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The Use of Microsoft Excel to Illustrate Wave Motion and Fraunhofer
Diffraction in First Year Physics Courses

Abstract
In this paper we present an Excel package that can be used to demonstrate physical phenomena in which
variables may be automatically adjusted in real-time. This is accomplished by interrogating the system clock
through the use of an appropriate macro, and using the clock reading to update the relevant variable. The
package has been used for a number of years in first year physics courses to illustrate two phenomena: i)
waves, including travelling waves, standing waves, the addition of waves and the interference of waves in
general, and also Lissajous figures, and ii) Fraunhofer diffraction and the effects of varying such quantities as
the wavelength of the incoming light, the number of slits, the slit width and the slit separation. A number of
illustrative examples, generated by the package and taken from a fist year physics course, are presented
graphically. The package, which is available for downloading from the web, may be used interactively by the
student and is easily modified by them. The use of Excel has the advantage that it is accessible to a much wider
audience than if it were written in, say, Matlab. We envisage that it may be useful for first year university
courses in wave motion and optics, and may also be useful in physics courses in the last year of secondary
school. The package has been tested under Excel 2003, 2007 and 2010, and runs satisfactorily in all three
versions.
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Abstract

In this paper we present an Excel package that can be used to demonstrate
physical phenomena in which variables may be automatically adjusted in real-time.
This is accomplished by interrogating the system clock through the use of an ap-
propriate macro, and using the clock reading to update the relevant variable. The
package has been used for a number of years in first year physics courses to illustrate
two phenomena: i) waves, including travelling waves, standing waves, the addition
of waves and the interference of waves in general, and also Lissajous figures, and ii)
Fraunhofer diffraction and the effects of varying such quantities as the wavelength
of the incoming light, the number of slits, the slit width and the slit separation. A
number of illustrative examples, generated by the package and taken from a first
year physics course, are presented graphically. The package, which is available for
downloading from the web, may be used interactively by the student and is easily
modified by them. The use of Excel has the advantage that it is accessible to a
much wider audience than if it were written in, say, Matlab. We envisage that it
may be useful for first year university courses in wave motion and optics, and may
also be useful in physics courses in the last year of secondary school. The package
has been tested under Excel 2003, 2007 and 2010, and runs satisfactorily in all
three versions.

Key words: waves; interference; diffraction; interactive simulations; Excel
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1 Introduction

Today’s students seem to learn in a different manner from the learning methods of
the students of a few years ago. In particular they appear to benefit greatly from,
and respond to, “hands on” interactive methods. Two subjects which are particularly
suitable for such techniques are the subjects of wave motion and of diffraction. One of the
authors (GR) has lectured in these subjects in first year physics courses for many years.
While many very good interactive packages for these purposes are available either on the
web or accompanying textbooks in the subject, they are usually presented in such a way
that the student cannot easily modify them, or they are presented in a language such as
Matlab, which may not be available to everyone. Some users do not have available such
specialised packages, or worse, may lose access to them if they move from institution
to institution. Even if a stand-alone executable can be made available, this still lacks
the flexibility of having access to the source. Here we present an interactive package,
written in the virtually universally available Microsoft Excel, which has been used for
demonstrating waves in general and also the phenomena of Fraunhofer diffraction. This
package has been used for about seven years in first year university physics courses,
and each year when the displays are first presented in class, a quantum increase in the
students’ interest has resulted.

In this paper we present details of the Excel package together with some illustrative
simulations. The structure of the paper is as follows. In §2 we present a brief summary
of the theory of waves (§2.1) and of Fraunhofer diffraction (§2.2). In §3 we give details
of the Excel package and its use, specifically the use of real-time simulations and the
associated macro (§3.1), and the Excel control panels (§3.2). In §4 we present some
illustrative simulations for waves (§4.1) and Fraunhofer diffraction (§4.2). In §5 we
include some of our experiences in the classroom and finally in §6 we provide a brief
summary of this work and some conclusions.

2 Theory

The basic theory of wave motion and of Fraunhofer diffraction has been very well docu-
mented over the years and may be found in any current introductory physics text (e.g.,
Halliday, Resnick and Walker [1]; Serway and Jewett [2]; Young and Freedman [3]).
However, with the aim of making the present paper self-contained, we include here the
briefest of summaries of the relevant equations and their implications.

