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Teaching Bayesian Parameter Estimation, Bayesian Model Comparison
and Null Hypothesis Significance Testing Using Spreadsheets

Abstract
Learning statistics is often characterized by tedium and frustration. To make matters worse, pervasive
misunderstandings of conditional probabilities often impede learning. We present an interactive spreadsheet
designed to elucidate such misconceptions through a comparison three statistical approaches: Bayesian
parameter estimation, Bayesian model comparison and null hypothesis significance testing. Learning is
facilitated through the systematic exploration of each method and the use of graphical displays of the
distributions. The conceptual underpinnings of each approach are described as well as their implementation
in the spreadsheet. We conclude with some suggested pedagogical questions designed to elucidate the
commonalities and differences between each approach.
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Teaching Bayesian Parameter Estimation, Bayesian Model 

Comparison and Null Hypothesis Significance Testing 

Using Spreadsheets 
 

Abstract 

 

Learning statistics is often characterized by tedium and frustration. To make matters 

worse, pervasive misunderstandings of conditional probabilities often impede 

learning. We present an interactive spreadsheet designed to elucidate such 

misconceptions through a comparison of three statistical approaches: Bayesian 

parameter estimation, Bayesian model comparison and null hypothesis significance 

testing. Learning is facilitated through the systematic exploration of each method 

and the use of graphical displays of the distributions. The conceptual underpinnings 

of each approach are described as well as their implementation in the spreadsheet. 

We conclude with some suggested pedagogical questions designed to elucidate the 

commonalities and differences between each approach.  

 

 

 

Introduction 
Uncertainty is inherent in most domains of life, including science. Even the most well 

controlled experiment is susceptible to experimental error. One of the primary goals of 

inferential statistics is to manage such uncertainty by allowing researchers to distinguish 

between systematic and random variability in data. For this reason, the ability to reason 

statistically is crucial for scientists as well as consumers of scientific knowledge. 

Unfortunately, many students endorse misconceptions that compromise the correct 

interpretation of statistics [12]. Extensive evidence from the psychological literature 

reveals pervasive misunderstandings of the conditional probabilities upon which null 

hypothesis significance testing (NHST) and Bayesian statistics are based [1] [4] [16]. 

Concepts based on conditional probabilities, such as p-values, confuse not only students, 

but also experienced research psychologists and even statisticians [7]. 

  

One common misunderstanding of conditional probabilities is termed the conversion 

error, which occurs when P(A|B) is erroneously judged to be equal to P(B|A) [16] [17]. 

In general, P(A|B) ≠ P(B|A), as can be demonstrated with the following simple example: 

P(Cloudy Skies|Rain) ≠ P(Rain|Cloudy Skies). When it is raining, the chance of cloudy 

skies is 1.00 Conversely, the presence of clouds does not guarantee rain. Understanding 

the difference between P(Data|Hypothesis) and P(Hypothesis|Data) is critical for the 

correct interpretation of NHST and Bayesian Statistics (henceforth, H = Hypothesis and 

D = Data). A second common misunderstanding concerns the role of base rates (e.g. an 

average rate in a population) when reasoning with conditional probabilities [1] [4]. 

People tend to underweight base rates relative to individuating information, thereby 
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violating Bayes’ theorem. This so-called base rate neglect has direct implications for the 

construction of prior distributions in Bayesian Statistics and the evaluation of 

improbable claims, such as extra-sensory perception [14]. 

 

Currently, there are few, if any, interactive, pedagogic resources available for comparing 

NHST and Bayesian statistics. Our goal is to fulfill this need with an interactive 

spreadsheet that allows direct comparisons between NHST and two Bayesian 

approaches—Bayesian parameter estimation and Bayesian model comparison. 

Comparing these approaches is important for two reasons—the first of which is 

pragmatic. The use of NHST is ubiquitous in science, especially the social sciences. 

