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The Requirement of a Positive Definite Covariance Matrix of Security
Returns for Mean-Variance Portfolio Analysis: A Pedagogic Illustration

Abstract
This study considers, from a pedagogic perspective, a crucial requirement for the covariance matrix of security
returns in mean-variance portfolio analysis. Although the requirement that the covariance matrix be positive
definite is fundamental in modern finance, it has not received any attention in standard investment textbooks.
Being unaware of the requirement could cause confusion for students over some strange portfolio results that
are based on seemingly reasonable input parameters. This study considers the requirement both informally
and analytically. Electronic spreadsheet tools for constrained optimization and basic matrix operations are
utilized to illustrate the various concepts involved.
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Abstract

This study considers, from a pedagogic perspective, a crucial requirement for the
covariance matrix of security returns in mean-variance portfolio analysis. Although
the requirement that the covariance matrix be positive definite is fundamental in
modern finance, it has not received any attention in standard investment textbooks.
Being unaware of the requirement could cause confusion for students over some
strange portfolio results that are based on seemingly reasonable input parameters.
This study considers the requirement both informally and analytically. Electronic
spreadsheet tools for constrained optimization and basic matrix operations are used
to illustrate the various concepts involved.
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1 Introduction

Mean-variance portfolio theory is an important part of the core curriculum of modern
finance in business education. The theory, which provides the foundation of investment
decisions, captures the risk of an investment with the variance of the probability distri-
bution of the investment’s random rates of returns. A practical aspect of the theory is
that, with the expected returns (the means), the variances of returns, and the covariances
of returns of individual financial securities being input parameters for portfolio models,
it provides guidance for allocating investment funds among the securities considered to
achieve the best risk-return trade-off.

1

Kwan: The Requirement of a Positive Definite Covariance Matrix

Published by ePublications@bond, 2010



This study considers, from a pedagogic perspective, a crucial analytical requirement
on input parameters for mean-variance portfolio analysis. Being traditionally considered
to be beyond the scope of the standard finance curriculum, the requirement is seldom
brought to the attention of students, even in advanced portfolio investment courses.
As a result, there is an undesirable gap between what is viewed as fundamental in
the academic finance literature and what students learn in investment courses. Being
unaware of the requirement could lead to confusion over some strange portfolio results
that are based on seemingly reasonable input parameters.

Specifically, the requirement is that the covariance matrix of security returns, which
contains all variances and covariances of returns of the securities considered, be positive
definite.1 In the context of portfolio investments under the assumption of frictionless
short sales, the covariance matrix is positive semidefinite if the variance of portfolio re-
turns is always non-negative, regardless of how investment funds are allocated among
the securities considered.2 If the portfolio variance is always strictly positive, the covari-
ance matrix is also positive definite. A positive definite covariance matrix is invertible;
however, a covariance matrix that is positive semidefinite but not positive definite is not
invertible.

At first glance, as the variance of a random variable, by definition, cannot be negative,
the attainment of a positive definite covariance matrix seems to be assured if individual
securities or their combinations that can lead to risk-free investments are excluded from
portfolio consideration. As shown in Appendix A, the sample covariance matrix –
the covariance matrix estimated from a sample of past return observations – is always
positive semidefinite. Once the various situations causing the sample covariance matrix
to be non-invertible are ruled out, the positive definiteness requirement will be satisfied.
Then, why is the requirement still a relevant issue to consider? That is because the
variance of a linear combination of some random variables, as expressed directly in terms
of the variances and covariances of these variables, can be negative if not all individual
variances and covariances correspond to their sample estimates. Here are some specific
examples:

In classroom settings, input parameters for numerical illustrations of portfolio analy-
sis are often generated artificially. Although the covariance matrix for more than two
securities thus generated is invertible, with the implied correlations of returns between
different securities being always in the permissible range of −1 to 1, whether it is positive
definite is not immediately obvious. In practical settings, security analysts’insights are
often required to revise the sample estimates of input parameters for portfolio analysis in
order to recognize changes in the economic environment. Likewise, for a high-dimensional
portfolio selection problem, if the covariance matrix is estimated with insuffi cient ob-

1The requirement is explicitly stated in Merton (1972), Roll (1977), and Jobson and Korkie (1989),
among others.

2Under the assumption of frictionless short sales, if an investor short sells a security, the investor not
only provides no cash deposit, but also has immediate access to the short-sale proceeds for investing in
other securities. The individual portfolio weights – the proportions of investment funds as allocated to
the individual securities considered – can be of either sign, as long as the sum of all portfolio weights
is unity.
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servations (for concerns about outdated return data from a long sample period), some
matrix elements will have to be revised to make the resulting matrix invertible.3 In ei-
ther case, it is not immediately obvious whether the resulting matrix is positive definite.
Further, if estimation of the covariance matrix is based on models that can accommo-
date time-varying volatility of security returns, the positive definiteness of the resulting
covariance matrix may not be assured.

In this study, we consider the positive definiteness requirement first informally and
then analytically, in order to accommodate different pedagogic approaches – which
correspond to different levels of analytical rigor – in the delivery of the mean-variance
portfolio concepts to the classroom.4 In an informal approach, we illustrate with a three-
security case that having all correlations of security returns in the permissible range of
−1 to 1 alone does not ensure the validity of the covariance matrix. Specifically, by using
Microsoft ExcelTM , we compute the covariances and correlations of returns of various
portfolios. Further, we use Solver, a numerical tool in Excel, to search for the allocation
of investment funds (under the assumption of frictionless short sales) that corresponds to
the lowest variance of portfolio returns. If it turns out that any correlations of portfolio
returns are outside the permissible range or the lowest variance is negative, then the
covariance matrix in question cannot be acceptable.

In our analytical approach to consider the positive definiteness requirement, the alge-
braic and statistical tools involved are confined to those known to most business students.
By using a basic portfolio selection model, in which frictionless short sales are assumed,
we can directly reach the portfolio solution in terms of the input parameters provided.
We can also address the issue of positive definiteness without being encumbered by the
algorithmic details that are often associated with solution methods for more sophisti-
cated portfolio selection models. For ease of exposition, matrix notation is used. The
required matrix operations, which are basic, can easily be performed on spreadsheets.

3There are various empirical approaches to ensure the invertibility of a covariance matrix, even if there
are insuffi cient observations for its estimation. A simple approach is to impose a particular covariance
structure. In the case of the constant correlation model, for example, all correlations of security returns
are characterized to be the same. In such a case, the estimated covariances are based on the individual
sample variances and a common correlation. The use of the average of all sample correlations for
the securities considered as the common correlation will ensure that the resulting covariance matrix be
positive definite. [See Kwan (2006) for some analytical properties of the constant correlation model.]
A more sophisticated approach to ensure positive definiteness is shrinkage estimation, which takes a
weighted average of the sample covariance matrix and a structured matrix. [See Ledoit and Wolf (2004)
and Kwan (2008) for analytical details of the shrinkage approach in which the structured matrix is based
on the constant correlation model.]

4 In advanced investment courses, it is also useful to justify analytically the mean-variance approach,
to discuss the limitations of the approach, and to provide alternative risk measures. [See, for example,
Cheung, Kwan, and Miu (2007) for an alternative risk measure in view of the limitations of mean-
variance.] Even if the conditions to justify mean-variance are deemed acceptable for the securities
considered, having a positive definite covariance matrix of security returns as part of the input parameters
for portfolio analysis does not automatically ensure good quality of the portfolio selection results. As
the expected returns and the covariance matrix have to be estimated, estimation errors are inevitable.
Such errors, if large, would weaken the results from portfolio analysis. [See, for example, Kwan (2009)
for a pedagogic illustration of estimation errors in sample variances, covariances, and correlations.]
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They include matrix transposition, addition, multiplication, and inversion, as well as
finding the determinant. As this study is intended to be self-contained for pedagogic
purposes, the analytical materials involved are derived. Some proofs are provided in
footnotes or appendices, in order to avoid digressions.

The rest of this study is organized as follows: Section 2 provides a two-security ex-
position of basic portfolio concepts. An extension to a three-security case is presented in
Section 3. An Excel example there illustrates the need for addressing the positive def-
initeness issue. Section 4 presents a basic portfolio selection model. As the covariance
matrix must be invertible for the model to provide any portfolio allocation results, situ-
ations leading to its non-invertibility are first identified in Section 5. The central theme
of Section 5 is that, for the portfolio allocation results to be meaningful, the covariance
matrix must be positive definite. It implications are also considered there. With the aid
of an Excel example, Section 6 illustrates some consequences for violating the positive
definiteness requirement. Finally, Section 7 provides some concluding remarks.

2 Portfolio concepts based on two securities

In introductory finance courses, the delivery of mean-variance portfolio concepts typically
starts with a two-security case, where the security with a higher expected return also
has a higher variance of returns. With the random returns of the two securities being R1
and R2 and their expected returns being µ1 and µ2, each of the two variances of returns,
labeled as σ21 and σ

2
2, is the expected value of the squared deviation of the corresponding

random return from its mean. The covariance of returns of R1 and R2, labeled as σ12,
is the expected value of (R1 − µ1)(R2 − µ2). The correlation of returns ρ12, defined as
σ12/(σ1σ2), is always in the range of −1 to 1. It is implicit that σ11 = σ21, σ22 = σ22,
σ12 = σ21, ρ12 = ρ21, ρ11 = σ11/(σ1σ1) = 1, and ρ22 = σ22/(σ2σ2) = 1.