2.1 Waves

Provided we limit ourselves to one-dimensional non-dispersive waves (waves whose shape
does not change as the wave progresses), any function, g, of the form

y (x, t) = g (x± vt+ φ) , (1)

represents a travelling (transverse) wave. This is the equation of a wave travelling in
the ∓x direction with velocity v and arbitrary phase φ. The key point here is that the
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position variable x, and the time variable t, must occur in the combination x± vt, or be
able to to be put in this form, for the equation to describe a travelling wave.

The propagation or phase velocity v, is related to the wavelength λ, frequency f ,
angular frequency ω and (angular) wavenumber k, by the relation

v = λf =
ω

k
, (2)

where ω ≡ 2πf and k ≡ (2π) /λ.
A very important principle in wave motion, and an important point for the demon-

strations presented here, is the principle of linear superposition. For the one-dimensional
case, it may be stated as follows: “At any point in a medium subject to more than one

wave disturbance, the resultant disturbance is the algebraic sum of the separate distur-

bances.” Thus, for example, if the medium is subject to two sine waves, travelling
in opposite directions, of amplitudes A1 and A2 respectively, with different angular
wavenumbers, angular frequencies and phases, the resultant wave amplitude is given by

y (x, t) = A1 sin (k1x− ω1t+ φ1) +A2 sin (k2x+ ω2t+ φ2) . (3)

For the transverse wave of equation (3) a very important property of the wave is the
transverse (particle) velocity and acceleration, given respectively by

vT (x, t) ≡
∂y

∂t
= −ω1A1 cos (k1x− ω1t+ φ1) + ω2A2 cos (k2x+ ω2t+ φ2) , (4)

and

aT (x, t) ≡
∂2y

∂t2
= −ω2

1A1 sin (k1x− ω1t+ φ1)− ω2
2A2 sin (k2x+ ω2t+ φ2) . (5)

Finally, in one of the simulations (to be discussed in §4.1), we present a representation
of a travelling Gaussian wave packet; the equation to this wave packet is

y (x, t) =
A exp

[

−1
2
{(x− venvt− xinit) /σ}

2
]

σ (2π)1/2
cos (kx− ωt) . (6)

In this equation A controls the height of the Gaussian envelope, venv is the envelope
velocity, xinit specifies the initial envelope position, σ controls the width of the wave
packet (as well as affecting its height) and ω/k gives the phase velocity, vphase.

2.2 Fraunhofer diffraction

The situation for Fraunhofer diffraction is depicted in Figure 1, which shows a plane
wave incident from the left on a diffracting screen, in this case two narrow slits, with
the interference/diffraction pattern being produced on the screen at right.
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Plane Wave Object
Space

Diffraction
Space

d

P

θθ

d sin θ

D
(D >> d)

Fringe
Pattern

Figure 1: A plane wave from a source at left is incident on a diffraction screen (called
“object space”) and the diffraction pattern is formed on the screen at right (called
“diffraction space” or “Fourier transform space”). In this case the object is two very
narrow slits of separation d—this arrangement is the so-called “Young’s double-slit ex-
periment”. The path difference for waves originating from the two slits and arriving at
point P on the screen at right is d sin θ.

The intensity distribution (the observable quantity) in the Fraunhofer diffraction pat-
tern for the general case of N slits each of width a and (centre-to-centre) slit separation
d, for incident wavelength λ, is given by

Iθ = I0

[

sinNβ

sinβ

]2 [sinα

α

]2

. (7)

Here I0 is the intensity in the θ = 0 direction from one slit, β ≡ (πd sin θ) /λ and
α ≡ (πa sin θ) /λ, where θ is the angle of diffraction (see Figure 1). This equation is
rarely presented in introductory physics texts. For detailed information concerning it,
as well as diffraction in general, see e.g., Hecht [4] or Bennett [5], and for a definitive
treatment of diffraction at an advanced level using Fourier Transforms and Convolutions,
see Cowley [6].

Note that for the Fraunhofer diffraction approximation to be valid (the so-called “far-
field” situation), both the distance of the source and the screen on which the diffraction
pattern is formed from the diffracting aperture must be large compared to the slit sep-
aration d and slit width a. In this case we are dealing with plane waves.