Despite its popularity, considerable controversy and discontent surround the use of 

NHST [10] [13]. Bayesian statistics have been proposed as a viable alternative and could 

possibly supersede NHST in the future [6]. Thus, having knowledge of each approach is 

important. The second reason is pedagogical. We believe that misconceptions, such as 

conversion errors, can be ameliorated through this process of comparison because NHST 

provides results based on P(D|H) while the Bayesian approaches produce results based 

on P(H|D). Thus, an understanding of each approach may elucidate the distinction 

between P(D|H) and P(H|D). Each approach is demonstrated through a simple example 

of testing a coin for bias. One advantage of an interactive spreadsheet is that the 

distributions are displayed graphically and change in real time according to user input. 

In addition, the spreadsheet allows users to systematically explore the properties of each 

approach without the need for programming knowledge (e.g. Winbugs or R). Although 

the example used in the spreadsheet pertains to testing a coin for bias, it can be extended 

to any situation involving binary outcomes. Moreover, the underlying concepts 

presented herein form the foundation for more complex applications, including 

hierarchical models with multiple parameters.  

 

The remainder of the article is structured as follows. First, we introduce key theoretical 

concepts for NHST and Bayesian statistics and explain how to use the spreadsheet. A 

ready-to-use version of the spreadsheet can be downloaded from the Spreadsheets in 

Education (eJSiE) website. In this article, we focus primarily on the Bayes factor in the 

tab labeled Bayes factor but discuss the other representations of evidence in the Bayesian 

Model Comparison Section. Next, we explain the implementation of the formulae in the 

spreadsheet for the interested reader. Lastly, we conclude with six problems designed to 

illustrate important concepts and differences between each statistical approach. Based 

on our experience in the classroom, we found that presenting the theory along with the 

six problems is highly beneficial. Explaining the details of the implementation does not 

appear to have a pedagogical benefit and may even obfuscate the concepts.  

 

Null Hypothesis Significance Testing 
NHST is based on the frequentist interpretation of probability as the relative frequency 

of an event in a large number of repetitions [13]. The history of NHST is fraught with 

contention between two theoretical approaches: the Fisherian approach and the 
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Neyman-Pearsonian approach [8] [13]. According to the Fisherian approach, the p-value 

(described below) serves as an index of evidence against the null hypothesis, such that 

smaller p-values indicate more evidence against the null hypothesis. By contrast, the 

Neyman-Pearsonian approach prescribes a binary decision procedure for rejecting the 

null hypothesis wherein type I and type II error rates are controlled across repeated 

experiments. Although a detailed discussion of each approach is beyond the scope of the 

present article, it should be noted that there is no consensus regarding the interpretation 

of the p-value [2] [3] [8]. For simplicity we adopt a unified theoretical approach [8], 

while noting it is not universally endorsed [2] [3].  

 

In the simplest case, NHST begins with the specification of two complementary 

hypotheses —generally, a null hypothesis describing chance performance (i.e. no effect) 

and an alterative hypothesis describing either a directional or non-directional effect [10] 

[13]. For the present example, the null hypothesis is that the coin is fair, which is 

formally stated as H0 : θ = .50. θ represents a possible parameter value for the proportion 

of heads. The alternative hypothesis is that the coin is biased, which is formally stated as 

H1: θ ≠ .50. A criterion, α, is specified to control type I errors—the conditional 

probability of falsely concluding an effect exists assuming the null hypothesis is true. By 

convention α = .05. Once the data are collected, a test statistic is compared to a 

theoretical sampling distribution that represents all possible test statistics under the 

assumption that the null hypothesis is true. A p-value is computed by determining the 

relative position of the obtained test statistic within the sampling distribution. In other 

words, the p-value is the probability of obtaining a test statistic at least as extreme as the 

one obtained. The presumed null hypothesis is rejected if the p-value ≤ α. However, if 

the p-value > α, judgment is suspended. Within this unified framework, the magnitude 

of the p-value also quantifies the degree of evidence against the null hypothesis.  