Suppose that a portfolio p is formed, with the proportions of investment funds as
allocated to the two securities – the portfolio weights – being x1 and x2 = 1 − x1.
Under the assumption of frictionless short sales, each portfolio weight can be of either
sign. The variance of portfolio returns, labeled as σ2p, is the expected value of (Rp−µp)2,
where

Rp = x1R1 + x2R2 (1)

and µp = x1µ1 + x2µ2. (2)

It follows from

(Rp − µp)2 = [x1(R1 − µ1) + x2(R2 − µ2)]2

= x21(R1 − µ1)2 + x22(R2 − µ2)2 + 2x1x2(R1 − µ1)(R2 − µ2) (3)

that
σ2p = x21σ

2
1 + x

2
2σ
2
2 + 2x1x2σ12 = x21σ

2
1 + x

2
2σ
2
2 + 2x1x2ρ12σ1σ2. (4)

Equations (2) and (4), when combined to eliminate the portfolio weights, will allow σp
to be determined directly for any given µp. If the returns of the two securities considered
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are perfectly correlated (i.e., ρ12 = ±1), the relationship between σp and µp is linear or
piecewise linear; otherwise, it is nonlinear. Figure 1 shows some graphs on the (σ, µ)-
plane – where standard deviation of returns σ and expected return µ are the horizontal
and vertical axes, respectively – that are commonly used in introductory finance courses
for describing the risk-return trade-off from investing in two risky securities without short
sales.

These graphs reveal some basic portfolio concepts. Specifically, if ρ12 = 1, as the risk-
return trade-off in portfolio investments is captured by the line joining points (σ1, µ1)
and (σ2, µ2), there is no diversification effect. If ρ12 < 1 instead, portfolio investments
in the two securities will lead to risk reductions for any expected return requirements
(as compared to the case where ρ12 = 1). The lower the correlation, the greater is the
risk-reduction effect. If ρ12 = −1, a risk-free portfolio can be reached. Notice that, under
the assumption of frictionless short sales, the line joining points (σ1, µ1) and (σ2, µ2) for
the case where ρ12 = 1 can be extended to reach its µ-intercept; that is, if ρ12 = 1, a
risk-free portfolio can also be reached.

If −1 < ρ12 < 1, no investments in the two securities can completely eliminate the
portfolio risk. To see this, let us rewrite equation (4) as

σ2p = (x1σ1 + x2ρ12σ2)
2 + x22(1− ρ212)σ22 (5)

by completing the square. With 1− ρ212 being positive, there are no portfolio weights of
either sign that can result in σ2p being zero or negative.

In linear algebra, it is known as Sylvester’s Criterion that a real symmetric matrix
is positive definite if and only if all of its leading principal minors are positive. For an
n× n matrix, there are n leading principal minors, each of which is the determinant of
the submatrix containing the first k rows and the first k columns, for k = 1, 2, . . . , n. A
proof of this matrix property is provided in Appendix B. The 2 × 2 covariance matrix[
σ11 σ12
σ21 σ22

]
under the condition of −1 < ρ12 < 1 is positive definite because both

of its leading principal minors, σ11 (= σ21) and σ11σ22 − σ21σ12 [= σ21σ
2
2(1 − ρ212)], are

positive. Thus, in a two-security case, if the returns of the two securities are not perfectly
correlated, the positive definiteness requirement is automatically satisfied.

3 A three-security illustration of the positive definiteness
requirement

Depending on the finance courses involved, extensions to portfolio investments in more
than two risky securities can differ considerably. Regardless of the pedagogic approach
that is followed, the effi cient frontier on the (σ, µ)-plane, which captures the best risk-
return trade-off from portfolio investments in the set of risky securities considered, is
described as a concave curve. In essence, the differences among the various pedagogic ap-
proaches are in whether the analytical details are covered and, if so, in how sophisticated
the required analytical tools are.
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Figure 1: A two-security illustration of risk-return trade-off for different correlations of
security returns.
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A common message from the various pedagogic approaches is that, as long as the
risky securities considered are less than perfectly, positively correlated, there will be
portfolio diversification effects. To ensure the attainment of a meaningful effi cient fron-
tier, however, a relevant question now is whether there is any other requirement for the
covariance matrix beyond having all correlations of security returns in the permissible
range of −1 to 1. As investment textbooks are silent on the issue, we illustrate below
with a simple three-security example that a further requirement is warranted.

To facilitate the illustration, let R1, R2, R3, µ1, µ2, and µ3 be the random and
expected returns of the three-risky securities considered. The three variances (σ21 = σ11,
σ22 = σ22, and σ23 = σ33) and the six covariances (σ12 = σ21, σ13 = σ31, and σ23 = σ32)
of security returns can be arranged as elements of a 3× 3 covariance matrix. With each
element (i, j) being σij , which is the same as σji, for i, j = 1, 2, and 3, the covariance
matrix is symmetric. A 3 × 3 correlation matrix can be inferred directly from the
covariance matrix.

We now allocate investment funds in two different ways, with the corresponding
portfolios labeled as p and q. For portfolio p, let x1, x2, and x3 be the portfolio weights
satisfying the condition of x1 + x2 + x3 = 1. The random return and the expected
return of the portfolio are Rp = x1R1 + x2R2 + x3R3 and µp = x1µ1 + x2µ2 + x3µ3,
respectively. The variance of returns of the portfolio, σ2p, which is the expected value of
(Rp − µp)2 = [x1(R1 − µ1) + x2(R2 − µ2) + x3(R3 − µ3)]2, can be expressed as the sum
of nine terms of the form xixjσij , for i, j = 1, 2, and 3; that is, σ2p =

∑3
i=1

∑3
j=1 xixjσij .

For portfolio q, which is based on a different set of portfolio weights, y1, y2, and y3,
satisfying the condition of y1 + y2 + y3 = 1, the expected return, µq, and the variance
of returns, σ2q , can be computed in an analogous manner. The covariance of returns of
portfolios p and q, labeled as σpq, is the expected value of (Rp − µp)(Rq − µq). When
expressed in terms of the variances and covariances of the individual securities, σpq
is the sum of nine terms of the form xiyjσij , for i, j = 1, 2, and 3; that is, σpq =∑3
i=1

∑3
j=1 xiyjσij .

3.1 An Excel example

Figure 2 shows an Excel worksheet for a three-security case, where all returns are mea-
sured in percentage terms. The variances and covariances of returns provided for the
example consist of σ21 = 100, σ

2
2 = 36, σ

2
3 = 16, σ12 = 33, σ13 = −20, and σ23 = 12. Due

to symmetry, σ21, σ31, and σ32 can be inferred directly. The 3 × 3 covariance matrix
of returns is shown in cells B5:D7 of the worksheet. The implied correlations of returns,
as shown in cells B9:D11, are all in the permissible range of −1 to 1. Notice that cell
formulas are listed at the bottom of Figure 2. Likewise, whenever an Excel worksheet is
displayed in any of the subsequent figures, cell formulas are listed as well.

To see whether having all pairwise correlations in the permissible range alone is suf-
ficient to ensure the validity of the covariance matrix, we have attempted different allo-
cations of investment funds for portfolios p and q. In each case, we have checked whether
the correlation of portfolio returns, defined as ρpq = σpq/(σpσq), is in the permissible
range as well. The portfolio weights, labeled as x1, x2, x3, y1, y2, and y3, are stored in
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cells B13:D13 and B15:D15. Whenever there are changes in these portfolio weights, the
corresponding computational results are automatically updated in the worksheet.

The results in Figure 2 are from one of the many sets of portfolio weights that
invalidate the covariance matrix in cells B5:D7. Specifically, for x1 = 0.3, x2 = 0,
x3 = 0.7, y1 = 0.1, y2 = 0.7, and y3 = 0.2, the computed values of xixjσij , yiyjσij ,
and xiyjσij , for i, j = 1, 2, 3, are displayed in cells B17:D19, B21:D23, and B25:D27,
respectively. Summing the individual 3 × 3 blocks gives us σ2p = 8.44, σ2q = 26.46, and
σpq = 15.45, as shown in cells G19, G23, and G27, respectively. The implied correlation
ρpq = 1.0339, as shown in cell K27, is outside the permissible range, thus indicating that
the covariance matrix in question is unacceptable.

This example points out that there must be a requirement for the covariance matrix
of security returns in addition to, or encompassing, the obvious requirement that all
pairwise correlations be in the permissible range of −1 to 1. The requirement is that
the covariance matrix be positive definite. In the context of portfolio investments under
the assumption of frictionless short sales, the requirement amounts to the variance of
portfolio returns being always strictly positive, regardless of how investment funds are
allocated among the risky securities considered. A simple way to find out whether the
3×3 covariance matrix is positive definite is by searching, with the numerical tool Solver
in Excel, for the set of portfolio weights that minimizes the variance of portfolio returns.
If the numerical search produces a strictly positive variance of portfolio returns, the
covariance matrix is positive definite; otherwise, it is not.

Figure 3 shows the Solver results. Initially, with the contents of cells B13:D13 –
which provide equal portfolio weights (of 1/3 each) for the three securities – copied to
cells B15:D15, the corresponding variance of portfolio returns is displayed in cell G19, by
following the same computational steps for portfolio p in Figure 2. The initial results
are not shown in Figure 3, as any changes in cells B15:D15 will automatically allow cell
G19 to be updated. By using Solver, we minimize the target cell G19, by changing the
portfolio weights in cells B15:D15, subject to the constraint that cell G15, the sum of
the portfolio weights, be equal to 1. As the lowest variance from the numerical search,
displayed in cell G19 is −3.9893, is a negative number, the covariance matrix in cells
B5:D7 is not positive definite.

An alternative way to use Excel to find out whether the covariance matrix is positive
definite is by checking the signs of all leading principal minors of the covariance matrix.
In a three-security case, the three leading principal minors are the determinants of the
h × h matrices consisting of the first h columns and the first h rows of the covariance
matrix, for h = 1, 2, and 3. As shown in cells B22, C23, and D24, the three leading
principal minors are 100, 2511, and −4464, respectively. With the presence of a negative
number here, the 3× 3 covariance matrix is not positive definite and is thus invalid.

