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Bond Duration: A Pedagogic Illustration

Abstract
In view of the importance of reliable duration measures for bond immunization strategies, this paper
considers, from a pedagogic perspective, the duration concept. Both a basic bond model and a more realistic
bond model, which accounts for the accrued interest, are considered. The use of graphical features and scroll
bars in Microsoft ExcelTM allows the duration concept to be delivered via an interactive approach. This paper
also addresses an unresolved issue on bond duration. Specically, it explains why a saw-toothed time pattern of
traditionally-defined duration exists and provides a corrective measure, which is easy to implement on Excel.
Analytical materials pertaining to bond duration, as well as illustrative examples based on actual bond
quotation data, are provided.
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Bond Duration: A Pedagogic Illustration

1 Introduction

The concept of bond duration dates back to the seminal work of Frederick Macaulay (1938).

Macaulay�s duration is a well-known quantitative measure for use in bond immunization against

interest-rate changes. By de�nition, it is a weighted average of arrival times of cash �ows from

a bond investment, with the individual weights based on the present values of the corresponding

cash �ows. It measures the sensitivity of the price of a bond in response to interest-rate changes.

The greater the measure, the greater is the bond�s price sensitivity.

Justi�cation of Macaulay�s duration in standard investment textbooks, if provided, is typically

con�ned to a basic bond model. In the model, the valuation date is either the issue date of a new

bond or a subsequent date at which a coupon has just been paid; in either situation, there is a full

period before the next coupon payment. In the case of a semi-annual coupon bond, for example,

a full period is six months and the valuation date in the model is six months prior to the next

coupon date. The use of di¤erential calculus allows the corresponding proportional changes in

bond price and one-plus-interest-rate each period (in opposite directions) to be related analytically.

The positive proportionality constant turns out to be Macaulay�s duration.

In practice, however, Macaulay�s duration has been computed routinely for dates that a basic

bond model cannot accommodate. So has its well-known variant, called modi�ed duration, which

measures the percentage price change corresponding to a yield change of 100 basis points (or,

equivalently, of 1:00%): Currently, some subscription-based daily bond quotations also include

these duration measures to assist investment decisions.1 Further, these duration measures are

among the �nancial functions in Microsoft ExcelTM and various other spreadsheets.2

As illustrated pedagogically in Feng and Kwan (2011), if the valuation date does not match

any of the coupon dates of a bond, the accrued interest must be accounted for in bond-price

determination. Here, the accrued interest is the proportion of the next coupon that the seller of

a bond is entitled to receive from the buyer. Accordingly, the cash �ows from a bond investment

1See, for example, the GlobeInvestor Gold website (http://gold.globeinvestor.com/) of The Globe and Mail, a
Canadian national newspaper.

2Macaulay�s duration and modi�ed duration can be computed by using Excel functions DURATION and MDURA-
TION, respectively. Analogous functions of the same names are available in Google DocsTM as well. The correspond-
ing functions in OpenO¢ ce.org SpreadsheetTM are DURATION_ADD and MDURATION; in Apple NumbersTM ;
they are BONDDURATION and BONDMDURATION instead. Although these spreadsheets, among others, are also
suitable for the pedagogic purposes of this paper, Excel is selected in view of its popularity among many spreadsheet
users, including students in investment courses at our univerities.
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also include the accrued interest, which is an immediate cash out�ow. As this cash out�ow seems

to be absent from the expressions of Macaulay�s duration and modi�ed duration, its impact on

their computed values, if any, is not immediately obvious. Neither is whether the two duration

measures, as covered in standard investment textbooks and implemented in Excel, are versatile

enough to be used for dates that a basic bond model cannot accommodate.

The following is what is known thus far: Macaulay�s duration has a peculiar feature, if computed

for di¤erent valuation dates including those that a basic bond model cannot accommodate. The

feature can be inferred from three separate studies in the 1980�s. Speci�cally, Caks et al. (1985)

and Chua (1988) showed that, in the absence of any changes in the discount rate as time passes by,

Macaulay�s duration always declines linearly from one coupon date to the next. While con�rming

the same analytical feature, Babcock (1986) also illustrated graphically a saw-toothed time pattern

of Macaulay�s duration, with a sudden upward jump at each coupon date. As modi�ed duration

di¤ers from Macaulay�s duration only by a multiplicative factor (which is interest-rate dependent),

it will also exhibit a saw-toothed time pattern.

The above time pattern is at odds with the smooth graphs of duration versus the term to

maturity as illustrated in investment textbooks, where the term to maturity � or, more succinctly,

maturity � is the number of periods before a bond matures.3 In textbook illustrations, duration

increases smoothly with maturity for each coupon bond selling at a premium or at par; however,

a maximum in duration can occur for a coupon bond selling at a deep discount. Here, a bond is

deemed to sell at a premium, at par, and at a discount, if its price is above, equal to, and below

its face value, respectively.

To reconcile the smooth and saw-toothed graphs of duration versus maturity requires that each

smooth graph be the result of interpolations of cases pertaining to a basic bond model; that is, cases

where maturity is con�ned to integers. The presence of a saw-toothed time pattern implies that the

computed duration for each non-integer maturity is always below the corresponding interpolated

value. The one-day jump in duration at each coupon date � which is typically an upward jump

� appears to be the eventual correction over a period between two adjacent coupon dates. This

feature inevitably raises the concern of whether duration computed directly for a valuation date

other than a coupon date is valid.

