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Spreadsheet Implementations for Solving Boundary-Value Problems in
Electromagnetics

Abstract
Electromagnetics is arguably one of the most challenging courses in any electrical engineering curriculum. A
solid foundation in vector calculus and a good intuition based on physical grounds are the normal
requirements for a student to successfully complete this course. This paper presents a simple, yet powerful
approach to introducing boundary-value problems arising in electrostatics. The principles of electrostatics find
numerous applications such as electrostatic machines, lightning rods, gas purification, food purification, laser
printers, and crop spraying, to name a few.

This paper focuses on the use of spreadsheets for solving electrostatic boundary-value problems. Sample
problems that introduce the finite difference and the finite element methods are presented. The geometries
included in the problems are sufficiently nontrivial for hand calculation or analytical solution, but reasonably
manageable using spreadsheets. Although specialized software is available for this purpose, oftentimes such
sophistication tends to obscure the mathematical underpinnings of the solution methods. Spreadsheets offer a
transparent alternative − perhaps proximate to hand calculation − for students to better appreciate the
numerical methods for solving boundary-value problems.
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1. Introduction 

Many phenomena arising in science and engineering are modeled by 

partial differential equations (PDEs).  In such cases the quantity of interest 

(e.g., temperature, potential, or displacement) is a function that depends 

on more than one variable (typically, space variables x, y, z and the 

temporal variable t). The heat equation, wave equation, and Laplace’s 

equation are among the most prominent PDEs that undergraduate 

engineering students will encounter. The usual practice is to introduce the 

student to the analytical solution of these equations via the method of 

separation of variables. Under the assumption of linearity, the method 

naturally leads to the formulation of solutions as Fourier series 

expansions.  

Treatment of PDEs and boundary-value problems (BVPs) may be 

found in many standard books [2 – 4, 7]. Reference 2 provides a very 

accessible presentation of the topic, while references 3, 4, and 7 provide a 

more concise presentation geared toward compendium courses in 

engineering mathematics. This paper will not expound the theories that 

provide the mathematical underpinnings of PDEs; instead, the paper 

emphasizes numerical solutions to PDEs and suggests implementations 

through spreadsheets. 

This paper focuses on certain numerical methods for solving PDEs; in 

particular, the finite difference and the finite element methods are presented in 

the context of problems arising in electrostatics. Much of the development 

of these methods will follow those found in electromagnetics books [8]. 

The examples presented in this paper include geometries that are 

sufficiently nontrivial for hand calculation or analytical solution, but 

reasonably manageable by using spreadsheets. Although specialized 

software is available for this purpose, oftentimes such sophistication tends 

to obscure the inner workings of the numerical methods employed in the 

solution of PDEs. Spreadsheets offer a transparent alternative − perhaps 

proximate to hand calculation − for students to better appreciate the 

numerical methods for solving PDEs and BVPs.  

The use of spreadsheets in teaching finite element analysis has been 

reported in the literature [9].  Reference 9 presents finite element analysis 
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in the context of a plane truss structure, wherein the objective is the 

determination of stresses given certain strains; the successful use of 

spreadsheets for introducing finite element analysis in an undergraduate 

mechanical engineering class is also discussed therein. A solution to the 

heat equation using spreadsheet models and 3D graphics is provided in 

[6]. Likewise, a menu-driven spreadsheet for solving electromagnetics 

problems can be found in [10]. In this paper, however, solutions to 

electromagnetics problems are presented in a manner that makes no use of 

macro programming; besides, this paper introduces finite element 

analysis via spreadsheets. 

To the best of the authors’ knowledge, spreadsheets are more 

prevalent in mechanical and civil engineering. The uses of spreadsheets in 

electrical engineering appear to be more limited – perhaps in this branch 

of engineering the use of specialized software is more consonant with the 

dynamic nature of the field. However, educators and students who wish 

to stress the importance of fundamentals, rather than effortless and 

expedite solutions, may want to consider using spreadsheets as a viable 

tool. Spreadsheets can offer a reasonable tradeoff between user-defined 

programming and specific-purpose software.  It is in this spirit that this 

paper is presented, continuing the efforts initiated by the authors in a 

power systems course [5]. 