As the validity of a given covariance matrix as part of the input parameters for
portfolio analysis is not readily noticeable, the above example illustrates the importance
of verifying its positive definiteness. A positive definite covariance matrix can sometimes
differ from a non-positive definite case in just a few matrix elements. For example, if we
have σ13 = σ31 = −12 instead of −20, while keeping all other elements of the covariance
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A B C D E F G H I J K
1 Sec Label 1 2 3
2
3 St Dev 10 6 4
4 St Dev Wgt p Wgt q
5 Cov Mat 100 33 ­20 10 0.3 0.1
6 33 36 12 6 0 0.7
7 ­20 12 16 4 0.7 0.2
8
9 Corr Mat 1 0.55 ­0.5

10 0.55 1 0.5
11 ­0.5 0.5 1
12
13 Wgt p 0.3 0 0.7 Total Wgt 1
14
15 Wgt q 0.1 0.7 0.2 Total Wgt 1
16
17 Wgt p * Cov * Wgt p 9 0 ­4.2
18 0 0 0
19 ­4.2 0 7.84 Var p 8.44
20 St Dev p 2.9052
21 Wgt q * Cov * Wgt q 1 2.31 ­0.4
22 2.31 17.64 1.68
23 ­0.4 1.68 0.64 Var q 26.46
24 St Dev q 5.1439
25 Wgt p * Cov * Wgt q 3 0 ­1.4
26 6.93 0 5.88 Implied
27 ­1.2 0 2.24 Cov pq 15.45 Corr pq 1.0339
28
29 Cell Formulas B3 =SQRT(B5)
30 C3 =SQRT(C6)
31 D3 =SQRT(D7)
32 B6 =C5
33 B7 =D5
34 C7 =D6
35 F5:F7 {=TRANSPOSE(A3:D3)}
36 H5:H7 {=TRANSPOSE(A13:D13)}
37 J5:J7 {=TRANSPOSE(A15:D15)}
38 B9 =B5/B$3/$F5 Pasted to B9:D11
39 G13 =SUM(B13:D13) Pasted to G15
40 B17 =B$13*B5*$H5 Pasted to B17:D19
41 G19 =SUM(B17:D19) Pasted to G23 and G27
42 G20 =SQRT(G19) Pasted to G24
43 B21 =B$15*B5*$J5 Pasted to B21:D23
44 B25 =B$13*B5*$J5 Pasted to B25:D27
45 K27 =G27/G20/G24

Figure 2: An Excel example illustrating the invalidity of a covariance matrix of security
returns based on the correlation of portfolio returns.
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A B C D E F G H
1 Sec Label 1 2 3
2
3 St Dev 10 6 4
4 St Dev Wgt p
5 Cov Mat 100 33 ­20 10 0.6971
6 33 36 12 6 ­1.2761
7 ­20 12 16 4 1.5791
8
9 Corr Mat 1 0.55 ­0.5

10 0.55 1 0.5
11 ­0.5 0.5 1
12
13 Initial Weight 0.33333 0.33333 0.33333 Total Wgt 1
14
15 Wgt p 0.69705099 ­1.276139873 1.57909 Total Wgt 1
16
17 Wgt p * Cov * Wgt p 48.58800828 ­29.35464055 ­22.014
18 ­29.35464055 58.62718715 ­24.182
19 ­22.01410939 ­24.18165945 39.8963 Var p ­3.9893
20
21 Leading Prin Minors
22 (1x1) 100
23 (2x2) 2511
24 (3x3) ­4464
25
26 Cell Formulas B3 =SQRT(B5)
27 C3 =SQRT(C6)
28 D3 =SQRT(D7)
29 B6 =C5
30 B7 =D5
31 C7 =D6
32 F5:F7 {=TRANSPOSE(A3:D3)}
33 H5:H7 {=TRANSPOSE(A15:D15)}
34 B9 =B5/B$3/$F5 Pasted to B9:D11
35 G13 =SUM(B13:D13) Pasted to G15
36 B17 =B$13*B5*$H5 Pasted to B17:D19
37 G19 =SUM(B17:D19)
38 B22 =MDETERM($B$5:B5) Pasted to C23 and D24
39
40 Solver Min $G$19
41 Changing Cells $B$15:$D$15
42 Constraint $G$15=1

Figure 3: An Excel example illustrating the invalidity of the same covariance matrix of
security returns in Figure 2 based on the Solver result of portfolio variance minimization
and the signs of the leading principal minors.
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matrix unchanged, the same computations for the worksheets in Figures 2 and 3 will
confirm that the revised covariance matrix is positive definite.

Specifically, regardless of how investment funds are allocated in portfolios p and q,
the implied correlations of portfolio returns, as displayed in cell K27 of the worksheet in
Figure 2, are always in the permissible range. The Solver result of the lowest possible
portfolio variance, as displayed in cell G19 of the worksheet in Figure 3, becomes 7.2995,
a positive number instead. Further, the three leading principal minors, as displayed in
cells B22, C23, and D24 of the same worksheet are 100, 2511, and 11088, respectively;
that is, they are all positive.

4 A basic portfolio selection model

The above Excel example illustrates that, for the portfolio solution to be meaningful, the
covariance matrix involved must be positive definite. However, this being an illustration,
the positive definiteness requirement still has to be justified properly. The task requires
the use of a portfolio selection model. Following Roll (1977), we minimize the variance
of portfolio returns, for a given set of n risky securities, subject to an expected return
requirement. Under the assumption of frictionless short sales, if a portfolio p is formed,
its expected return and variance of returns are

µp =
∑n

i=1
xiµi (6)

and σ2p =
∑n

i=1

∑n

j=1
xixjσij , (7)

respectively, satisfying the condition of
∑n
i=1 xi = 1. In matrix notation, let µ and x be n-

element column vectors of expected returns and portfolio weights, with the corresponding
elements being µi and xi, for i = 1, 2, . . . , n. Let V be a symmetric n × n covariance
matrix of returns, with its element (i, j) being σij , for i, j = 1, 2, . . . , n. Let also ι be an
n-element column vector where each element is 1. Then, equations (6) and (7) can be
written more compactly as µp = x′µ and σ2p = x

′V x, with x′ι = 1.
For a predetermined µp, the Lagrangean is

L = x′V x− φ(x′µ− µp)− θ(x′ι− 1), (8)

where the portfolio weight vector x and the Lagrange multipliers φ and θ are decision
variables.5 It is implicit that the elements of µ are not all equal; otherwise, as all
portfolios based on the n securities will have the same expected return, the use of a
predetermined µp that differs from this expected return will inevitably fail to provide
any portfolio allocation results. Minimizing L leads to

x = V −1M (M ′V −1M)−1rp, (9)

5See Kwan (2007) for an equivalent formulation of the same portfolio selection problem and for an
intuitive explanation of the Lagrangian approach.
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where M =
[
µ ι

]
is an n × 2 matrix and rp =

[
µp 1

]′
is a 2-element column

vector.6 The variance of returns of the minimum variance portfolio (for a predetermined
µp) is

σ2p = x
′V x = rp

′(M ′V −1M)−1rp. (10)

By repeating the computations based on equation (9) for different values of µp, we can
establish a family of minimum variance portfolios. The least risky portfolio of the family
is called the global minimum variance portfolio. Such a portfolio can also be reached
by minimizing x′V x subject only to x′ι = 1. Similar to the derivation of equation (9),
minimizing the Lagrangean L = x′V x− θ(x′ι− 1) leads to

xo = V
−1ι (ι′V −1ι)−1. (11)

Here, the vector of portfolio weights, x, has been labeled as xo instead for notational
clarity. The expected return and the variance of returns of the global minimum variance
portfolio are

µo = µ
′xo = µ

′V −1ι (ι′V −1ι)−1 (12)

and σ2o = xo
′V xo = (ι

′V −1ι)−1, (13)

respectively.
As equation (13) shows, the variance of returns of the global minimum variance

portfolio is the reciprocal of the sum of all elements of the inverse of the covariance
matrix. The proportion of investment funds for each security in this portfolio, according
to equation (11), is the sum of all elements of the corresponding row of the inverse of
the covariance matrix, divided by the sum of all elements of the same inverse matrix.
Thus, the sum of portfolio weights being unity is assured.

5 The positive definiteness requirement and its implica-
tions

From an analytical perspective, equations (9)-(13) are results of the first-order conditions
for optimization. Whether such results actually correspond to variance minimization
as intended, rather than variance maximization or the presence of saddle points, still
requires confirmation. Of interest, therefore, is whether the input parameters µ and V
are required to satisfy some specific conditions in order to ensure variance minimization.

As an initial step in the search of conditions on the input parameters for equations
(9)-(13) to work properly, we must ensure that the covariance matrix be invertible.
Noting that the invertibility of the covariance matrix requires its determinant to be non-
zero, we must rule out the following three situations. First, if a security considered is

6To derive equation (9), we use ∂L/∂x = 2V x−φµ− θι = 0, where 0 is an n-element column vector
of zeros. This equation can be rewritten as x = 1

2
V −1MG, where G =

[
φ θ

]′
. As M ′x = rp,

we have 1
2
G = (M ′V −1M)−1rp. Equation (9) follows directly. See Merton (1972) for a non-matrix

version of the same portfolio selection model.
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risk-free, it will have a zero variance of returns and zero covariances of returns with all
other securities considered; this situation will produce a row (column) of zeros in the
covariance matrix. Second, if the random return of a security is perfectly correlated
with that of another security considered, two rows (columns) of the covariance matrix
will be proportional to each other. Third, if the random return of a security is a linear
combination of the random returns of some other securities considered, a row (column) of
the covariance matrix can be replicated exactly by combining other rows (columns). In
each situation, the covariance matrix is non-invertible, as the corresponding determinant
is zero. The above three situations arising from sample estimates of the covariance matrix
are considered in more detail in Appendix A.