For N = 1, equation (7) reduces to the single-slit pattern

Iθ = I0

[

sinα

α

]2

, (8)

and for N = 2, it reduces to the double-slit pattern

Iθ = 4I0 cos
2 β

[

sinα

α

]2

. (9)
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For two very narrow slits (a ≪ λ, sinα ≃ α) equation (9) yields the familiar Young’s
double-slit result

Iθ = 4I0 cos
2 β, (10)

as portrayed in Figure 1.
The first term in square brackets in equation (7) is usually referred to as the “inter-

ference term”, and the second term in square brackets is referred to as the “diffraction
envelope”. Clearly N affects the interference term only and λ affects both terms (through
β and α respectively) in an identical fashion, increasing λ broadening the component
of the pattern produced by each term. However, to some extent the interference and
diffraction terms are independent, the interference term being influenced by the slit sep-
aration, d, and is independent of the slit width, a, while the diffraction envelope term
is influenced by a and is independent of d. Thus it might be expected that changing d
or a independently would alter certain aspects of the overall pattern while leaving other
aspects unchanged.

We summarise here the principal characteristics of the diffraction pattern, which may
be verified by a close examination of equation (7) (to be discussed in detail in §4.2).

(i) The maxima of the interference term occur at d sin θ = mλ, where m = 0, ±1, ±2,
±3, ±4, · · ·. These are known as principal maxima and m is usually referred to as
the “order of interference”. The maximum for m = 0 (i.e., of order zero) is known
as the “central image”.

(ii) The minima of the diffraction envelope occur at a sin θ = pλ, where p = ±1, ±2,
±3, ±4, · · ·. (Note that p 6= 0; p = 0 corresponds to the central diffraction envelope
maximum.)

(iii) Between adjacent principal maxima, there occur N − 2 weak secondary maxima.

(iv) Suppressed principal maxima or “missing orders” occur if a principal maximum
and a minimum of the diffraction envelope occur at the same value of θ, leading
to the condition d/a = m/p, i.e., d/a is in the ratio of two integers. For example,
if d/a = 3, for p = ±1, m = ±3; for p = ±2, m = ±6; for p = ±3, m = ±9 etc.,
and the 3rd, 6th, 9th etc. principal maxima are suppressed.

3 The Excel Package and its use

3.1 Real-time simulation and the associated macro

We have chosen to use the system clock for timing purposes, as this has the advantage, at
least in principle, of producing real-time simulations. However, it must be acknowledged
that, because of the way PCs as opposed to dedicated machines function, troublesome
discontinuous (“jerky”) motions may sometimes occur using Excel 2007 on some ma-
chines running Windows XP. (This does not appear to occur using Windows 7.) We have
not noticed such effects using either Excel 2003 or Excel 2010. Nevertheless we note
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that other somewhat simpler methods may in fact be employed to produce a moving
animation or to move a point along a curve, and a number of examples of their use have
been reported in this journal (Benacka [7], Wischniewsky [8], Oliveira and Nápoles [9],
Miller and Sugden [10]).

We are not claiming that all simulations would benefit significantly from being pre-
sented in real-time, but rather are suggesting this as an alternative method, which may
be useful in certain situations. Aside from the obvious advantage of presenting a display
in real-time, such displays have a second advantage in that they run at the same speed
on all machines, and can therefore always be compared with the physical behaviour of
real objects which they purport to represent, irrespective of the machine characteristics.

While our waves/Fraunhofer diffraction simulations may not be the best examples
of the benefits of real-time simulations, an excellent example of a simulation that would
benefit is that of the oscillatory movement of a mass-spring system discussed by Oliveira
and Nápoles [9]. Although this is a most informative and excellently presented simulation
as is, the ability for it to run in real-time would be a useful addition. The actual run
time depends on the time discretization interval, the particular machine employed and
whether it is run under Excel 2003 or Excel 2007. If this simulation were in fact
to run in real-time, one could easily compare it directly with the behaviour of a real
mass-spring system with the same mass, spring constant, damping force and external
driving force. A second example which would clearly benefit from real-time operation is
the projectile motion discussed by Benacka [7], since one could (not so easily) compare
the position and time of a real projectile with the simulation.

In summary, we are not suggesting that the benefits in generating real-time simula-
tions on a PC always justify the effort, particularly as there are clearly some limitations
to the procedure, but rather that for certain applications there are significant advantages
with such displays.

The present simulation originally used the macro “Active-Clock” written by Aaron
T. Blood and available on-line [11], and this incremented the time in 1 s intervals.
However, this has been extensively modified and extended by a former student and the
present authors. It allows time to be stepped in both the forward and reverse directions in
increments of 0.1 s, stopped and reset back to zero. It should be emphasised that macros
are only used for controlling the time variable, all other processes being performed within
the spreadsheet itself. While the use of macros for the entire package no-doubt would
result in a much cleaner presentation, their more extensive use has the disadvantage that
students not familiar with macros could not easily make modifications.