This paper is organized as follows. Section 2 presents the finite 

difference method for solving an electrostatic problem and includes the 

corresponding spreadsheet implementation.  Section 3 presents the finite 

element method along with a spreadsheet implementation of the method. 

Section 4 compares the results obtained by each method. Section 5 

discusses the pedagogical advantages of the spreadsheet implementations. 

Finally, Section 6 gives concluding remarks. 

2. The finite difference method 

The finite difference method (FDM) is conceptually simple.  The problems 

to which the method applies are specified by a PDE, a solution region 

(geometry), and boundary conditions.  Only a brief outline of the method 
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is given in this paper; for more detailed derivations the reader may 

consult [8]. The finite difference method entails three basic steps:  

(1) Divide the solution region into a grid of nodes. Grid points are 

typically arranged in a rectangular array of nodes. 

(2) Approximate the PDE and boundary conditions by a set of linear 

algebraic equations (the finite difference equations) on grid points 

within the solution region. 

(3) Solve this set of linear algebraic equations. 

The method is illustrated with an example arising in electrostatics. 

Consider the charge-free region depicted in Figure 1. The region has 

prescribed potentials along its boundaries.  The region is divided into a 

rectangular grid of nodes, with the numbering of free nodes as indicated 

in the figure.   

 

 

Figure 1:  Charge-free region showing prescribed potentials at the boundaries and 

rectangular grid of free nodes to illustrate the finite difference method. 
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The potential V = V(x,y) at an interior point (x,y) within the region is 

governed by the two-dimensional Laplace’s equation 

��� �  ���
�	�  
  ���

��� � 0.          (1) 

Let the location of an interior grid point be identified by a pair of 

integers (i,j), where i and j represent the position along the horizontal and 

vertical directions, respectively. For a grid having equal horizontal and 

vertical step sizes, the potential is given by the finite difference equation 

 ��,� �  �
� �����,� 
 ����,� 
  ��,��� 
  ��,����.    (2) 

In essence, the potential at an interior grid point is the average of its 

four closest neighboring grid points that lie along the horizontal and 

vertical grid lines that intersect at the point.  For example, the finite 

difference equation for node 4 in Figure 1 is 

�� �  �
� ��� 
 0 
  �� 
  ���.     (3) 

Similar equations are formulated for the remaining free nodes leading 

to a system of linear algebraic equations. This system of equations may be 

solved by a variety of methods.   In this section the Gauss-Seidel method 

is implemented in a spreadsheet to solve this system of equations.  The 

Gauss-Seidel method is a relatively simple iterative method for solving 

systems such as those encountered in the finite difference formulation. 

The steps to implementing the spreadsheet for FDM are given below:  

(1) The first step in the spreadsheet implementation is to input the 

prescribed potentials at the boundaries of the solution region. This 

step is shown in Figure 2. The prescribed potentials occupy the cell 

range C6:C8 and correspond to the potentials (0 V and 100 V) given 

in Figure 1. The user may change the numerical values of these 

potentials to accommodate different boundary conditions. 
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Figure 2:  Input section of spreadsheet implementation of the finite difference method. 

(2) The next step is the implementation of the Gauss-Seidel method for 

solving the finite difference equations. There are 6 potentials at 

interior grid points that need to be determined (nodes 1 through 6 

in Figure 1). These have been labeled V1 through V6 and occupy the 

cell range B14:G14 in Figure 3. To start the iterations initial estimates 

are given in B15:G15; in this case all initial estimates have been set to 

zero. 

 

 

Figure 3:  Screenshot showing the Gauss-Seidel iterations of the difference equations. 
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The cell range B16:G16 in Figure 3 implements the difference 

equations which are then solved using the Gauss-Seidel method.  

For example, for node 4, cell E16 contains the Microsoft Excel 

formula that implements Equation (3) 

=SUM($C$6,F15,B16,G15)/4. 