Students in portfolio investment courses, most likely, are made aware of the above
three situations and their implications. The presence of a risk-free security transforms
the portfolio selection problem into a two-part problem, with the first part pertaining
to the selection of a portfolio based only on the risky securities and the second part
pertaining to the allocation of investment funds between the risk-free security and the
risky portfolio. In the remaining two situations, the contribution of a security to the
risk-return trade-off of the portfolio can be replicated exactly by that of another security
or a combination of other securities. Thus, the portfolio selection results will no longer
be unique, and equations (9)-(13) will fail to perform their intended tasks.

With the above three situations ruled out, we now show that, for equations (9)-(13) to
work properly, the covariance matrix must be positive definite. Indeed, if the covariance
matrix is positive definite, the above three situations will automatically be ruled out, and
these equations will work as intended. In the language of matrix algebra, an n×n matrix
V is positive semidefinite if x′V x, which is a scalar, is always non-negative for any n-
element column vector x. It is also positive definite if x′V x is strictly positive for any
non-zero vector x. In the context of portfolio analysis, V is the covariance matrix and
x is the portfolio weight vector. As it will soon be clear, with the positive definiteness
requirement satisfied, the invertibility of V ,M ′V −1M , and ι′V −1ι is assured. However,
the converse is not true; the invertibility of these matrices does not ensure that the
covariance matrix be positive definite.

We now turn our attention to the condition for a minimized Lagrangean in the basic
portfolio selection model. In that model, we seek to minimize the Lagrangean L in
equation (8) with the portfolio weights x1, x2, . . . , xn and the Lagrange multipliers φ
and θ being the decision variables. Now, for ease of exposition, let us treat φ and θ as
xn+1 and xn+2, respectively. As the Lagrangean L is a quadratic function of the n + 2
decision variables, its partial derivatives beyond the second order are all zeros. Then,
with L∗ being the Lagrangean as evaluated at x1 = x∗1, x2 = x∗2, . . . , xn+2 = x∗n+2, for
which its first partial derivative with respect to each of the n + 2 variables is set to be
zero, we can express L by means of a second-order Taylor expansion. That is, we can
write

L = L∗ +
1

2

∑n+2

i=1

∑n+2

j=1
(xi − x∗i )(xj − x∗j )

∂2L

∂xi∂xj
, (14)
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where each second partial derivative is evaluated at x1 = x∗1, x2 = x∗2, . . . , xn+2 = x∗n+2.
7

The (n+2)× (n+2) symmetric matrix consisting of the above second partial deriva-
tives is commonly called the bordered Hessian. In such a matrix, we have ∂2L/(∂xi∂xj) =
2σij , ∂

2L/(∂xi∂φ) = −µi, ∂2L/(∂xi∂θ) = −1, and ∂2L/∂φ2 = ∂2L/∂θ2 = ∂2L/(∂φ∂θ) =
0, for i, j = 1, 2, . . . , n. Noting that

∑n
i=1 xiµi =

∑n
i=1 x

∗
iµi = µp and

∑n
i=1 xi =∑n

i=1 x
∗
i = 1, we can write equation (14) as

L− L∗ =
∑n

i=1

∑n

j=1
(xi − x∗i )(xj − x∗j )σij = (4x)′V (4x), (15)

where 4x is an n-element column vector with elements being xi−x∗i , for i = 1, 2, . . . , n.
For L∗ to be a minimum, we must have L−L∗ > 0. That is, we must have (4x)′V (4x) >
0. With 4x being arbitrary, we confirm that minimization of the Lagrangean requires
the covariance matrix to be positive definite.8

The sub-sections below show various implications of the covariance matrix being
positive definite, along with some cautionary notes.

5.1 The inverse of the covariance matrix and the global minimum vari-
ance portfolio

If the covariance matrix V is positive definite, so is V −1. The reason is that, as V is
invertible and as x′V x is positive for any non-zero column vector x,

x′V x = x′V (V −1V ) x = (V x)′V −1(V x) (16)

is also positive. With V x being an arbitrary column vector and (V x)′ being its trans-
pose, the positive definiteness of V −1 is assured. If an invertible V is not positive
definite, a non-zero column vector x corresponding to x′V x being non-positive must
exist. For such a vector x, we have a corresponding column vector V x. Then, in view
of equation (16), V −1 is also not positive definite.

Now, suppose that V is invertible but its positive definiteness has not been confirmed.
For V −1 to be positive definite, it must not have any negative diagonal elements. To
verify this requirement, suppose instead that V −1 has at least a negative diagonal el-
ement, with element (i, i) being negative. Let c be an n-element column vector with

7For students who are unfamiliar with multivariate Taylor series, an explanation of equation (14) is
necessary. The idea is similar to the expansion of a quadratic function L(x). In this univariate case,
we have L(x) = L(x∗)+(x−x∗)L′(x∗)+ 1

2
(x−x∗)2L′′(x∗), with the derivatives evaluated at x = x∗. To

extend to a multivariate case, we must account for all second derivatives of L; that is, ∂2L/(∂xi∂xj), for
all i, j. This is captured by the terms under the double summation on the right hand side of equation
(14).

8The above proof encompasses, as a special case, the Lagrangian that is intended for the global
minimum variance portfolio. In this special case with n + 1 decision variables, the only Lagrange
multiplier, θ, can be treated as xn+1. Equation (15) can be rewritten analogously. For x∗1, x

∗
2, . . . , x

∗
n+1

from the first-order conditions to provide a minimized Lagrangian, we also require (4x)′V (4x) > 0 or,
equivalently, V to be positive definite.
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element i being its only non-zero element. In such a case, c′V −1c is negative.9 As V −1

is not positive definite, its inverse – which is V – cannot be positive definite. The
implication is that, if the inverse of the covariance matrix has any negative diagonal
elements, the covariance matrix itself cannot be positive definite.

The positive definiteness of V , which implies the same for V −1, ensures that the
scalar ι′V −1ι be positive. If V is positive definite, then, with (ι′V −1ι)−1 being positive,
equations (11)-(13) do provide portfolio allocation results for the global minimum vari-
ance portfolio as intended. However, without first confirming that V is positive definite,
we cannot confirm the validity of the results from these equations even if (ι′V −1ι)−1

turns out to be positive.
What is crucial here is that, although the set of portfolio weights from equation

(11) allows us to compute the corresponding variance of portfolio returns as (ι′V −1ι)−1,
whether this variance is the lowest possible variance still depends on the positive def-
initeness of V . If V is not positive definite, the set of portfolio weights from equation
(11) does not give us a minimum of the Lagrangean L; what we get can be a maximum
or a saddle point instead.

5.2 The inverse of a 2× 2 matrix in the basic portfolio selection model
and minimum variance portfolios

The invertibility of the 2× 2 matrixM ′V −1M in equations (9) and (10) requires that
its determinant – labeled as k here – be non-zero. As the elements (1, 1), (1, 2), (2, 1),
and (2, 2) of M ′V −1M are µ′V −1µ, µ′V −1ι, ι′V −1µ, and ι′V −1ι, respectively, we
have

k = (µ′V −1µ)(ι′V −1ι)− (µ′V −1ι)(ι′V −1µ), (17)

where µ′V −1ι = ι′V −1µ. For the proof below that k is positive and thusM ′V −1M is
invertible, we draw on the matrix property that a symmetric positive definite matrix can
be written as a product of a square matrix and its transpose. The proof of this matrix
property is provided in Appendix C.

Specifically, with V −1 being symmetric and positive definite, we can write V −1 =
LL′, where L is an n× n matrix. It follows that

µ′V −1µ = (L′µ)′(L′µ) =
∑n

i=1
a2i > 0, (18)

where ai is element i of the column vector L′µ. Likewise, we can write

ι′V −1ι = (L′ι)′(L′ι) =
∑n

i=1
b2i > 0, (19)

where bi is element i of the column vector L′ι. We can also write µ′V −1ι and ι′V −1µ
as

(L′µ)′(L′ι) =
∑n

i=1
aibi. (20)

9To see this, let us label element i of c as ci and element (i, i) of V −1 as gii. Further, let all other
elements of c be zeros. As element i of the n-element column vector V −1c is giici, it follows that
c′V −1c = cigiici = c2i gii < 0 if gii < 0.
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Drawing on Cauchy-Schwarz inequality, we have

k =
(∑n

i=1
a2i

)(∑n

i=1
b2i

)
−
(∑n

i=1
aibi

)2
≥ 0. (21)

Strict inequality holds if the case of ai = cbi, with c being any constant, for i = 1, 2, . . . , n,
can be ruled out. A simple algebraic proof of Cauchy-Schwarz inequality is provided in
Appendix D. As it is implicit in the model formulation in Section 4 that the elements
of µ are not all equal, strict inequality is assured; that is, k is strictly positive and,
accordingly,M ′V −1M is invertible.

The positive definiteness of V ensures that the two leading principal minors of the
2 × 2 matrix M ′V −1M – which are µ′V −1µ and k – are both positive. That is,
if V is positive definite, so are M ′V −1M and (M ′V −1M)−1. Then, regardless of the
value of µp in the 2-element column vector rp in equations (9) and (10), these equations
will always provide minimum variance portfolios, all with positive variances of portfolio
returns, as intended. However, if V is invertible but not positive definite, the 2 × 2
matrixM ′V −1M based on some given input parameters µ and V can still be positive
definite, as indicated by both µ′V −1µ and k being positive. In such a case, although
equation (10) will still provide positive variances of portfolio returns for all values of µp,
the results are invalid, as they do not correspond to minimization of the Lagrangean L.
Therefore, it is important to confirm the positive definiteness of V before accepting the
results from equations (9) and (10).