The macro is written in Excel Visual Basic for Applications (VBA) (see e.g., Birn-
baum [12] for an introduction and Kofler [13] for an advanced treatment). In the Ap-
pendix we include an extract from the macro code, specifically the section which controls
time running in the forward direction. Note that the VBA “Timer” function, which
returns times read from the system clock to an accuracy of 0.1 s, is the key to its oper-
ation. Essentially all that the macro does is to update the time continuously, the zero
of time being taken as when the “Start” CommandButton (see §3.2 below) is pressed.
This time value is written into a single cell (cell “F4”) within the spreadsheet.
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Time, t Time Reset Reverse Start Stop

(s) Direction

Parameter Values (Fundamental)

88.0 Forward

A 1 = 1.0 m

A 2 = 1.0 m

k 1 = 2.0 rad / m

k 2 = 2.0 rad / m

 1 = 0.2 rad / sec

 2 = 0.2 rad / sec

! 1 = 0 rad

! 2 = 1.57 rad

Figure 2: Part of the control panel (slightly modified for illustrative purposes) for one
of the wave displays. The icons at the top, labelled Reset, Reverse, Start and Stop
respectively, control the motion of time. The parameter values for the two component
waves may be altered to suite by changing the values in the yellow boxes. Extra controls
are available to, for example, add extra harmonics or switch off either of the component
waves or their sum.

3.2 The control panels

Figures 2 and 3 show part of the parameter control section of one of the wave displays
and the Fraunhofer diffraction display respectively. Note that only the parameter values
in the yellow filled boxes should be changed in the first instance. It may be seen that we
have chosen not to use scroll bars. Such controls clearly do have advantages in limiting
the range of the variable which they relate to, and hence provide convenience of use.
However, if students are forced to change the axis scale (by selecting the relevant axis
and either selecting “Auto” scale or entering new limits), they may benefit by learning
a little more about the use of Excel itself, and from thinking about the physics of the
problem.

The time variable is crucial to the operation of the displays and, as noted above,
its value is placed within a specific cell in the spreadsheets. For the wave simulations
this cell is used directly in a straightforward manner in the relevant equations. For the
Fraunhofer diffraction simulations the time variable is used to adjust other parameters
(e.g., the slit width a, slit separation d, number of slits N and wavelength λ) by the
addition of a term to the parameter selected to be varied with time, with the facility to
switch off the time variation for that particular parameter (see Figure 3). For example
to adjust a, the appropriate cells contain expressions of the form

a(current) = a(initial) * (1 + 0.04*c*t),

where the numerical value of 0.04 was chosen to give an appropriate rate of change of a
with time, and the constant c = 0 or ±1 is used to switch off the variation or control the
direction of the change. In fact any value of c may be used, the absolute value influencing
the rate of variation of the parameter. Negative values of c have exactly the same effect
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Time, t Time Reset Reverse Start Stop

(s) Direction

Parameter Values ( )Initial Current  Values

14.9 Forward

Slits, N  = 10 N = 10

Wavelength,   = 0.6500 microns  = 0.6500 microns

Separation, d  = 4.0 microns d = 4.000 microns

Width, a  = 0.4 microns a  = 0.638 microns

d/a = 6.266

Vary N ,  , d  or a ? (ON/OFF)*  /d = 0.1625

Slits, N 0  / a = 1.0182

Wavelength,  0

Separation, d 0

Width, a 1

d/a (initial) = 10.000

 /d (initial) = 0.1625

 /a (initial) = 1.6250

* 0 = OFF, 1 = ON/increase, -1 = ON/decrease

  Increasing the absolute value increases the rate.

  Some results may be not be physically realistic.

Figure 3: Part of the control panel (slightly modified for illustrative purposes) for the
Fraunhofer diffraction pattern display. For the case shown, only the slit width, a, has
been allowed to vary with time, as reflected by the current parameter values appearing
at upper right, which indicate that a has increased from its initial value of 0.4 µm to
0.638 µm. Note also that d/a, a parameter of considerable significance in Fraunhofer
diffraction (see §2.2), has decreased from its initial value of 10.0 to 6.266. The current
time value of 14.9 s shown at upper left is of no significance; the time variable is simply
used to enable the selected parameter(s) to vary in real-time.
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as running time in the negative (“Reverse”) direction. For varying the number of slits,
because N may take on integral values only, the expression used was of the form

N(current) = INT(N(initial) * (1 + 0.2*c*t)),

where the numerical value of 0.2 was found to be appropriate, and again c = 0 or ±1.
The package itself consists of twelve separate spreadsheets, the first eleven of which

are devoted to waves of various kinds and the twelfth illustrates Fraunhofer diffraction.
The waves that may be illustrated include simple sine, square and triangular travelling
waves and their sum, Gaussian pulses and Gaussian wave packets, simple ocean waves,
beats and Lissajous figures. The Fraunhofer diffraction display enables the slit width a,
slit separation d, number of slits N , and wavelength λ, to be varied, and can show three
discrete wavelengths on the one display. A detailed “Information Sheet” is included in
the spreadsheet. Note that the first of the twelve sheets is in fact a simplified introductory
wave display in which the time t and position x may be stepped manually in discrete
amounts.