Observe that the formula in cell E16 makes absolute references 

to a node with prescribed potential; this prescribed potential must 

remain constant throughout the Gauss-Seidel iterations. Making 

the appropriate absolute references will prevent spurious results 

from occurring when formulas are copied to other cells. 

(3) The final step is to reproduce the formulas in cell range B16:G16 by 

using the Copy command of Microsoft Excel. The formulas have 

been copied over the cell range B17:G25.  It can be observed from 

Figure 3 that convergence is reached after 10 iterations for a 

precision index of 10-2.  

3.   The finite element method 

The finite element method (FEM) is a numerical technique for solving 

PDEs. FEM was originally applied to problems in structural mechanics. 

Unlike FDM, FEM is better suited for solution regions having irregularly 

shaped boundaries. The finite element analysis involves four basic steps:  

(1) Divide the solution region into a finite number of elements. The 

most common elements have triangular or quadrilateral shapes. 

The collection of all elements should resemble the original region as 

closely as possible. 

(2) Derive governing equations for a typical element. This step will 

determine the element coefficient matrix. 

(3) Assemble all elements in the solution region to obtain the global 

coefficient matrix. 

(4) Solve the resulting system of equations. 
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Again, the method is illustrated with an example. Consider the same 

charge-free region shown in Figure 1. The region is divided into 25 equal 

triangular elements as indicated in Figure 4. The elements are identified 

by encircled numbers 1 through 25. In this discretization there are 21 

global nodes numbered 1 through 21. In the paragraphs that follow, a 

brief outline of FEM is provided; for detailed derivations the reader may 

consult [8]. 

 

 

Figure 4:  Finite element arrangement for electrostatic problem. 

For each element e the following quantities are computed 

�� �  �� � ��, �� �  �� �  ��, �� �  �� �  ��,�� �   � �   �, �� �   � �   �, �� �   � �  �,   (4) 
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where the subscripts refer to the local node numbers 1, 2, and 3 of element 

e. For example, in Figure 4, element 20 has global nodes 14, 18, and 17, 

which correspond, respectively, to local nodes 1, 2, and 3.  Local node 

numbering is arbitrary; however, local node numbers must be assigned so 

that global nodes associated with an element are traversed in a 

counterclockwise sense. The coordinates (in meters) of nodes 14, 18, and 

17 are (x1,y1) = (0.4, 0.4), (x2,y2) = (0.4, 0.6), and (x3,y3) = (0.2, 0.6), 

respectively. These sets of coordinates yield P1 = 0.0, P2 = 0.2, P3 = −0.2, Q1 = 

−0.2, Q2 = 0.2, and Q3 = 0.0. 

With Pi and Qi (i = 1, 2, 3) for element e thus computed, the entries of 

the 3 x 3 element coefficient matrix are then given by 

 !���"� �  �
�#  $���� 
 ����%         �&, ' � 1, 2, 3�   (5) 

where  

 + �  �
�  ,���� �  ����-.      (6) 

As an example, for elements 20, 21 and 24, the element coefficient 

matrices computed according to Equations (5) and (6) are, respectively,   

!��.� �  / 0.5 �0.5 0.0�0.5 1.0 �0.50.0 �0.5 0.51,        (7.a) 

 

!���� �  / 1.0 �0.5 �0.5�0.5 0.5 0.0�0.5 0.0 0.51,       (7.b) 

 

and 

 

!���� �  / 1.0 �0.5 �0.5�0.5 0.5 0.0�0.5 0.0 0.51.        (7.c) 

The global coefficient matrix is then assembled from the element 

coefficient matrices. Since there are 21 nodes, the global coefficient matrix 

will be a 21 x 21 matrix. In the following, the computations of one diagonal 
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and one off-diagonal entries are shown.  For example, node 18, which 

corresponds to the !�2,�2 entry in the global coefficient matrix C, belongs to 

elements 20, 21 and 24; since node 18 is assigned local node number 2 in 

elements 20 and 24, and local number 3 in element 21 (as seen in the 

middle table of Figure 5), the corresponding global coefficient is 

!�2,�2 �  !�,���.� 
  !�,����� 
  !�,����� � 1.0 
  0.5 
 0.5 � 2.0.   (8) 