5.3 Graphs of minimum variance portfolios on the (σ, µ)-plane

Let us label elements (1, 1), (1, 2), and (2, 2) of the symmetric matrix (M ′V −1M)−1 as
α, γ, and β, respectively. With α = ι′V −1ι /k, γ = −µ′V −1ι /k, and β = µ′V −1µ /k,
we can write equation (10) as

σ2p = αµ2p + 2γµp + β, (22)

which, by completing the square, becomes

σ2p = α
(
µp +

γ

α

)2
+
αβ − γ2

α
. (23)

Noting that the determinants of M ′V −1M and (M ′V −1M)−1 are reciprocals of each
other, we have αβ − γ2 = 1/k.

If V is positive definite, both ι′V −1ι and k are positive. Accordingly, α and αβ−γ2
are also positive. Thus, with (αβ−γ2)/α being positive, equation (23) is a hyperbola with
a horizontal transverse axis on the (σ, µ)-plane. The centre of the hyperbola is the point

(0,−γ/α) on the (σ, µ)-plane and its vertices are the points
(
±
√
(αβ − γ2)/α,−γ/α

)
.

With −γ/α = µo and (αβ − γ2)/α = σ2o , representing the expected return and the
variance of returns of the global minimum variance portfolio, respectively, equation (23)
can also be written as

σ2p = α (µp − µo)2 + σ2o . (24)
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By definition, standard deviations are never negative. Thus, the relevant branch of
the hyperbola is the one where σp > 0. With the transverse axis of the hyperbola being
horizontal, this branch can accommodate all values of µp; that is, there will not be any
value of µp that can lead to a negative σ2p. The effi cient frontier is the upper half of this
branch, starting from the global minimum variance portfolio. It is a concave curve on
the (σ, µ)-plane, as indicated by dµp/dσp > 0 and d2µp/dσ2p < 0. This characterization
of the effi cient frontier is what students learn in investment courses.

However, if V is not positive definite, the graph of equation (23) on the (σ, µ)-plane
can be any conic section, depending on the signs of α and αβ− γ2. More specifically, we
have the following potential cases:

1. If both α and αβ − γ2, as computed from the input parameters µ and V , are
positive, the graph is also a hyperbola with the same characteristics as described
above.

2. If α is positive, but αβ − γ2 is negative instead, the resulting hyperbola will have
the µ-axis as its transverse axis.

3. If both α and αβ − γ2 are negative, the graph is an ellipse.10

4. If α = 0, equation (22) reduces to σ2 = 2γµ + β, which is a parabola with the
µ-axis being its axis of symmetry.11

Among the four cases here, only the first case provides positive portfolio variances
for all predetermined values of µp. In the remaining three cases, if the predetermined
µp does not have a corresponding σp on the graph, a negative σ2p will be produced. For
example, in the second case, if µp is set at values in the gap between the two vertices
of the hyperbola, there cannot be any corresponding real values of σp. Obviously, none
of graphs of risk-return trade-off for these three cases resemble what students learn in
investment courses.

Then, is the first case above acceptable? Although it provides a seemingly reasonable
graph on the (σ, µ)-plane, with dµp/dσp > 0 and d2µp/dσ2p < 0 for all portfolios with
expected returns greater than µo, the graph does not correspond to the effi cient frontier.
The point (σo, µo) does not even correspond to the global minimum variance portfolio.
The reason is that none of the portfolios on the graph are results of minimization of the
Lagrangean L; instead, they correspond to saddle points of L as a function of the n+ 2
decision variables, x1, x2, . . . , xn, φ, and θ.

10 If α is negative and αβ−γ2 is positive instead, equation (23) cannot be graphed on the (σ, µ)-plane.
11For equation (9) to produce any portfolio allocation results, M ′V −1M must be invertible. Thus,

the determinant of M ′V −1M cannot be zero. The determinant of (M ′V −1M)−1, which is αβ − γ2,
is the reciprocal of the determinant ofM ′V −1M . Thus, with αβ − γ2 not being zero, α and γ cannot
both be zeros.
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5.4 Implied correlations of returns

Satisfaction of the positive definiteness requirement for the n × n matrix ensures that
its first two leading principal minors be positive. That is, we must have −1 < ρ12 < 1.
There are n! ways to label the n securities as 1, 2, . . . , n and to arrange the corresponding
variances and covariances of security returns in an n×n matrix. As any pair of securities
can be labeled as securities 1 and 2, the positive definiteness requirement ensures that
−1 < ρij < 1, for all i 6= j. However, as illustrated in the Excel example earlier, the
converse is not true; having all pairwise correlations in the permissible range does not
imply a positive definite covariance matrix. This explains why a covariance matrix where
all implied pairwise correlations of returns are in the permissible range can still give us
strange portfolio results.

As αβ − γ2 is the determinant of (M ′V −1M)−1, its being positive ensures that the
correlation of returns between any two minimum variance portfolios be in the range of
−1 to 1. To see this, let σpq be the covariance of returns between two arbitrary minimum
variance portfolios p and q with expected returns µp and µq, respectively. Given the
corresponding portfolio weight vectors x and y, the covariance is σpq = x′V y. According
to equation (9), we have

x′V y = r′ (M ′V −1M)−1s, (25)

where s =
[
µq 1

]′
is a 2-element column vector. It is implicit that σpp = x′V x,

σqq = y
′V y, and σqp = y′V x = x′V y = σpq. The 2× 2 matrix

A =

[
σpp σpq
σqp σqq

]
(26)

can also be written as

A =

[
µp 1
µq 1

]
(M ′V −1M)−1

[
µp µq
1 1

]
. (27)

Thus, the determinant of A is the product of the determinants of the three 2×2 matrices
on the right hand side of equation (27); that is,

σppσqq − σqpσpq = (µp − µq)2(αβ − γ2). (28)

For V being positive definite, noting that αβ − γ2 is positive, we have (σpq)2 < σppσqq.
That is, the correlation of returns between any two different minimum variance portfolios
p and q based on the same set of risky securities is always in the range of −1 and 1, as
required for the portfolio results to be valid.

Among the four cases identified in Sub-section 5.3, where V is not positive definite,
only the first case has a positive αβ − γ2. This is the only case where the correlation of
returns between any two different portfolios with portfolio weights given by equation (9)
is always in the permissible range. Obviously, the remaining three cases are all invalid;
as αβ − γ2 < 0, the implied correlations of portfolio returns are outside the permissible
range.
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6 An Excel illustration of the positive definiteness require-
ment

As shown in the previous section, if the graph of equation (22) on the (σ, µ)-plane is not
a hyperbola with a horizontal transverse axis, the input parameters for the analysis are
invalid. However, the attainment of such a hyperbola does not automatically ensure the
validity of the input parameters; the requirement is still the positive definiteness of the
covariance matrix. A crucial point is that a positive definite covariance matrix implies
such a hyperbola, but not the other way round.

We now use two four-security cases to illustrate the positive definiteness requirement.
The only difference between the two cases is in the covariance of returns between two
specific securities. The covariance matrix in the first case is positive definite; the one in
the second case is not. Figures 4a and 4b show part of an Excel worksheet for the first
case. Here, the input parameters, consisting of

µ′ =
[
12.4 10.8 9.0 8.5

]′
and V =


100 −32 36 −25
−32 64 −24 12
36 −24 36 3
−25 12 3 25

 ,
as measured in percentage terms, are provided in cells B3:E3 and B8:E11, respectively.

The positive definiteness of V is confirmed by the positive sign of its four leading
principal minors, as shown in the cells J8:J11. As expected, all implied pairwise cor-
relations of security returns, as shown in cells B13:E16, are in the permissible range of
−1 to 1. To find xo, σ2o , and µo of the global minimum variance portfolio, we start with
V −1, which is shown in cells B18:E21. We find each element of the row vector x′o by
dividing the corresponding 4-element column sum of the symmetric V −1 by the sum of
all its 16 elements; the result is displayed in cells B24:E24. The reciprocal of the sum
of all 16 elements of V −1, which is σ2o , is positive as expected; it is shown in cell G24.
Its square root, which is σo, is shown in cell I24. With xo determined, µo = x′oµ is
provided in cell J24.

We also use Solver to find xo, σ2o , and µo. With the target cell G26 being for σ
2
o =

x′oV xo, we arbitrarily set equal weights of 1/4 for all four securities and paste these initial
values from cells B25:E25 to cells B26:E26. By changing the four portfolio weights in
cells B26:E26, Solver minimizes the target cell subject to the only constraint that the
sum of these portfolio weights, as captured by cell F26, be unity. As confirmed by the
corresponding numbers in rows 24 and 26 of the Excel worksheet, the Solver results are
numerically the same as those based on equations (11)-(13).