 

Before proceeding it is important to emphasize two points. First, the p-value is not a 

posterior probability. Whereas the posterior distribution refers to the probability of a 

hypothesis after data have been collected, the p-value refers to probability of the data 

assuming the null hypothesis is true. Second, the p-value is similar to P(D|θ = .50) in 

that both are conditional on θ. However, the p-value is more accurately defined as P(|T| 

≥ Tobs |θ = .50), where T and  Tobs denote test statistic and observed test statistic, 

respectively. In other words, the probability of a test statistic at least as extreme as the 

one observed assuming the null hypothesis is true. Thus, the p-value is not the same as 

P(θ = .50|D).  

 

  

 

 

Figure 1: Data entry Table. 
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Figure 2: Sampling distribution of Z-statistics. The shaded area corresponds to the p-value. 

 

  

 

 

Figure 3: Z-statistic, p-value and null parameter. 

 

 

Normal Approximation to Binomial 
A normal approximation was used rather than a binomial distribution for several 

reasons1. The use of graphical displays is integral to our approach for conveying 

concepts based on distributions and p-values. One problem with the binomial 

distribution is that it cannot be implemented in graphical form because the size of the 

referenced data changes according to sample size. The normal approximation has 

several other advantages in terms of pedagogy. For example, it is used commonly in 

practice because it is more tractable computationally for large sample sizes. Another 

reason is that it provides a seamless transition to distributions of continuous variables, 

which are more commonly used in practice. The normal distribution is a reasonable 

approximation to a binomial distribution when nθ 0 ≥ 5 and n(1- θ 0) ≥ 5, where n is the 

sample size and θ 0 is the parameter against which the null hypothesis is tested [9]. The 

corresponding Z-statistic is computed as follows: 

 

(1) � �  �����	
�.

���	����	


 

 

where x denotes the number of successes in n trials.  
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Hypothetical data may be entered into the spreadsheet in the table entitled Data, as 

shown in Figure 1. The table requires two inputs: the sample size (cell B2) and the 

proportion of observed heads (Cell B3), which are referenced by each of the three 

statistical approaches. Figure 2 displays the resulting sampling distribution. The shaded 

area of the sampling distribution is proportional to the p-value. Figure 3 displays the Z-

statistic and p-value that correspond to the sampling distribution in Figure 2. The 

parameter for the null hypothesis can also be changed in this table (cell 34).  

 

Bayesian Parameter Estimation 
In the Bayesian framework, probability indexes subjective degree of belief that an event 

will occur [13]. Unlike the frequentist interpretation, probabilities may be assigned to 

non-repeatable events, such as a candidate winning a particular election. At a conceptual 

level, Bayesian statistics is intuitive. One begins with a set of beliefs regarding a 

particular phenomenon and updates those beliefs as data become available. However, 

the underlying computations and the interplay between the prior, likelihood and 

posterior distributions are complex, as detailed below. This process of updating beliefs is 

formalized through Bayes theorem. One key feature of Bayes’ theorem is that it enables 

P(θ|D) to be inferred from P(D|θ). In general, Bayes’ theorem is defined as: 

 

(2) ���|�
 � ���|�
���

� ���|�
���
��

 

 

where P(θ|D) is the posterior probability of θ, P(D|θ) is the probability of the data 

given θ, P(θ) is the prior probability of θ and the denominator is a normalizing constant 

formed by integrating across all values of θ. Each of these components will be discussed 

in turn.  

 

Prior Distribution 
The primary goal of Bayesian parameter estimation is to identify the relative plausibility 

of candidate parameter values while taking into account prior beliefs and newly 

acquired data [6]. The first step is to specify a prior distribution that characterizes the 

relative plausibility of candidate parameters before additional data is acquired. As a 

theoretical construction, the prior distribution is unobservable unlike the data. However, 

the prior distribution can be based upon the posterior distribution from previous 

experiments. One important constraint in specifying a prior distribution is that it must 

be derived from existing theory and data and must ultimately pass the scrutiny of 

qualified reviewers.  
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Figure 4: A symmetrical prior distribution with a mean = .50 and N = 10.