 

Figure 5:  Input section of finite element analysis for electrostatic problem: (left) global 

node x and y coordinates; (middle) triangular element – global and local node 

correspondence; (right) nodes in the finite element mesh having prescribed potentials. 
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For the off-diagonal entry !��,�2, global link 14−18 corresponds to local 

link 1−2 of element 20 and local link 1−3 of element 21 and hence 

   !��,�2 �  !�,���.� 
  !�,����� � �0.5 �  0.5 � �1.0.    (9) 

Defining the vector of potentials 45 and 46, where the subscripts f and 

p refer to nodes with free (unknown) potentials and prescribed potentials, 

respectively, the global coefficient matrix is then partitioned accordingly 

and the unknown potentials are obtained from 

45 �  �!55��!5646.       (10) 

The spreadsheet implementation of the finite element solution involves 

the following steps: 

(1) Generate the input data section as shown in Figure 5. The input 

data consists of three tables: global node x and y coordinates; global 

and local node correspondence for each element; and list of nodes 

with prescribed (fixed) potentials. 

(2) For each element, compute the values of Pi and Qi from Equation (4) 

and obtain the element coefficient matrix from Equations (5) and 

(6), as shown in Figure 6. Notice that the rows for elements 4 

through 23 were intentionally hidden so as to render a more 

manageable table.  
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Figure 6:  Computation of element coefficient matrices !�"�. 

The table in Figure 6 is constructed as follows: 

a. For element 1, global node information is linked to local node 

numbers. The link is implemented in the cell range O19:O21 via 

the Microsoft Excel VLOOKUP function. More precisely, cells 

O19, O20, and O21 contain, respectively, the formulas 

=VLOOKUP($M19,$E$19:$H$43,2) 

=VLOOKUP($M20,$E$19:$H$43,3) 

=VLOOKUP($M21,$E$19:$H$43,4) 

which search the item in column M (element number) and return 

the global nodes from the lookup table $E$19:$H$43.  

b. The VLOOKUP function is invoked once again to retrieve global 

node coordinates. In the cell range P19:Q21 the following 

formulas implement this task: 

=VLOOKUP($O19,$A$19:$C$39,2)        =VLOOKUP($O19,$A$19:$C$39,3) 

=VLOOKUP($O20,$A$19:$C$39,2)        =VLOOKUP($O20,$A$19:$C$39,3) 

=VLOOKUP($O21,$A$19:$C$39,2)        =VLOOKUP($O21,$A$19:$C$39,3) 
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c. Cell ranges R20:T20 and V20:X20 compute Pi and Qi (i = 1, 2, 3) 

according to Equation (4) with the Excel formulas 

=Q20-Q21 =Q21-Q19 =Q19-Q20 

=P21-P20 =P19-P21 =P20-P19 

d. Cells U20 and Y20 are optional. These cells simply compute P1 + 

P2 + P3 and Q1 + Q2 + Q3, as both sums must equal zero.  

e. Cell Z20 implements Equation (6): 

=(S20*X20-T20*W20)/2 

f. The cell range AA19:AC21 computes the entries of the coefficient 

matrix for element 1 from Equation (5). For example, the entry !�����
 is computed by the following Excel formula: 

=(R20*S20+V20*W20)/(4*Z20) 

g. The formulas in cell range N19:AC21 are copied over the cell 

range N22:AC93 to complete the computation of the remaining 

element coefficient matrices. 

(3) The assembly of the global coefficient matrix is shown in Figure 7. 