To facilitate the computations for any predetermined expected return µp based on
equations (9) and (10), we show in cells B31:C34, B37:C38, and B41:C42 the computed
values of V −1M , M ′V −1M , and (M ′V −1M)−1, respectively. As expected, the two
leading principal minors of M ′V −1M , as shown in cells G37:G38, are positive. So are
the two principal minors of (M ′V −1M)−1, as shown in cells G41:G42. The optimal
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A B C D E F G H I J K
1 Sec Label 1 2 3 4
2
3 Exp Ret 12.4 10.8 9.0 8.5
4 One 1 1 1 1
5
6 St Dev 10 8 6 5
7 St Dev Lead Prin Minors
8 V 100 ­32 36 ­25 10 det (1x1) 100
9 ­32 64 ­24 12 8 det (2x2) 5376

10 36 ­24 36 3 6 det (3x3) 108288
11 ­25 12 3 25 5 det (4x4) 1099584
12
13 Corr Mat 1 ­0.4 0.6 ­0.5
14 ­0.4 1 ­0.5 0.3
15 0.6 ­0.5 1 0.1
16 ­0.5 0.3 0.1 1
17
18 V inv 0.0324777 ­0.006351 ­0.040073 0.0403353
19 ­0.006351 0.0261917 0.0256461 ­0.022001
20 ­0.040073 0.0256461 0.0902159 ­0.063209
21 0.0403353 ­0.022001 ­0.063209 0.0984809
22
23 Sum Xo Var o St Dev o Exp Ret o
24 Xo 0.2273696 0.2023571 0.1083877 0.4618857 1 8.616349 2.9353618 9.9063566
25 Xo Initial 0.25 0.25 0.25 0.25 1
26 Xo Solver 0.2273695 0.2023572 0.1083878 0.4618855 1 8.616349 2.9353618 9.9063566
27
28
29
30 (V inv) M
31 0.3163174 0.0263882
32 0.2479178 0.0234852
33 0.054732 0.0125793
34 0.5307491 0.0536057
35
36 M' (V inv) M Lead Prin Minors
37 11.603803 1.1497163 det (1x1) 11.603803
38 1.1497163 0.1160584 det (2x2) 0.0248718
39
40 [M' (V inv) M] inv Lead Prin Minors
41 4.6662718 ­46.22575 det (1x1) 4.6662718
42 ­46.22575 466.54513 det (2x2) 40.206226
43
44 Sum X Var St Dev Exp Ret One
45 X 0.5075726 0.2802557 ­0.248242 0.4604141 1 14.197471 3.7679532 11 1
46 X Initial 0.25 0.25 0.25 0.25 1
47 X Solver 0.5075728 0.2802558 ­0.248243 0.460414 1 14.197481 3.7679545 11.000001
48

Figure 4a: An Excel example illustrating the consistency of the results of portfolio vari-
ance minimization and the corresponding Solver results for a positive definite covariance
matrix of security returns.
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L M N O P Q R S T U
1
2 Cell Formulas B6 =SQRT(B8)
3 C6 =SQRT(C9)
4 D6 =SQRT(D10)
5 E6 =SQRT(E11)
6 G8:G11 {=TRANSPOSE(A6:E6)}
7
8 J8 =MDETERM($B$8:B8)
9 J9 =MDETERM($B$8:C9)

10 J10 =MDETERM($B$8:D10)
11 J11 =MDETERM($B$8:E11)
12
13 B13 =B8/B$6/$G8 Pasted to B13:E16
14 B18:E21 {=MINVERSE(B8:E11)}
15
16 B24 =SUM(B18:B21)/SUM($B18:$E21) Pasted to B24:E24
17 F24 =SUM(B24:E24) Pasted to F24:F26
18 G24 =1/SUM(B18:E21)
19 I24 =IF(G24>0,SQRT(G24),"") Pasted to I26
20 J24 {=MMULT(B24:E24,TRANSPOSE(B$3:E$3))} Pasted to J26
21 G26 {=MMULT(B26:E26,MMULT(B8:E11,TRANSPOSE(B26:E26)))}
22
23 B31:C34 {=MMULT(B18:E21,TRANSPOSE(B3:E4))}
24 B37:C38 {=MMULT(B3:E4,B31:C34)}
25 G37 =MDETERM($B$37:B37)
26 G38 =MDETERM($B$37:C38)
27
28 B41:C42 {=MINVERSE(B37:C38)}
29 G41 =MDETERM($B$41:B41)
30 G42 =MDETERM($B$41:C42)
31
32 B45:E45 {=TRANSPOSE(MMULT(B31:C34,MMULT(B41:C42,TRANSPOSE(J45:K45))))}
33 F45 =SUM(B45:E45) Pasted to F45:F47
34 G45 {=MMULT(B45:E45,MMULT(B$8:E$11,TRANSPOSE(B45:E45)))} Pasted to G47
35 I45 =IF(G45>0,SQRT(G45),"") Pasted to I47
36 J47 {=MMULT(B47:E47,TRANSPOSE(B3:E3))}
37
38
39 Solver for Min Var o Min $G$26
40 Changing Cells $B$26:$E$26
41 Constraint $F$26=1
42
43
44 Solver for Min Var with Given Exp Ret Min $G$47
45 Changing Cells $B$47:$E$47
46 Constraints $F$47=1
47 $J$47=$J$45
48

Figure 4b: An Excel example illustrating the consistency of the results of portfolio vari-
ance minimization and the corresponding Solver results for a positive definite covariance
matrix of security returns (continued).
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portfolio weight vector, x, and the corresponding variance and standard deviation of
portfolio returns, σ2p and σp, for µp = 11 as an example, are shown in cells B45:E45, G45,
and I45, respectively.

The above numerical results are also confirmed by using Solver. The approach is
similar to that in the computations for the global minimum variance portfolio. The only
difference is the additional constraint that the portfolio’s expected return, x′µ, as shown
in cell J47, be equal to its predetermined value in cell J45, which is 11. Except for some
minor rounding errors, the Solver results, as shown in the corresponding cells in row 47,
are identical to the results based on equations (9) and (10).

By repeating the computations based on these two equations for different values of
µp, we are able to provide corresponding values of σp and µp for a graph on the (σ, µ)-
plane. The graph, as shown in Figure 5, is generated by using Excel’s graphic feature
Charts, X Y (Scatter). The individual points of (σi, µi), for i = 1, 2, 3, and 4, are also
shown. As expected, the graph is a branch of a hyperbola with a horizontal transverse
axis. The upward-sloping part of the graph, starting from the global minimum variance
portfolio, is the effi cient frontier.

The input parameters for the Excel worksheet in Figure 6 differ from those in Figure
4a only in the covariance of returns between securities 3 and 4; we have σ34 = σ43 = 12
instead of 3. All implied correlations of returns, as shown in cells B13:E16, are still in the
permissible range of −1 to 1. Now, let us first consider the results in Figure 6 that are
based on equations (9)-(13). Specifically, the computed value of σ2o based on equation
(13) is positive, as shown in cell G24. The 2× 2 matrix (M ′V −1M)−1 has two positive
leading principal minors, as shown in cells G41:G42. The two portfolio variances as
shown in cells G24 and G45 are positive. Further, as shown in Figure 7, the graph on
the (σ, µ)-plane for different values of σp and µp is still a hyperbola with a horizontal
transverse axis. At first glance, as the graph has captured all the characteristics of
minimum variance portfolios, equations (10)-(13) seem to have performed their intended
tasks.

However, a closer inspection of Figure 6 reveals two problems. First, as shown in cell
J11, the fourth leading principal minor – which is the determinant of the covariance
matrix itself – is negative. Second, the inverse of the covariance matrix, as shown
in cells B18:E21, has three negative diagonal elements. Both are indications that the
covariance matrix is not positive definite. To show that the graph in Figure 7 does
not correspond to minimum variance portfolios, we first repeat the same Solver runs in
Figure 4a with initially equal portfolio weights and with the default setting of Solver
options. The two portfolio variances as shown in cells G26 and G47, intended for σ2o
and σ2p, are −9.3 × 1015 and −4.8 × 1015, respectively. These results suggest that the
true value in each case is minus infinity. Regardless of their true values, what is clear is
that, with the covariance matrix not being positive definite, equations (10)-(13) do not
correspond to any minimum variance portfolios.

As portfolio weights with extremely large magnitudes are unrealistic, we now restrict
such magnitudes in the Solver runs in order to illustrate that, if the covariance matrix
fails to be positive definite, some reasonable portfolio weights can still lead to portfolio
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Figure 5: The graph of expected return versus standard deviation of returns for a basic
portfolio selection model based on the input parameters in Figure 4a.
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A B C D E F G H I J K
1 Sec Label 1 2 3 4
2
3 Exp Ret 12.4 10.8 9.0 8.5
4 One 1 1 1 1
5
6 St Dev 10 8 6 5
7 St Dev Lead Prin Minors
8 V 100 ­32 36 ­25 10 det (1x1) 100
9 ­32 64 ­24 12 8 det (2x2) 5376

10 36 ­24 36 12 6 det (3x3) 108288
11 ­25 12 12 25 5 det (4x4) ­586944
12
13 Corr Mat 1 ­0.4 0.6 ­0.5
14 ­0.4 1 ­0.5 0.3
15 0.6 ­0.5 1 0.4
16 ­0.5 0.3 0.4 1
17
18 V inv ­0.03729 0.035083 0.093719 ­0.09912
19 0.035083 0.001533 ­0.05418 0.060353
20 0.093719 ­0.05418 ­0.16901 0.200851
21 ­0.09912 0.060353 0.200851 ­0.18449
22
23 Sum Xo Var o St Dev o Exp Ret o
24 Xo ­0.09037 0.508462 0.848166 ­0.26626 1 11.88242 3.447089 9.741096
25 Xo Initial 0.25 0.25 0.25 0.25 1
26 Xo Solver 0.323379 0.134765 ­0.1 0.641856 1 7.966032 2.822416 10.02114
27 Sum Abs Xo
28 Abs Xo 0.323379 0.134765 0.1 0.641856 1.2
29
30 (V inv) M
31 ­0.08253 ­0.00761
32 0.476987 0.042791
33 0.763117 0.07138
34 ­0.33778 ­0.02241
35
36 M' (V inv) M Lead Prin Minors
37 8.124975 0.819791 det (1x1) 8.124975
38 0.819791 0.084158 det (2x2) 0.011725
39
40 [M' (V inv) M] inv Lead Prin Minors
41 7.17794 ­69.921 det (1x1) 7.17794
42 ­69.921 692.9897 det (2x2) 85.2913
43
44 Sum X Var St Dev Exp Ret One
45 X ­0.16669 1.05204 1.46082 ­1.34617 1 23.25829 4.822685 11 1
46 X Initial 0.25 0.25 0.25 0.25 1
47 X Solver 0.453243 0.340153 ­0.1 0.306604 1 13.97939 3.738902 11
48 Sum Abs X
49 Abs X 0.453243 0.340153 0.1 0.306604 1.2
50
51 Additional Cell Formulas B28 =ABS(B26) Pasted to B28:E28 and B49:E49
52 F28 =SUM(B28:E28) Pasted to F49
53 Additional Constraint in Solver for Min Var o $F$28=1.2
54 Additional Constraint in Solver for Min Var with Given Exp Ret$F$49=1.2
55