4 Some illustrative simulations

In this section we include some illustrative simulations obtained from the Excel package.
The actual displays shown here were generated under Excel 2003, and minor changes to
their appearance may occur under Excel 2007 or Excel 2010. It must be emphasised
that static displays, as presented in this paper, by their very nature do not convey the
same amount of information as do dynamic displays where physical quantities may be
varied in real-time. Nevertheless it is hoped that they do give some indication of the
simulations available.

4.1 Wave simulations

Figure 4 shows a “screen shot” or static display of y (x, t) at an arbitrary time (t =
88.0 s) for two sinusoidal waves travelling in opposite directions with the same speed,
the equations of the two waves being

y1 (x, t) = 1.0 sin (2x− 0.2t) , (11)

and
y2 (x, t) = 1.0 sin (2x+ 0.2t+ π/2) . (12)

The resultant, a standing wave, characterised by nodes (points of zero displacement at
all times) and anti-nodes (points of maximum amplitude of displacement), is also shown
in Figure 4. Figure 5 shows y (t) at x = 0 for the waves of Figure 4. Note that for
Figure 5, data extends only to t = 88.0 s, the time at which Figure 4 is shown. The y (t)
graph, although more difficult to generate, has proven to be particularly useful as we
have found that students find it quite a challenge to distinguish between the wave motion
as a function x for a fixed t and the motion as a function of t for fixed x. Also the y (t)
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-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
y

(x
,t

) 
(m

)

Position, x (m)

Travelling Waves - Periodic (Sine & Square)

88.0t(s) = 

Figure 4: Illustrative results showing a static display of two sine waves of equal am-
plitudes (A = 1 m), angular wavenumbers (k = 2 rad/m) and angular frequencies
(ω = 0.2 rad/s) but different phases (φ1 = 0 rad, φ2 = π/2 rad) travelling with equal
velocities in opposite directions, as indicated by the arrows. Their sum, a standing wave,
is also shown. The filled circles at x = 0 and x = 2.76 represent markers used to high-
light the motion as a function of t at fixed values of x, that at x = 2.76 corresponding
approximately to a node in the standing wave (see text). The display is at an arbitrary
time of t = 88.0 s, the value of t shown in the display being automatically updated as
the display changes.

curve for fixed x is of help in understanding the concepts of transverse particle velocity
and acceleration [see equations (4) and (5)], the former the students often confuse with
the wave or propagation velocity.1

Figure 6 shows the transverse particle velocity, vT, as a function of time at x = 0,
appropriate to the motion of Figure 5. Being the derivative of the displacement and
hence being cosine functions [see equation (4)], these curves are 90 degrees out of phase
with the corresponding curves of Figure 5, as expected.

Although Figures 4, 5 and 6 are for sinusoidal waves, the display is capable of syn-
thesizing square and triangular waves, generated by adding their Fourier components,

1The y (t) display was more difficult to generate than the y (x, t) display because a fixed length array
was employed and the entire array had to be re-plotted for each time increment. This meant that array
elements beyond the current time element were not to be plotted. This was accomplished by initializing
the entire array to “#N/A(1)” after each time increment. Sometimes breaks occur in this display,
depending at least partly on computer processing power and screen update rates. Although the y (t)
display works adequately, it is quite possible that it could be produced in a much cleaner manner using
a macro.
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Figure 5: The motion as a function of time at x = 0, shown as static display, for the
waves of Figure 4, up to t = 88.0 s (indicated by the filled circle markers), the time
corresponding to that in Figure 4.
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Figure 6: The transverse particle velocity vT, as a function of time at x = 0, correspond-
ing to the curves of Figure 5.
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Travelling Waves - Gaussian Wave Packets
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Figure 7: Two Gaussian wave packets travelling in opposite directions with the same
speed and about to pass through each other. The arrows indicate the velocities of the
two wave packets and the individual waves passing through each wave packet.