  

Figure 5: A flat prior distribution with a mean = .50 and N = 2. 

 

 

Figure 6: A skewed prior distribution with a mean = .80 and N = 5. 

 

A beta distribution is used to characterize the prior distribution of θ because it is 

constrained to the interval [0,1] and can assume many qualitatively different shapes, as 

shown in Figures 4, 5 and 6. Another attractive feature of the beta distribution is that the 

prior and posterior distributions are conjugate when used with a binomial likelihood 

function [13]. This means that the resulting posterior distribution is also a beta 

distribution, and thus, has the same parametric interpretation. The beta distribution is 

governed by two parameters: α and β. In the present example, α represents the outcome 

heads and β represents the outcome tails. The ratio of α to β governs the central 
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tendency of the distribution. For example, α = 2 and β = 2 produces a beta distribution 

with a mean of .50. The magnitude of α and β governs the dispersion of the beta 

distribution, such that higher magnitudes produce less dispersion. The beta distribution 

in the spreadsheet is re-parameterized to be more intuitive [5]. The mean of the beta 

distribution is defined as mean = α/(α + β), while the sample size is defined as N = α + β, 

which governs the dispersion of the distribution. At a conceptual level, the mean 

represents the average value of θ, with higher values of N corresponding to higher 

degrees of certainty in the mean value. As shown below in Figure 7, these parameters 

may be entered in the table of the spreadsheet entitled Bayesian Parameter Estimation 

under the subheading Prior Distribution (cells B9 and C9). 

  

 

 

 

Figure 7: Table for Bayesian Parameter Estimation. 

 

 

Likelihood Distribution  
The likelihood distribution represents the degree to which values of θ are consistent 

with the observed data [6]. Formally, the likelihood distribution is generated by the 

binomial likelihood function: 

(3) ���|�
 � ��
�����1 � �
��� 

 

where n is the sample size and h is the number of observed heads. As to be expected, the 

likelihood distribution peaks at the observed proportion of heads, with the likelihood of 

θ decreasing as it departs from the observed proportion of heads (see Figure 8).  
 

 

 

 

Figure 8: The likelihood distribution for sample size = 30 and proportion of heads = .60. 
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Posterior Distribution 
Up to this point we described the specification of a prior distribution that describes pre-

experimental beliefs and the likelihood distribution that results from observed data. The 

posterior distribution can be conceptualized as a resolution between the prior and 

likelihood distributions, formed by averaging the distributions together (see Figure 9). 

This conceptualization is reinforced by the fact that the mean of the posterior 

distribution is a weighted average of the observed proportion of heads and the mean of 

the prior distribution [5]: 

 

(4)  

 

where h is the number of observed heads N is the sample size and α and β are the 

original parameters of the beta distribution. More formally, the posterior distribution is 

defined as: 

 

(5) ���|�
 � ���|�
���

���


 

 

where, 

 

(6) ���
 � � ���|�
���
�� 

 

Thus, P(D) is a normalizing constant formed by summing each likelihood of θ weighted 

by its prior probability. The posterior distribution is commonly summarized with 

respect to its parameters and a 95% highest density interval (HDI)—a Bayesian analog to 

the 95% confidence interval in NHST. As shown in Figure 7, the parameters of the 

posterior distribution (cells B14 and C14) and 95% HDI (cells B12 and C12) can be found 

under the subheading Posterior Distribution.  