Figure 6: An Excel example illustrating the inconsistency of the intended results of
portfolio variance minimization and the corresponding Solver results for an invertible
covariance matrix of security returns that is not positive definite.
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Figure 7: The graph of expected return versus standard deviation of returns for a basic
portfolio selection model based on the input parameters in Figure 6.
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variances lower than those based on equations (10)-(13). For the illustration, we arbi-
trarily restrict the sum of the absolute values of the four portfolio weights to be 1.2.
Thus, there is an additional constraint in each Solver run. The Solver results as shown
in row 26 of the Excel worksheet in Figure 6 indicate that a different set of portfolio
weights can lead to a much lower variance of returns than that according to equation
(13). Likewise, as shown in row 47, a different portfolio has a much lower variance of
returns than that according to equation (10) for µp = 11. Thus, it is clear that, unless the
covariance matrix is positive definite, the portfolio results based on equations (10)-(13)
do not correspond to minimum variance portfolios.

7 Concluding remarks

In finance courses that are part of the core curriculum of business education, portfolio
concepts are typically conveyed in terms of the correlations of security returns. For
a given set of risky securities for portfolio investments, it is obvious that all pairwise
correlations of security returns must be in the permissible range of −1 to 1. However,
standard investment textbooks are silent on whether there are any other requirements
on the variances and covariances of security returns.

In contrast, it is well-known in the academic finance literature that, when the vari-
ances and covariances are arranged as elements of a symmetric matrix, called the co-
variance matrix of security returns, such a matrix must satisfy a specific requirement in
order to be meaningful. This study has considered the requirement from a pedagogic
perspective. In the language of matrix algebra, the requirement is that the covariance
matrix be positive definite. In the context of portfolio investments under the assumption
of frictionless short sales, a positive definite covariance matrix ensures that the variance
of portfolio returns be always positive, regardless of how investment funds are allocated
among the securities considered.

The positive definiteness requirement is crucial because its violation will prevent
portfolio selection models from performing their intended tasks. With the aid of Excel
tools, this study has revealed some consequences of its violation. Of special relevance is
that its violation does not preclude the attainment of a hyperbola – which is intended
to capture the achievable risk-return trade-off from portfolio investments – with a hor-
izontal transverse axis on the plane of standard deviation of returns (σ) and expected
return (µ), where σ is the horizontal axis. As students are taught that the effi cient
frontier, starting from the global minimum variance portfolio, is a concave curve on the
(σ, µ)-plane, violation of the positive definiteness requirement may appear to be incon-
sequential at first glance. Nevertheless, it is such a situation that can cause serious
confusion for students.

This study has shown that, if the positive definiteness requirement is violated, the
analytical results will not correspond to constrained minimization of the variance of
portfolio returns as intended. That is, some other allocations of investment funds satis-
fying the same constraints can lead to lower variances of portfolio returns. If so, Excel
Solver, which is highly flexible in accommodating different optimization settings, is ideal
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for providing numerical illustrations. This study has provided various Solver illustra-
tions, thus helping students understand better the positive definiteness requirement and
implications for its violations.

Besides Solver, Excel functions for basic matrix operations are also useful for teaching
mean-variance portfolio analysis. They include matrix transposition, multiplication,
and inversion, as well as finding the determinant of a matrix. To allow the positive
definiteness requirement and implications of its violations to be covered effectively in the
classroom, we as instructors must ensure that students are completely at ease with basic
matrix operations. As matrix operations in Excel are easy to follow, students can focus
on relevant analytical issues without being encumbered by the attendant computational
chores. This study has illustrated with examples how various Excel features can be used
for pedagogic purposes.

In order to make the analytical materials self-contained, this study has included
several algebraic proofs that are set at levels accessible to business students with gen-
eral analytical skills. The materials as presented in this study can be used in different
ways, depending on the pedagogic approaches of the investment courses involved. For
classes where an informal approach is intended for illustrating the positive definiteness
requirement, neither the basic portfolio selection model nor the various proofs involved
are essential. For advanced investment classes, however, such proofs – in the form of
either lecture materials or exercises for students – can facilitate a better understanding
of the basic portfolio selection model by students.
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Appendix A

This appendix shows that the sample covariance matrix is always positive semidefinite.
The proof starts with defining Rit as the return of security i observed at time t, for
i = 1, 2, . . . , n and t = 1, 2, . . . , T, where T is the number of return observations. Let
also

σ̂ij =
1

T − 1
∑T

t=1

(
Rit −Ri

) (
Rjt −Rj

)
(A1)

be the sample covariance of returns between securities i and j, where Ri and Rj are the
corresponding sample mean returns, for i, j = 1, 2, . . . , n, including i = j. The sample
covariance matrix V̂ is an n× n matrix with each element (i, j) being σ̂ij .

To show that V̂ is positive semidefinite, let

uit =

(
Rit −Ri

)
√
T − 1

(A2)

be element (i, t) of an n×T matrix U . Accordingly, we have V̂ = UU ′. The matrix prod-
uct x′V̂ x, for any n-element column vector x, is therefore x′UU ′ x = (U ′x)′(U ′x).
Let w = U ′x be a T -element column vector and label its elements as w1, w2, · · · , wT .
It follows that x′V̂ x = w′ w =

∑T
t=1w

2
t , which is never negative. With x and, conse-

quently, w being arbitrary, the positive semidefiniteness of the sample covariance matrix
is confirmed.

28

Spreadsheets in Education (eJSiE), Vol. 4, Iss. 1 [2010], Art. 4

http://epublications.bond.edu.au/ejsie/vol4/iss1/4



Notice that, if there are insuffi cient observations (with T < n) for the estimation of
the covariance matrix, we can write V̂ = U U ′ = ZZ ′, where Z =

[
U 0

]
is an n×n

matrix formed by appending the n× T matrix U with an n× (n− T ) matrix 0 with all
zero elements. The determinant of V̂ is zero, as it is the product of the determinants
of Z and Z ′, both of which are zeros. Although V̂ in this situation is not invertible,
it is still positive semidefinite. Whether the sample covariance matrix is invertible is
irrelevant in the proof of its positive semidefiniteness.

Notice also the following, regardless of whether there are suffi cient observations:

1. If Ri1 = Ri2 = · · · = RiT , security i is risk-free. As Ri1−Ri, Ri2−Ri, . . . , RiT −Ri
are zeros, row i of U has all zero elements. A vector x where element i is its only
non-zero element will result in w being a vector of zeros.

2. For two risky securities i and j, if Rit = a + bRjt for t = 1, 2, . . . , T, where a and
b are constants, the returns of the two securities are perfectly correlated. In such
a case, knowing one of Rit and Rjt will enable us to determine the remaining one
directly for any t. As Rit − Ri = b(Rjt − Rj), a vector x with its only non-zero
elements being −1 and b for elements i and j, respectively, will make w consist
only of zero elements.

3. If Rit as observed at any t can be replicated exactly by the same linear combination
of some of the remaining returns among R1t, R2t, . . . , Rnt, in the form of

Rit = a+
∑i−1

k=1
bkRkt +

∑n

k=i+1
bkRkt, (A3)

where a, b1, b2, . . . , bi−1,bi+1, bi+2, . . . , bn are constants, including some zeros, w can
be made a vector of zeros as well. The reason is that, with

Rit −Ri =
∑i−1

k=1
bk(Rkt −Rk) +

∑n

k=i+1
bk(Rkt −Rk), (A4)

we can set

x =
[
b1 b2 · · · bi−1 −1 bi+1 bi+2 · · · bn

]
(A5)

to ensure that w be a vector of zeros. Equation (A3) encompasses, as a special
case, the situation where security i is a portfolio of some other securities among
the n securities; in such a case, we have a = 0 and

∑i−1
k=1 bk +

∑n
k=i+1 bk = 1.

Appendix B

For more elegant proofs of Sylvester’s criterion, see, for example, Johnson (1970) and
Gilbert (1991). The proof below requires only matrix properties that are accessible
to business students with general algebraic skills. Let us start with the definition of
determinant. The determinant of an n × n matrix V , where each element (i, j) is σij ,
is defined as

∑
(±1)σ1i1σ2i2 · · ·σnin , with the summation over all n! permutations of
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i1, i2, . . . , in. The n different integers that i1, i2, . . . , in represent can be any permutation
of 1, 2, . . . , n. If it takes an even number of inversions (interchanges), each involving an
adjacent pair of integers in the sequence, to rearrange these integers as 1, 2, . . . , n, the
sign factor for σ1i1σ2i2 · · ·σnin is (+1). If it takes an odd number of inversions, the sign
factor is (−1) instead.12 Here, we label the determinant of V as detV .