where the number of harmonics included may be varied (see e.g., Hecht [4]).
Figure 7 shows two Gaussian wave packets, a broad and a narrow one, travelling in

opposite directions with equal speed and about to pass through each other. The relevant
equations to the two packets [see equation (6)] are

y1 (x, t) =
5 exp

[

−1
2
{(x− 0.1t− 1) /1.2}2

]

1.2 (2π)1/2
cos (14x− 6t) , (13)

and

y2 (x, t) =
1.5 exp

[

−1
2
{(x+ 0.1t− 7) /0.5}2

]

0.5 (2π)1/2
cos (14x+ 6t) . (14)

The Gaussian envelopes each travel with a speed whose magnitude is 0.1 m/s, while the
individual cosine waves pass through their respective envelopes, the magnitude of their
speed being ω/k = 6/14 ≃ 0.429 m/s.

Lissajous figures or curves arise when oscillations at right angles are combined, and
are usually displayed on cathode ray oscilloscopes. Figure 8 shows a Lissajous figure,
formed by the two waves

y (x, t) = 1.8 sin (8x− 0.6t) , (15)

and
x (y, t) = 1.8 sin (2y − 0.2t + π/2) . (16)

Note that for this case ky/kx = 8/2 = 4, and in the (improvised) implementation em-
ployed here it is in fact the angular wavenumber k, (sometimes referred to as a “spatial
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Lissajous Figures (sine & square waves)
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Figure 8: Example of a Lissajous figure. For the case shown, ky/kx = 4, where ky and
kx are the angular wavenumbers of the constituent waves (not shown here) in the y and
x directions respectively. The filled circle is a marker which traces out the curve and
represents the current position. This figure is actually for two sine waves, but square
waves, up to the 29th harmonic, may be displayed.

frequency”), rather than the angular frequency ω, which plays the primary role in deter-
mining the exact shape of the Lissajous figure formed. Interested readers are referred to
the excellent Lissajous figure simulation of Wischniewsky [8], which documents mathe-
matical details not included in the present work.

4.2 Fraunhofer diffraction simulations

Figure 9 shows the Fraunhofer diffraction pattern for two slits of finite width [see equa-
tion (7] or (9)), the well-known cos2 fringes of Young’s double-slit experiment being
modulated by the diffraction envelope. For the case shown d/a = 3, and the 3rd, 6th,
9th etc. orders of the interference pattern are “missing”, being “suppressed” by the
diffraction envelope.

Note that d/a = 1 means that the slits just touch and the pattern becomes that of
a single-slit of width, in general, Na. This can be demonstrated using the parameter
values of Figure 9 and allowing either d to decrease or a to increase until d/a = 1. It
should be stressed, however, that some parameter values possible with the simulation
are not physically reasonable. For example it is possible to set d < a or N < 1, leading
to unreasonable results (N is, however, restricted to integral values, as noted in §3.2).

Figure 10 shows an identical situation to Figure 9, but with N increased from 2 to
4. (In the Excel package this is accomplished by either manually changing N from 2
to 4, or better, by allowing the time variable to increase N automatically in real-time.)
The interference maxima are sharpened (and are now called principal maxima) and in
between adjacent principal maxima there appear N − 2 = 2 weak secondary maxima.
However, it may be seen that there are no other changes to the pattern—the diffraction
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Mutiple slit Fraunhofer Diffraction Pattern, [sin(N  )/sin( )]
2

. [sin(! )/! ]
2
, plotted as a function of 

sin(" #, "  being the angle of diffraction, and normalized to an intensity of unity.

0.0

0.2

0.4

0.6

0.8

1.0

-0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20

sin(" )

N
o

rm
a

li
z
e

d
 I

n
te

n
s

it
y

, 
I(
"

)

2N =

0.5500$ (%m) =

12.000d (%m) =

4.0000a (%m) =

Figure 9: Example of a Fraunhofer diffraction pattern for two slits (i.e., N = 2) with
λ = 0.55 µm, d = 12 µm and a = 4 µm. Hence d/a = 3 and the missing orders are
therefore the 3rd, 6th, 9th etc. Note that the values of N , λ, d and a shown in the
display are automatically updated as the display changes.

envelope (governed by the slit width, a) remains unchanged and the positions of the
principal maxima (governed by the slit separation, d) also remain unchanged.