 

 

 

 

Figure 9: The posterior distribution of θ. 
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While the posterior distribution is rich in information, it is possible to simplify this 

information with a binary decision procedure similar to that used in NHST [6]. As in 

NHST, a researcher must first define null hypothesis—in this case, θ = .50. The null 

hypothesis is rejected if θ = .50 is not included in the 95% HDI. Otherwise judgment is 

suspended. Alternatively, one may define a region of practical equivalence (ROPE), an 

interval within which θ is deemed equivalent to the null parameter for practical 

purposes. Although the ROPE is determined on a case-by-case basis, Figure 7 shows this 

to be θ ∈ [.48, .52]. As before, the null hypothesis is rejected when the 95% HDI does not 

overlap with the ROPE. One advantage of using a ROPE, as opposed to a point null, is 

that it is possible to accept the null hypothesis because the 95% HDI converges on the 

true value as the sample size increases. The null hypothesis can be accepted if the 95% 

HDI falls entirely within the ROPE. In addition, the value labeled Percentage in Figure 7 

indexes graded levels of support for the null hypothesis. It represents the proportion of 

the posterior distribution that overlaps with the ROPE.  

 

Bayesian Model Comparison 
The goal of Bayesian model comparison is to determine the relative plausibility of two 

or more models [6]. A model may refer to a simple hypothesis (e.g. the coin is fair) or a 

complex mathematical model. Comparisons can be made between nested or non-nested 

models. Continuing with the present example, the two models of interest are the fair 

coin model and the biased coin model. A prior distribution of θ must be specified for 

both models. By definition, the prior distribution is P(θ = .50) = 1.00 for the fair coin 

model, as shown below in Figure 10. However, the prior distribution of θ for the biased 

coin model can, in principle, assume many forms. To allow direct comparisons between 

both Bayesian approaches, the parameters for the biased coin model are entered in the 

table for Bayesian parameter estimation under prior distribution. As with Bayesian 

parameter estimation, the prior distribution must map onto the characteristics of the 

model. One reasonable model of a biased coin may use the parameters: mean = .50 and 

N = 10. Such a model assumes small degrees of bias are more likely than large degrees of 

bias and bias towards heads is as likely as bias towards tails.  

 

 

 

 

Figure 10: The Fair Coin Model. P(θ = .50) = 1.00. 
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Bayes’ theorem for model comparison is defined below: 

 

(7) �� !|�
 � ���|"#
��"#

∑ ���|"#
��"#
%

#&'
 

 

where Mi is the ith model and 

 

(8) ���| !
 � � ���|�,  !
���| !
� � 

 

 

Bayes Factor 
At a conceptual level, each model is compared in terms of its concordance with the data. 

Concordance is indexed using the Bayes factor, which is computed from the ratio of 

likelihoods: P(D|Mi)/P(D|Mj). In terms of the present example, the Bayes factor is: 

 

(9) 
���|")#*+,-


���|".*#/

� � ���|�,")#*+,-
���|")#*+,-
��

���|�0.
1

 

 

The Bayes factor provides graded levels of support for one model relative to another. 

For example, a Bayes factor of 2 would indicate the data favor the biased coin model 

twice as much as the fair coin model. Thus, it is the factor by which one’s prior beliefs 

should be adjusted in light of the evidence. Although the Bayes factor is a continuous 

measure, some suggested categories for interpretation are presented in Table 1. One 

difficulty in interpreting Bayes factors concerns its asymmetry. For example, a Bayes 

factor of 6 indicates moderate support for the biased coin model, while a Bayes factor 

of .167 indicates the same degree of support for the fair coin model. To overcome this 

problem, the spreadsheet displays the reciprocal of the Bayes factor when it is less than 1 

and indicates which model received more support. Using the previous example, the 

spreadsheet would convert .167 to 6 and display “Supports Fair Coin Model” (see Figure 

11).  
 

Table 1: Categories for interpreting Bayes factors adapted from [15]. 