Suppose that we wish to find a parameter λ and a corresponding n-element non-zero
column vector x satisfying the equation V x = λx. In the language of matrix algebra, λ is
an eigenvalue and the corresponding x is an eigenvector. As the equation can be written
as (V − λI)x = 0, where I is an n × n identity matrix and 0 is an n-element column
vector of zeros, the existence of a solution requires that the determinant of V − λI be
zero. The equation det(V − λI) = 0 is called the characteristic equation. The idea
is that, if det(V − λI) 6= 0, the matrix V − λI is invertible and the resulting vector
x = (V − λI)−10 will inevitably be a vector of zeros. The characteristic equation being
a polynomial equation of degree n, there are n potential values of λ, which need not be
all distinct.

As the product of the n diagonal elements of V − λI, which is (σ11 − λ)(σ22 −
λ) · · · (σnn−λ), provides the highest power of λ in the expression of det(V −λI), we can
write the expression as a polynomial function P (λ). The coeffi cient of λn, the highest
power term in P (λ), is (−1)n. The existence of n eigenvalues of λ, labeled as λi, for
i = 1, 2, . . . , n, implies that

P (λ) = (−1)n(λ− λ1)(λ− λ2) · · · (λ− λn) = 0. (B1)

The value of this polynomial function at λ = 0,

P (0) = (−1)n(−λ1)(−λ2) · · · (−λn) = λ1λ2 · · ·λn, (B2)

is also detV . Thus, the determinant of an n×nmatrix is the product of its n eigenvalues.
A crucial matrix property as required for proving Sylvester’s criterion is that all

eigenvalues of a real symmetric matrix are real. To prove this property, let us assume
that, contrary to the assertion, each λ is of the form a+b

√
−1, where both a and b are real.

The complex conjugate of a+ b
√
−1 is a− b

√
−1, by changing the sign of the imaginary

part of the expression. Notice that (
√
−1)2 = −1 and that (a+ b

√
−1)(c+ d

√
−1) =

(a+ b
√
−1) (c+ d

√
−1), where c and d are also real and each algebraic expression with

a bar above it represents its complex conjugate. Thus, for any specific eigenvalue λ,
we can write the equation V x = λx as V x = λx, by taking the complex conjugates
of both sides of the equation. Suppose that the corresponding eigenvector x is a non-
zero vector, with each element written generally in the form of a + b

√
−1. We can also

write x′x = (x′x)′ = x′x > 0, because the three matrix products here, each being the
sum of n positive terms of the form a2 + b2 per term, will all result in the same scalar.

12For example, in the case of n = 3, the sequence 3, 2, 1 requires three inversions to reach 1, 2, 3. The
inversions can be first between 3 and 2 (to reach 2, 3, 1); then between 3 and 1 in the revised sequence (to
reach 2, 1, 3); and finally between 2 and 1 (to reach 1, 2, 3). In this example, as the number of inversions
is odd, the sign factor is (−1).
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Combining x′V x = λx′x and x′V x = λx′x leads to

x′V x− x′V x = (λ− λ)x′x. (B3)

As V is symmetric, the left hand side of equation (B3) is zero. Thus, we must have
λ = λ; that is, each eigenvalue of V must be real. Notice that, with all elements of the
matrix V −λI being real for each specific eigenvalue λ, we can choose the corresponding
eigenvector x that satisfies the equation (V − λI)x = 0 to be a real vector.

To prove the part of Sylvester’s criterion that, if V is positive definite, its leading
principal minors are all positive, we first draw on the result that x′V x = λx′x is positive
for any real eigenvector x associated with each specific eigenvalue λ. With x′x being
positive, it follows that the corresponding λ is positive. As the determinant of a matrix
is the product of its eigenvalues according to equation (B2), detV , which is the n-th
leading principal minor of V , is positive as well. Further, the n × n matrix V being
positive definite, the scalar x′V x for any n-element non-zero column vector x is positive.
For m = 1, 2, . . . , n− 1, if the last n−m elements of x are set to be zeros, the condition
of x′V x > 0 is equivalent to x′mV mxm > 0, where V m is the m-th leading principal
submatrix of V and xm is an arbitrary m-element non-zero column vector. With each
V m being positive definite, it follows that the corresponding detV m is positive.

To prove, by induction, the part of Sylvester’s criterion that, if all leading principal
minors of V are positive, V is positive definite, we start with the first leading principal
submatrix of V , labeled as V 1, which consists of a single element, σ11. Obviously, if
σ11 > 0, any single-element non-zero vector x1 will give us x′1V 1x1 > 0, confirming that
V 1 is positive definite. Now, suppose that, by inductive hypothesis, detV 1, detV 2, . . . ,
detV n are all positive and V n is positive definite. The task now is to show that, if
detV n+1 is positive, V n+1 is positive definite.

Letting v =
[
σ1,n+1 σ2,n+1 · · · σn,n+1

]′
, an n-element column vector consisting

of the first n elements of the last column of V n+1, we can write V n+1 = Q
′BQ, a product

of three (n+1)×(n+1) matrices. Here, B is constructed by augmenting the n×n matrix
V n with both a row n+1 and a column n+1 of zeros, except for element (n+1, n+1),
which is an unspecified parameter g. The matrix Q is constructed by substituting the
first n elements of the last column of an (n + 1) × (n + 1) identity matrix with n
elements of the column vector V −1n v. As it will soon be clear, although g can be solved
in terms of the elements of V n+1, there is no need to do so for the purpose here. We can
write detV n+1 = (detQ′)(detB)(detQ) = detB, as detQ = detQ′ = 1. Given that
detV n+1 > 0 by inductive hypothesis, we also have detB > 0.With detB = g(detV n)
and detV n > 0, we have g > 0 as well.

For any (n+ 1)-element non-zero column vector xn+1, we can write

x′n+1V n+1xn+1 = (Qxn+1)
′B(Qxn+1), (B4)

where Qxn+1 is an (n + 1)-element column vector. Let us label the vector consisting
of the first n elements of Qxn+1 as yn and the last element as h. Equation (B4) now
becomes

x′n+1V n+1xn+1 = y
′
nV nyn + gh

2. (B5)

31

Kwan: The Requirement of a Positive Definite Covariance Matrix

Published by ePublications@bond, 2010



As xn+1 is arbitrary, so is yn. With the right hand side of equation (B5) being positive,
the positive definiteness of V n+1 is confirmed. This completes the inductive proof.

Appendix C

This appendix shows that a symmetric positive definite matrix can be written as the
product of a square matrix and its transpose. To do so, consider an n × n symmetric
positive-definite matrix A. As indicated in Appendix B, if we write As = λs, λ is an
eigenvalue and s is a corresponding eigenvector. There are n (not necessarily all distinct)
values of λ.WithA being positive definite and thus s′As = λs′s being positive, it follows
that each of the n values of λ is positive. We can choose the n corresponding eigenvectors
to be orthogonal unit vectors. That is, we can scale the individual vectors to ensure that
the sum of the squares of the elements of each vector be unity and that the sum of the
products of the corresponding elements of any two vectors be zero.

Let Λ be an n × n diagonal matrix with its diagonal elements being the n eigen-
vectors. Let also S be an n × n matrix containing these n eigenvectors as columns
in the same order. With S′S = I by construction, it follows that AS = SΛ and
A = ASS′ = SΛS′ . This decomposition of a symmetric matrix is often called spec-
tral decomposition. As the diagonal elements of Λ are all positive, we can write
Λ = DD′, where D is an n × n diagonal matrix with each diagonal element being
the square root of the the corresponding eigenvalue in Λ. Thus, we can also write
A = SDD′S′ = (SD)(SD)′, which is the product of a square matrix and its transpose.

Notice that there is a familiar matrix property, called Cholesky decomposition, which
allows each symmetric positive definite matrix to be written as the product of a lower
triangular matrix and its transpose. A lower triangular matrix is a square matrix with all
elements above its diagonal being zeros. See, for example, Martin, Peters, and Wilkinson
(1965), for the algorithmic detail.

Appendix D

This appendix provides a simple algebraic proof of Cauchy-Schwarz inequality. We start
with

(u1z2 − u2z1)2 ≥ 0, (D1)

for any real u1 and u2 and for any z1 > 0 and z2 > 0. The inequality can be written as

2u1u2 ≤
u21z2
z1

+
u22z1
z2

. (D2)

After adding u21 + u
2
2 to both sides and dividing the resulting expressions by z1 + z2, we

obtain
(u1 + u2)

2

z1 + z2
≤ u21
z1
+
u22
z2
. (D3)
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Substituting u2 + u3 for u2, substituting z2 + z3 (where z3 > 0) for z2, and noting
the analogous inequality

(u2 + u3)
2

z2 + z3
≤ u22
z2
+
u23
z3
, (D4)

we have
(u1 + u2 + u3)

2

z1 + z2 + z3
≤ u21
z1
+
u22
z2
+
u23
z3
. (D5)

Further substitutions in the same manner will eventually lead to

(
∑m
i=1 ui)

2∑m
i=1 zi

≤
∑m

i=1

u2i
zi
. (D6)

Letting ui = aibi and zi = b2i , we have(∑m

i=1
aibi

)2
≤
(∑m

i=1
a2i

)(∑m

i=1
b2i

)
. (D7)

Notice that, with each zi being positive, the corresponding bi is non-zero. To accommo-
date cases where bi = 0, if any, we can label them as bm+1, bm+2, . . . , bn, along with the
corresponding am+1, am+2, . . . , an. With(∑m

i=1
aibi

)2
=
(∑n

i=1
aibi

)2
(D8)

and
(∑m

i=1
a2i

)(∑m

i=1
b2i

)
≤
(∑n

i=1
a2i

)(∑n

i=1
b2i

)
, (D9)

it follows that (∑n

i=1
aibi

)2
≤
(∑n

i=1
a2i

)(∑n

i=1
b2i

)
. (D10)

Strict inequality holds if a1, a2, . . . , an cannot be duplicated exactly by cb1, cb2, . . . , cbn
for any constant c.
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