Figure 11 shows an identical display to Figure 10 but with d/a increased from 3 to
4 by the increase of the slit separation d, from 12 µm to 16 µm. Note that increasing

d decreases the separation between the principal maxima, resulting in this case in the
suppression of the 4th, 8th, 12th etc. principal maxima. This illustrates the general
rule that increasing “something” in “object space” decreases “something” in “diffraction
space”. (In the Excel package, as noted above for N , increasing d may be accomplished
by either manually changing d from 12 to 16 or allowing the time variable to increase d
automatically in real-time.)

Figure 12 shows a similar display to Figure 11 but with N increased to 20 and for
three discrete wavelengths, λ = 0.45, 0.55 and 0.65 µm. It may be seen that:

(i) The secondary maxima become of less importance as N is increased, becoming
essentially of zero intensity for N very large. Also, when N becomes very large the
principal maxima become very narrow and sharp, essentially becoming a spectral
line if the source is monochromatic. This is the basis of the diffraction grating.

(ii) The interference pattern for each wavelength is modulated by its own diffraction
envelope, increasing in width with increase of wavelength.

(iii) There is the possibility of over-lapping orders. Over-lapping orders result in the
spectrum in one order being corrupted by the spectrum from another order, thereby
causing an irretrievable loss of information. This is more likely to occur in the
higher orders and is obviously undesirable.
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Mutiple slit Fraunhofer Diffraction Pattern, [sin(N  )/sin( )]
2
. [sin(! )/! ]

2
, plotted as a function 

of sin(" #, "  being the angle of diffraction, and normalized to an intensity of unity.
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Figure 10: As for Figure 9 (i.e., λ = 0.55 µm, d = 12 µm, a = 4 µm and hence d/a = 3)
but with N increased from 2 to 4, showing i) the sharpening of the principal maxima,
and ii) the appearance between adjacent principal maxima of N −2 = 2 weak secondary
maxima.

Mutiple slit Fraunhofer Diffraction Pattern, [sin(N  )/sin( )]
2

. [sin(! )/! ]
2
, plotted as a 

function of sin(" #, "  being the angle of diffraction, and normalized to an intensity of unity.
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Figure 11: As for Figure 10 (i.e., N = 4, λ = 0.55 µm and a = 4 µm) but with d
increased from 12 µm to 16 µm resulting in d/a increasing from 3 to 4. The 4th, 8th,
12th etc. principal maxima are now suppressed (by the diffraction envelope).
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Mutiple slit Fraunhofer Diffraction Pattern, [sin(N  )/sin( )]² .[sin(! )/! ]², plotted as a 

function of sin(" #, "  being the angle of diffraction, and normalized to an intensity of unity. 

This diagram is for three discrete wavelengths.
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Figure 12: As for Figure 11 (i.e., d = 16 µm and a = 4 µm, and hence d/a = 4) but
with N increased to 20. In addition three discrete wavelengths were used, λ = 0.45, 0.55
and 0.65 µm. Note that i) each interference pattern is modulated by its own diffraction
envelope, and ii) that so-called “over-lapping orders” almost occurs; the third order blue
line almost overlaps the second order red line. If this were to occur the second order
spectrum would be contaminated or corrupted (as in fact would all higher orders).

Thus, increasing N to large enough values results in a spectrum of the source being
produced in each order. A finer point regarding Figure 12 is that the central image
(the principal maximum for m = 0, i.e., for sin θ = 0) should be uncoloured, since all
wavelengths undergo constructive interference at this point generating white light. A
limitation of the present display is that the colour actually shown for the central image
is that of the last wavelength plotted (0.55 µm in this case).

5 Experiences in the classroom

One of us (GR) has presented a course in “Wave Motion and Optics” in first year physics
to engineering students for many years. Typically the class size is more than 100 students
and so it is difficult to generate personal interaction. The wave motion and optics course
is usually presented as the second topic in the course, following on from the mechanics
section. The students generally find the mechanics relatively easy, surviving largely on
the basis of their previous knowledge of physics acquired in the last year of secondary
school. The wave motion and optics section represents a quantum jump in difficulty for
them, partly because the level of mathematics is higher, involving partial derivatives in
the waves section, and partly because it is new material!

The waves section and the physical (as opposed to geometrical) optics section they
find the most difficult. In 2005 some of the demonstrations described here were first
shown in class to the students and it caused a dramatic increase in their interest in the
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subject as a whole. Evidence for this was provided by the following: i) they immediately
paid attention to the demonstrations (they woke up!), ii) the fact that a significant num-
ber of students requested copies of the simulations after the lectures (the demonstrations
have not yet been made available on the web, although they have been provided to those
who specifically requested them), iii) a number of students suggested other simulations
that could be incorporated, and iv) one of the students (an Officer in the Australian
Army) offered to improve the original macro controlling the timing, which at that time
stepped in 1 second time intervals. Presentation of the simulations in subsequent years
has produced similar enthusiastic reactions.