The numbers in AF18:AZ18 and AE19:AE39 refer to global node 

numbers. The coefficients of the global matrix occupy cell range 

AF19:AZ39, which contain formulas similar to those in Equations (8) 

and (9). For example, the coefficient !�2,�2 in cell AW36 contains the 

formula 

=AB77+AC81+AB89, 

while that of !��,�2 in cell AW32 is 

=AB76+AC79. 
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Figure 7:  Screenshot showing global coefficient matrix C. 

(4) The matrices !55  and !56 are formed by extracting the appropriate 

rows and columns from the global coefficient matrix C. In this case, 

nodes 8, 9, 10, 13, 14, and 17 are the free nodes, while 1, 2, 3, 4, 5, 6, 

7, 11, 12, 15, 16, 18, 19, 20, and 21 are the nodes with prescribed 

potentials. The result is shown in Figure 8.  

(5) The final solution is obtained by using the matrix capabilities of 

Microsoft Excel. Although the matrix capabilities of Excel are fairly 

limited compared to those available in Matlab, Mathematica, or 

Maple, the ones provided by Excel are quite sufficient for the FEM 

implementation proposed in this paper. In particular, the 

spreadsheet functions MINVERSE (matrix inverse) and MMULT 

(matrix multiplication) are used in the implementation of Equation 

(10). This step is shown in Figure 9. 
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Figure 8:  Matrices !55  and !56 obtained from global coefficient matrix C. 

 

 

Figure 9:  Final calculations section of finite element solution to electrostatic problem. 
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The implementation of Equation (10) has been broken down 

into three parts: (i) computation of the inverse of the !55 matrix 

(this has been labeled +�� �  !55�� in Figure 9); (ii) computation of an 

intermediate vector 7 �  �!5646; and (iii) computation of vector of 

potentials at free nodes 45 � +��7. 

4.   Discussion of results 

In Sections 2 and 3 spreadsheet implementations of FDM and FEM 

were presented. As indicated in Table 1, the potentials at the free nodes 

computed by both methods compared fairly well. The node numbers in 

the table for FDM correspond to those in Figure 1, while those for FEM 

correspond to the node numbers shown in Figure 4. A better agreement 

can be obtained if more iterations of the Gauss-Seidel method are 

performed; this can be easily accommodated by copying a complete row 

of existing formulas, say cell range B25:G25 in Figure 3, to new rows until a 

desired level of agreement is achieved.  

Table 1:  Comparison of results obtained by FDM and FEM.  

Finite difference Finite element 

Node Potential (V) Node Potential (V) 

1 18.180 8 18.182 

2 36.363 9 36.364 

3 59.091 10 59.091 

4 36.363 13 36.364 

5 68.181 14 68.182 

6 59.091 17 59.091 

 

In general, FEM can better handle complex geometries and boundary 

conditions, while FDM is more suitable for solution regions having a 

certain degree of regularity. The tradeoff between the simplicity and the 

generality of the methods is evidenced by the amount of programming 

required by each method. 
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The potential distribution may be conveniently displayed graphically 

as depicted in Figure 10. The 2D chart on the left of the figure shows the 

potential distribution using conditional formatting for the color scheme, as 

demonstrated in [1]. The 3D chart on the right simply shows the potential 

distribution, with the heights of the cylinders being proportional to the 

value of the calculated potentials. 

 

 

 

Figure 10:  Graphical display of potential distribution. 

5.   Pedagogical advantages of spreadsheet implementations 

In light of the spreadsheet implementations presented in this paper, 

the following remarks could be made: 

(i) Setting up spreadsheets demands precise attention to detail from 

the user. Incorrect use of the Copy command or improper 

referencing of cells will lead to erroneous results. Attention to 

detail is a desirable skill that students should hone.  Spreadsheets 

offer an environment in which such skill can be honed; the use of 

highly specialized software without proper understanding of the 

underlying methods may at times impede development of the skill 

in the student.  
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(ii) Spreadsheets offer a reasonable tradeoff between the sophistication 

of specific-purpose software and programming. The amount of 

programming in a typical spreadsheet is minimal, often reduced to 

formula editing and copying. This approach allows students to 

concentrate on analysis and interpretation of results rather than on 

time-consuming code debugging. 