Bayes Factor (BF) Interpretation 

1 Equal evidence 

1 < BF ≤ 3 Anecdotal evidence 

3 < BF ≤ 10 Substantial evidence 

10 < BF ≤ 30 Strong evidence 

30 < BF ≤ 100 Very strong evidence 

100 < BF Decisive evidence 

 

A similar configuration for the posterior odds is used because it can disagree with the 

Bayes’ factor under certain circumstances, as demonstrated in Figure 11. Alternative 

methods for facilitating the interpretation of Bayes factors can be found in the tabs 
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labeled Log Bayes Factor and Probability. For example, the Bayes factor can be 

symmetrized using a logarithmic transformation. Another method is to convert the 

Bayes factors to probabilities. 

 

Posterior Odds 
It is important to note that the Bayes factor is a likelihood ratio rather than the posterior 

odds [6]. In order to obtain the posterior odds, the prior probabilities of each model 

must be specified, as shown in Figure 11 under Prior Probability of Model. Only the 

prior probability for the Fair Coin model must be specified (cell B23) because the prior 

probabilities are complementary. When the prior probability of each model is equal, the 

Bayes factor equals the posterior odds.  

 

 

 

Figure 11. Table for Bayesian Model Comparison. 

 

Implementation 
In this section, we outline the implementation of the formulae beginning with the 

normal approximation to the binomial distribution. In cell B32, the Z statistic is 

computed according to formula (1).  The p-value is computed with the NORM.S.DIST 

function, as follows: B33 = =2*MIN(NORM.S.DIST(B32,1),(1-NORM.S.DIST(B32,1))). The 

minimum value is multiplied by two to reflect that it is a non-directional test. Correction 

for continuity is employed using the IF function in cell B32. If x < nθ 0, then .5 is added to 

the numerator. If x > nθ 0, then .5 is subtracted from the numerator. Otherwise the 

numerator will equal 0. 

 

One difficulty in implementing Bayesian statistics in Excel is that it requires the use of 

integrals. This problem is resolved in the following manner: A continuous prior 

distribution is approximated by taking the difference between the cumulative 

distribution for values of θ and θ - .001 over the interval [0,1]. Column AJ enumerates θ 

in increments of .001, while column AL references θ in column AJ and computes the 

cumulative difference. To understand the logic of this approach, imagine the non-

contiguous distribution that would be formed by computing the probability density for 

each .001 increment of θ. The resulting gaps can be filled by computing the cumulative 

difference for θ and θ - .001. Approximating the prior distribution in this fashion has 

several advantages. First, it provides a degree of precision that is sufficient for 

pedagogical purposes1. Second, the prior distribution sums to 1.00, as necessitated by 

the law of total probability. By extension, the posterior distribution also adheres to the 

law of total probability.   

 

11

Fisher and Wolfe: Null Hypothesis Significance Testing and Bayesian Statistics

Published by ePublications@bond, 2012



The likelihood distribution is produced in column AK by applying the binomial 

probability mass function across all values of θ: =BINOMDIST($B$2*$B$3,$B$2,AJ2,0). 

The posterior distribution is computed in two steps. First, corresponding cells in 

columns AK and AL are multiplied and the intermediate values are recorded in column 

AM. Second, these values are normalized by dividing each cell by the sum of column 

AM and storing them in column AN: AN2 = AM2/SUM($AM$2:$AM$1002). Two steps 

are used to approximate the 95% HDI. First, each value of θ in the posterior distribution 

is converted to percentiles with a cumulative sum in column AO: AO2 = 

SUM($AN$2:AN2). Next, the match function returns the rank order associated with the 

percentiles .025 (lower bound) and .975 (upper bound) in cells B12 and C12, respectively. 

For example, the lower bound is computed as follows: B12 = 

(MATCH(0.025,AO2:AO1002)-1)/1000. One is subtracted from the rank order and 

divided by 1000 to transform the rank order to the correct value of θ. The parameters of 

the posterior distribution (cells B14 and C14) are computed using formula (4). The ROPE 

is implemented in the spreadsheet by summing the cumulative probability values in 

column AO that correspond to the user defined ROPE interval in Cells B17 and C17: 

A17=SUMIFS(AN2:AN1003,AJ2:AJ1002,">="&B17,AJ2:AJ1002,"<="&C17).  

