results

are displayed on the worksheets involved, students can immediately see how shrinkage estimation

improves the quality of the sample covariance matrix. For example, in cases where estimations are

based on insu¢ cient observations, students can easily recognize, from the displayed values of the

leading principal minors, that the corresponding sample covariance matrix is problematic. They

can also recognize that shrinkage estimation is a viable remedial measure. What is attractive about

using Excel for illustrative purposes is that, as students will not be distracted by the attendant

computational chores, they can focus on understanding the shrinkage approach itself.

As having hands-on experience is important for students to appreciate better what shrinkage

estimation can do to improve the quality of the sample covariance matrix, it is useful to assign

relevant Excel-based exercises to students. In investment courses, for example, shrinkage estimation

of the covariance matrix of asset returns can be in the form of some stand-alone exercises for

students. It can also be part of a project for students that compares portfolio investment decisions

based on di¤erent characterizations of the covariance matrix. From the classroom experience of the

author as an instructor of investment courses, the hands-on experience that students have acquired

from Excel-based exercises is indeed valuable. Such hands-on experience have enabled students not

only to be more pro�cient in various Excel skills, but also to understand the corresponding course

materials better. This paper, which has provided a pedagogic illustration of shrinkage estimation,

is intended to make classroom coverage of such a useful analytical tool less technically burdensome

for students.
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Appendix A

Let y be an n� T matrix with each element (i; t) being

yit =
1p
T � 1

�
Rit �Ri

�
; for i = 1; 2; : : : ; n and t = 1; 2; : : : ; T: (A1)
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As

sij =
XT

t=1
yityjt; for i = 1; 2; : : : ; n and j = 1; 2; : : : ; n; (A2)

which is the same as the product of row i of y and column j of y0, we can write

bV = y y0: (A3)

Accordingly, we have x0 bV x = x0(yy0) x = (y0 x)0(y0x); which is the product of a T -element row

vector that (y0 x)0 represents and its transpose that y0x represents. With vt being element t of

this row vector, it follows that x0 bV x =PT
t=1 v

2
t � 0: Thus, bV is always positive semide�nite.

We now show that, if bV is estimated with insu¢ cient observations, its determinant is zero. If

so, bV is not invertible and thus is not positive de�nite. For this task, let us consider separately

cases where T < n and T = n: For the case where T < n; we can append a block of zeros to the

n�T matrix to make it an n�n matrix. Speci�cally, let z =
�
y 0

�
; where 0 is an n� (n�T )

matrix with all zero elements. With zz0 = y y0; we can also write bV = z z0; a product of two

square matrices. The determinant of bV is the product of the determinant of z and the determinant

of z0: As each of the latter two determinants is zero, so is the determinant of bV :
For the case where T = n; y is already a square matrix. With each yit being a mean-removed

observation of Rit; scaled by the constant
p
T � 1; the sum

PT
t=1 yit for any i must be zero. Then,

for i = 1; 2; : : : ; n; each yit can be expressed as the negative of the sum of the remaining T �1 terms
among yi1; yi2; : : : ; yiT : That is, each column of y can be replicated by the negative of the sum of

the remaining T �1 columns. Accordingly, the determinant of y is zero, and so is the determinant
of bV :
Appendix B

As taking the expected value is like taking a weighted average, we have

E
nX

j>i
[(1� �)sij � �ij ]2

o
=
X

j>i
Ef[(1� �)sij � �ij ]2g: (B1)

Noting that V ar(�) � Ef[(�)�E(�)]2g = E[(�)2]� [E(�)]2; for any random variable (�); we can also
write

Ef[(1� �)sij � �ij ]2g = V ar[(1� �)sij � �ij ] + fE[(1� �)sij � �ij ]g2: (B2)

With �ij being a constant, the term V ar[(1� �)sij � �ij ] reduces to (1� �)2V ar(sij): Further, as
E(sij) = �ij ; the term E[(1� �)sij � �ij ] reduces to ���ij : It follows thatX

j>i
Ef[(1� �)sij � �ij ]2g = (1� �)2

X
j>i
V ar(sij) + �

2
X

j>i
�2ij : (B3)
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Minimization of the loss function, by setting its �rst derivative respect to � equal to zero, leads to

d

d�

X
j>i
Ef[(1� �)sij � �ij ]2g = �2(1� �)

X
j>i
V ar(sij) + 2�

X
j>i
�2ij = 0: (B4)

Equation (5) follows directly.