(iii) The spreadsheet implementations mimic hand calculations. The 

notepad-like interface of spreadsheets allows the student to keep 

track of results and ascertain convergence. Because of the 

resemblance to hand calculations, the spreadsheet approach may 

provide the student with a deeper understanding of the numerical 

methods, which could be obscured if specific-purpose software is 

used without proper knowledge of such methods.  

(iv) The spreadsheets implementations may be presented to students to 

introduce numerical methods for solving BVPs. Students may be 

asked to implement similar spreadsheets to solve other types of 

PDEs and BVPs. The ambitious students may even improve upon 

the spreadsheets presented in this paper by macro programming or 

creative use of other Microsoft Excel functions. 

In fairness to specific-purpose software designed for BVPs modeled by 

PDEs, it can be argued that such programs serve other purposeful needs, 

namely, handling large-scale systems, accommodating highly irregular 

geometries, and handling complex boundary conditions. Problems of 

considerable size and high complexity may not be handled efficiently by 

spreadsheets. 

6.   Conclusions 

This paper presented spreadsheet implementations of two numerical 

methods for solving electrostatics problems. The spreadsheet approach is 

ideal if the emphasis is on understanding of numerical techniques. 

Spreadsheets may be considered as a viable alternative to enhancing 

education in other subjects and engineering fields. 
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The interested reader may obtain a copy of the Microsoft Excel file that 

implements the FDM and FEM solutions by sending an e-mail to 

mlau@suagm.edu.  

References 

[1] Abramovich, S. and Sugden, S.  Spreadsheet conditional formatting: an 

untapped resource for mathematics education, eJournal of Spreadsheets in 

Education, Vol. 1, Issue 2, Article 3, 2004.  

Online: http://epublications.bond.edu.au/ejsie/vol1/iss2/3. 

[2] Asmar, N.  Partial differential equations with Fourier series and boundary value 

problems, 2nd edition, Prentice Hall, 2004. 

[3] Greenberg, M.  Advanced engineering mathematics, 2nd edition, Prentice Hall, 

1998. 

[4] Kreyszig, E.  Advanced engineering mathematics, 9th edition, John Wiley & Sons, 

2006. 

[5] Lau, M. A. and Kuruganty, S. P. Spreadsheet implementations for solving 

power-flow problems, eJournal of Spreadsheets in Education, 3(1): 27-45, August 

2008.  Online: http://epublications.bond.edu.au/ejsie/vol3/iss1/3. 

[6] Neuwirth, E. and Arganbright, D.  The active modeler:  mathematical modeling with 

Microsoft Excel, 141-155, Brooks/Cole, 2004.   

[7] O’Neil, P.  Advanced engineering mathematics, 6th edition, CL-Engineering, 2006. 

[8] Sadiku, M.  Elements of electromagnetics, 4th edition, Oxford University Press, 

2006. 

[9] Teh, K. and Morgan, L. The application of Excel in teaching finite element 

analysis to final year engineering students, Proceedings of the 2005 ASEE/AaeE 

(Australian Association for Engineering Education) Global Colloquium on 

Engineering Education, Paper # 50. 

[10] Yamani, A. and Kharab, A.  Use of a spreadsheet program in electromagnetics, 

IEEE Transactions on Education, 44(3): 292-297, 2001. 

18

Spreadsheets in Education (eJSiE), Vol. 4, Iss. 1 [2010], Art. 1

http://epublications.bond.edu.au/ejsie/vol4/iss1/1


	Spreadsheets in Education (eJSiE)
	3-31-2010

	Spreadsheet Implementations for Solving Boundary-Value Problems in Electromagnetics
	Mark A. Lau
	Sastry P. Kuruganty
	Recommended Citation

	Spreadsheet Implementations for Solving Boundary-Value Problems in Electromagnetics
	Abstract
	Keywords
	Distribution License
	Cover Page Footnote


	Microsoft Word - 198616-text.native.1270066836.doc