 

The Bayes factor and posterior odds are implemented in the spreadsheet in the 

following manner: For interpretability the Bayes factor and posterior odds are 

transformed using the IF function such that both are ≥ 1. Cells A24 and A26 use the IF 

function and the untransformed Bayes factors and posterior odds indicate which model 

is supported. The Bayes factor in cell B25 is a likelihood ratio of the Biased and Fair Coin 

Models. The Biased Coin Model is equivalent to the normalizing constant P(D): 

SUM(AM2:AM1002). The Fair Coin Model is simply the likelihood of the null parameter 

in cell B34 of the Null Hypothesis Significance Testing Table. VLOOKUP returns the 

likelihood of the null parameter defined by the user: BA3 = 

VLOOKUP(B34,AJ2:AK1002,2)). The posterior odds in cell B27 are computed by 

multiplying the prior odds, defined as a ratio of cells C23 and B23, by the Bayes factor.  

 

Problems 

In this section, we provide problems with suggested answers. Although it is by no 

means an exhaustive collection of problems, we believe these problems underscore 

important features of each approach.  

 

Problem 1: Calibration 

A coin is flipped 120 times to determine whether it is fair or biased, resulting in 60% 

heads.  Set the biased coin model to mean = .50 and N = 10. Interpret the p-value and the 

Bayes factor. How do they compare?  

 

Suggested answer: According to the Neyman-Pearsonian perspective, the null 

hypothesis that the coin is fair should be rejected. The Bayes factor indicates “anecdotal” 

12

Spreadsheets in Education (eJSiE), Vol. 5, Iss. 3 [2012], Art. 3

http://epublications.bond.edu.au/ejsie/vol5/iss3/3



or weak support in favor of the biased coin model. Although both methods agree, they 

are calibrated differently. See [15] for details on calibration.  

 

Problem 2: Sensitivity to Model 

Continuing with Problem 1, change the biased coin model to observe its effects on the 

Bayes factor and p-value. As a starting point you may want to try mean = .5, N = 2 and  

mean = .65, N = 30. What happened and why? 

 

Suggested answer: The p-value was invariant to changes in the biased coin model 

because it only compares the observed result to sampling distribution based on the 

assumption that the null hypothesis is true.  The Bayes factor is sensitive to different 

models because the fair and biased coin models are compared relative to each other. For 

example, when the biased coin model was flat (i.e. mean = .5, N = 2), it received less 

support because the data were inconsistent with extreme values of θ (i.e. θ = 0 , θ = 1), 

which received equal weight in the model as moderate values (i.e. θ = .50). Evidence for 

the biased model increased when mean = .65 and N = 30 because the data were more 

consistent with it than the fair coin model.  

 

Problem 3: Robustness of Bayesian Parameter Estimation 

Examine the effect of the two different priors used in Problem 2 on Bayesian parameter 

estimation. How does this compare to your answer in problem 2. Why is this the case? 

 
Table 2: Comparison of two posterior distributions based on two prior distributions and a large sample size. 

Prior Distribution 

 Mean = .5, N = 2 Mean = .65, N = 30 

95% HDI .51-.68 .52 - .69 

Mean .60 .61 

N 122 130 

 

Suggested answer: Compared to the Bayes factor, Bayesian parameter estimation is 

relatively stable in this case (see Table 2). Bayesian model comparison measures the 

evidence for one model relative to another, whereas Bayesian parameter estimation takes 

a weighted average of the prior distribution and likelihood distribution to form a 

posterior distribution. By comparing the data to the priors in terms of the parameters, it 

is evident that the data receive more weight and exert more influence on the posterior 

distribution (N = 120 for the data vs. N = 2 and N = 30 for the priors). 