Appendix C

It is well known in matrix algebra that a symmetric positive de�nite matrix can be written as the

product of a triangular matrix with zero elements above its diagonal and the transpose of such a

triangular matrix. This is called the Cholesky decomposition. Let V be an n � n covariance
matrix and L be the corresponding triangular matrix, satisfying the condition that LL0 = V :

To �nd L; let us label the elements in its lower triangle as Lij ; for all j � i: Implicitly, we have
Lij = 0; for all j > i: Each Lij in the lower triangle of L can be determined iteratively as follows:

L11 =
p
�11; (C1)

Li1 = �i1=L11; for i = 2; 3; : : : ; n; (C2)

Lii =

r
�ii �

Xi�1

k=1
L2ik; for i = 2; 3; : : : ; n; (C3)

Lij =
1

Ljj

�
�ij �

Xj�1

k=1
LikLjk

�
; for i = 3; 4; : : : ; n and j = 2; 3; : : : ; i� 1: (C4)

Now, consider the standardized normal distribution, which is a normal distribution with a zero

mean and a unit standard deviation. Let us take nT random draws from this univariate distribution

and label them as uit; for i = 1; 2; : : : ; ; n and t = 1; 2; : : : ; T: Let U be the n�T matrix consisting
of the nT random draws of uit:

As each uit is a random draw, the sample mean, ui =
PT
t=1 uit=T; approaches zero as T

approaches in�nity. The sample variance,
PT
t=1(uit � ui)2=(T � 1); which approaches one as T

approaches in�nity, can be approximated as
PT
t=1 u

2
it=(T � 1): The sample covariance,

PT
t=1(uit�

ui)(ujt � uj)=(T � 1); which approaches zero as T approaches in�nity, can be approximated asPT
t=1 uitujt=(T � 1); for all i 6= j:
Accordingly, UU 0=(T � 1) approaches an n� n identity matrix as T approaches in�nity. Let

W = LU : It follows that, with WW 0 = LU(LU)0 = L(UU 0)L0; WW 0=(T � 1) approaches
LL0 = V ; as T approaches in�nity. The n � T matrix W can be viewed as a collection of T

random draws from an n-variate distribution, with each row being the result of a random draw.

To generateW = LU requires the n�T matrix U : By using Excel, we can generate each element
of U with the cell formula =NORMSINV(RAND()).
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Appendix D

The codes in Visual Basic for Applications (VBA) of a user-de�ned function procedure and a Sub

procedure, for use in the Excel example, are shown below. The same codes can also be accessed

from the supplementary Excel �le (shrink.xls) of this paper, by opening the Visual Basic window

under the Developer tab. Various examples pertaining to the syntax of the programming language

can be found in Excel Developer Reference, which is provided under the Help tab there.

Option Explicit

Function SHRINK(nvo As Range, wijbar1 As Range) As Double

Dim nvar As Integer, nobs As Integer, mrr As Integer

Dim mrc As Integer, wijbar As Integer

Dim nvoc As Integer, nvor As Integer

Dim i As Integer, j As Integer, t As Integer

Dim s1 As Double, sum1 As Double, s2 As Double, sum2 As Double

�nvo: the cells containing all mean-removed observations

�nvar: the number of variables

�nobs: the number of observations

�mrr: the row preceding the mean-removed observations

�mrc: the column preceding the mean-removed observations

�wijbar: the row preceding the square matrix of w ij bar

nvar = nvo.Columns.Count

nobs = nvo.Rows.Count

mrr = nvo.Row - 1

mrc = nvo.Column - 1

wijbar = wijbar1.Row - 1

sum1 = 0

sum2 = 0

For i = 1 To nvar - 1

For j = i + 1 To nvar

s1 = Cells(wijbar + i, mrc + j).Value

sum1 = sum1 + s1 * s1
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For t = 1 To nobs

s2 = Cells(mrr + t, mrc + i).Value _

* Cells(mrr + t, mrc + j).Value _

- Cells(wijbar + i, mrc + j).Value

sum2 = sum2 + s2 * s2

Next t

Next j

Next i

shrink = sum2 / (sum2 + sum1 * nobs * (nobs - 1))

End Function

Sub ViaFunction()

Dim arg1 As Range, arg2 As Range, out As Range

Set arg1 = Application.InputBox(prompt:= _

"Select the cells for mean-removed observations", Type:=8)

Set arg2 = Application.InputBox(prompt:= _

"Select the cells for the matrix of w ij bar", Type:=8)

Set out = Application.InputBox(prompt:= _

"Select the cell for displaying the output", Type:=8)

Cells(out.Row, out.Column).Value = shrink(arg1, arg2)

End Sub
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