The demonstrations involving two waves passing through each other and the gen-
eration of their resultant disturbance were particularly useful, and appeared to help
the students significantly in their understanding of the principal of linear superposi-
tion. However, notwithstanding the usefulness of the wave simulations, the Fraunhofer
diffraction pattern simulations probably attracted the most interest as these enabled the
students to see clearly how the various parameters in “object space” affected the various
characteristics of the diffraction pattern in “Fourier transform” or “diffraction space”.
For example the slit width a, influences the diffraction envelope, but not the position of
the interference maxima, the slit separation d, influences the positions of the interference
maxima but not the diffraction envelope, and the wavelength λ, influences the extent of
the entire diffraction pattern.

So in summary it appears that the simulations were useful in significantly raising the
students’ level of interest and also in helping their physical understanding of the subject
material.

6 Summary and conclusions

In this paper we have presented an Excel package suitable for displaying physical
quantities which vary in time, by use of a macro that interrogates the system clock. Being
written in Excel it should be useful to those without access to more specialized packages
such as Matlab. The package is well suited to displaying physical phenomena often
encountered in first year physics courses in particular, for example wave phenomena in
general and Fraunhofer diffraction patterns. However, other potential users, particularly
those interested in real-time simulations, may find additional applications in which the
time parameter may be employed directly or used to control the variation of other
parameters. An obvious example is simple harmonic motion, including damped simple
harmonic motion and forced oscillations. One could allow the damping to vary with
time, or the frequency and amplitude of an external driving force to vary with time
thereby illustrating the conditions for resonance.

The package has been used to demonstrate wave motion and Fraunhofer diffraction
patterns to first year physics students for a period of about seven years and, as judged by
their reactions in class and also their requests for copies of the package, it has contributed
significantly to their interest and hence understanding of these phenomena.
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Appendix

Below is an extract from the VBA macro code used to facilitate real-time simulations.
The subroutine “stopwatch” shown below is assigned to the “Start” CommandButton
(see §3.2). In addition the subroutines “myStop”, “myReSet” and “stopwatchreverse”
are assigned to the “Stop”, “Reset” and “Reverse” CommandButtons respectively. (See
the full listing of the VBA macro code for these latter three subroutines.)

Sub stopwatch()

’Seconds and fractions of seconds Timer (accuracy: 0.1 seconds).

’

’Subroutine "stopwatch" is assigned to "Start" CommandButton.

’

Dim Start, Finish, TotalTime

’

’Set timer. Write current time into "Start" to facilitate calculation

’of total time. The "Timer" function returns the number of seconds

’elapsed since midnight, to an accuracy of 0.1 seconds.

Start = Timer

’

’Set "StopSW" and "ReSetSW" to "False".

’

StopSW = False

ReSetSW = False

’

’Times will be written into cell "f4".

’Write current value of contents of cell "f4" into "myTime".

myTime = Range("f4").Value

Range("f4").Select

’

myStart:

This is the start of a "Loop" and starts the time running in the

’positive time direction.

’

’Yield to other processes.

DoEvents

’

’Calculate time.

’Write current time into "Finish" in order to calculate total time since

’"Start" pressed.

Finish = Timer

TotalTime = Finish - Start

’

’The "DoEvents" immediately below was critical to the successful running

’under Excel 2007.

DoEvents

’

’Add "TotalTime" (time elapsed since cell "f4" last updated) to "myTime"

’(current contents of cell "f4"), and show time on sheet.
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Range("f4").Value = Format(myTime + TotalTime, "0.0")

’

’Test for "ReSet" and if "True" set cell "f4" to "0", clear cell "g4"

’and set "StopSW" to "True".

If ReSetSW = True Then

DoEvents

Range("f4").Value = 0

Range("g4").Value = ""

StopSW = True

End If

’

’Test for "Stop". If "False" write "Forward" into cell "g4", to indicate

’time is running in the forward direction, and loop back to "myStart".

’If "True", clear cell "g4" and quit.

If StopSW = False Then

DoEvents

Range("g4").Value = "Forward"

’Go back to myStart if neither "Reset" nor "Stop" has been pressed.

GoTo myStart

Else

Range("g4").Value = ""

End If

End

End Sub
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