 

Problem 4: HDI’s and Confidence Intervals 

Create a flat prior distribution by setting Mean = .5 and N = 2.  Record the 95% HDI. 

Compute a 95% confidence interval for NHST. Disregarding rounding error, how do 

they compare. What does this imply about NHST? 
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Suggested answer: Continuing with Problem 3, the 95% HDI and 95% confidence 

interval are equal in this special case. This implies that NHST weights each parameter 

equally. The degree to which the 95% HDI will differ from the confidence interval 

depends on the prior distribution. Moreover, based on the answer from Problem 3, the 

influence of the prior distribution on the 95% HDI is moderated by the data because the 

posterior distribution is a weighted average of the prior and likelihood distributions.  

 

Problem 5: Prior Probability of Models 

Suppose that you found a coin on the street and want to determine whether it is fair or 

biased. Construct a biased coin model and set the prior probabilities of each model. 

Further suppose, the coin was flipped 20 times and resulted in heads 55% of the time.  

Now suppose a slightly different situation. This time your uncle gives you a coin and 

your uncle has a reputation for being a trickster. Use the same biased coin model and 

specify the prior probabilities of the models for this situation. Assume, again, that the 

coin was flipped 20 times and resulted in 55% heads. Explain how you chose the prior 

probabilities for the models and compare the Bayes factor and prior odds in both cases.  

 
Table 3: A comparison of the Bayes Factor and prior odds based on two prior distributions. 

 Bayes Factor Prior Odds 

Street: Prior fair = .80 2.56 Biased 1.56 Fair 

Uncle: Prior fair = .20 2.56 Biased 10.26 Biased 

 

Suggested answer: Although the results may vary from person to person, the qualitative 

pattern of results will match those depicted in Table 3.  The prior probability of the fair 

coin model is higher when the coin was found in the street. This reflects the fact that the 

uncle has a reputation for being a trickster. The Bayes factors are the same in both 

situations because the results of the coin flipping experiment were the same. However, 

the posterior odds reflect the fact the prior probabilities are different across situations. 

For the coin that was found in the street, the prior odds show weak evidence in favor of 

a fair coin. The case is much different for the uncle’s coin. The posterior odds indicate 

strong support of the biased coin model.  

 

Problem 6: Disagreement Regarding Priors 

It is possible that your peers may disagree with the prior probabilities you choose for the 

models. Propose some solutions for resolving such disagreements. 

 

Suggested answer: One possibility is to perform a sensitivity analyses. The posterior 

odds based on different prior probabilities may support same model, but disagree 

slightly to moderately in magnitude—in which case, the disagreement may be minimal. 

However, if the posterior odds support different models or indicate large differences in 

magnitude, this reflects a state of uncertainty that may be resolved by simply collecting 

additional data.  
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Conclusion 
The spreadsheet we presented is interactive and easy to use. It allows the user to explore 

the properties of NHST and two Bayesian approaches and make direct comparisons 

between them. The graphical displays of distributions may facilitate understanding of 

certain concepts. For example, by visual examination the distributions, it is easy to see 

that the posterior distribution is a weighted average of the prior and likelihood 

distributions. This fact may be obscured by the formalism of Bayes’ theorem.  The 

spreadsheet may reduce conversion errors by demonstrating that NHST is based on 

P(Data|Hypothesis), whereas the Bayesian approaches use prior distributions to infer 

the converse probability, P(Hypothesis|Data). 
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Footnote 
The spreadsheet is intended to be a pedagogical tool. P-values are generally in close 

agreement to those obtained from SPSS. Bayes Factors are generally accurate for sample 

sizes and effect sizes commonly observed in research. However, there is some loss of 

precision for very large Bayes Factors (i.e. > 1000). Users interested in comparisons to the 

binomial distribution may adapt the spreadsheet to their purposes using the 

BINOM.DIST function. 
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