Adding to the above concern is the lack of internal consistency in the available proofs, such as

those by Hawawini (1984) and Pianca (2006), in support of textbook illustrations of the smooth

3See, for example, Bodie et al. (2004, Chapter 10), Bodie et al. (2011, Chapter 15), and Reilly et al. (2010,
Chapter 12).
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graph of duration versus maturity. This is also a concern, from a pedagogic perspective, be-

cause such proofs are calculus-based, involving the �rst derivative of the analytical expression of

Macaulay�s duration with respect to maturity. As maturity cannot be con�ned to integer values in

a calculus-based proof, a key assumption in the basic bond model involved must have been violated.

This paper is intended to address the above concerns, with Excel playing an important pedagogic

role. The Excel �le accompanying this paper, which contains some of its illustrative examples,

can be downloaded from the journal website. Such examples will enable students to gain some

hands-on experience with various relevant issues pertaining to bond duration, thus making the

corresponding analytical materials less abstract. To achieve pedagogic e¤ectiveness and to avoid

technical digressions, the Excel tools as utilized in this paper are generally those that are already

familiar to business students.

The remainder of this paper is organized as follows: It starts in Section 2 with a derivation of

duration � which includes Macaulay�s duration and modi�ed duration � for a basic bond model.

A non-calculus version of the same derivation is provided in Appendix A. Also shown in Section 2 is

a closed-form expression of duration, as well as an Excel example that illustrates its computational

convenience. Its derivation is provided in Appendix B. Section 3 examines the impacts on duration

by various underlying parameters. The impact of maturity on duration, which is tedious to verify

analytically without relying on calculus tools, is provided in Appendix C.4

Further Excel illustrations for a basic bond model are provided in Section 4. The use of graphical

features in Excel allows representative smooth graphs of duration versus maturity to be generated,

like those in textbook illustrations, for various combinations of the underlying parameters in bond

valuation. The use of scroll bars in Excel also allows the impact on each graph by changes in the

underlying parameters to be explored interactively.

Section 5 extends the bond model to accommodate valuation dates that fall anywhere within

a period between two adjacent coupon dates. Duration is derived for such a model. The cause

of the saw-toothed time pattern is revealed in Section 6. The same section also includes an Excel

example, which utilizes scroll bars to enable students to explore interactively the saw-toothed graphs

of duration versus maturity. Guidance is also provided to help students recognize the connection

between each underlying parameter in bond valuation and the saw-tooth problem.

A simple remedy, which allows the saw-tooth problem to be eliminated, is proposed in Section

7. A nice feature of each revised duration measure is that the same idea of using a weighted average

of arrival times of cash �ows for its computation can be retained. Also provided in Section 7 is a

4To the best of our knowledge, the algebraic proof in Appendix C is an original contribution.
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closed-form expression for each revised duration measure. A derivation is provided in Appendix

D.

The potential severity of the saw-tooth problem in practice is assessed with actual daily bond

quotations in Section 8, with Excel playing an important role in the assessment. Notice that

maturity and yield to maturity � which are two key parameters in bond valuation, with the latter

parameter a¤ected by bond market conditions � do change over time. Then, it is not immediately

obvious whether the combined e¤ect of these changes can conceal the saw-tooth problem, thus

rendering the whole issue irrelevant in practice.

However, as it turns out, the use of Excel functions DURATION and MDURATION (for com-

puting Macaulay�s duration and modi�ed duration, respectively) on actual bond data reveals clearly

the existence of a saw-toothed time pattern. This revelation is important, from both practical and

pedagogic perspectives, as the two duration measures have been widely accepted by bond investors

as price sensitivity measures and covered in standard investment textbooks. Given the simplicity of

the remedy, to revise the two Excel-based duration measures is straightforward. Section 8 includes

this aspect of the Excel illustrations as well. Finally, Section 9 provides some concluding remarks.

2 Duration Measures According to a Basic Bond Model

Consider a bond that has a face value F and pays coupon C each period until maturity. Depending

on the bond in question, a period can be a year, six months, three months, or others. A basic bond

model is where, as of the valuation date, there is a full period before the next coupon payment.

Suppose that the bond has n remaining coupon payments until maturity. For a required return r

each period, also known of the yield to maturity, the price of the bond is

P =
C

1 + r
+

C

(1 + r)2
+ � � �+ C

(1 + r)n
+

F

(1 + r)n
; (1)

In bond quotations in practice, the quoted annual yield and annual coupon are mr and mC;

respectively, with m being the annual frequency of coupon payments. In the case of a semi-annual

coupon bonds, for example, m is 2:

Equation (1) reveals an inverse relationship between the price P of a bond and investors�

required yield r for holding it. Given how bond price is a¤ected by the underlying parameters,

however, price sensitivity in response to a given yield change di¤ers among bonds. This calls

for an examination of the price-sensitivity issue. The examination requires the use of a price-

sensitivity measure that captures the joint e¤ect of the underlying parameters. A derivation of
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such a measure that requires di¤erential calculus is presented below. To make the corresponding

materials accessible to more students, an algebraic derivation is also provided in Appendix A.

Analytically, to see the impact of changes of r on P; for a bond with given C; F; and n; we take

the �rst derivative of P with respect to r based on equation (1). The result is

dP

dr
= � 1

1 + r

�
C

1 + r
+

2C

(1 + r)2
+ � � �+ nC

(1 + r)n
+

nF

(1 + r)n

�
: (2)

Combining equations (1) and (2) leads to

dP

P
= �D dr

1 + r
; (3)

which relates, in proportional terms, price changes and the corresponding one-plus-yield changes,

with the negative sign capturing their inverse relationship. Here, the proportionality constant

D =

�
C

1 + r
+

2C

(1 + r)2
+ � � �+ nC

(1 + r)n
+

nF

(1 + r)n

���
C

1 + r
+

C

(1 + r)2
+ � � �+ C

(1 + r)n
+

F

(1 + r)n

�
(4)

is a price-sensitivity measure. Notice that, for a pure discount bond where C = 0; equation (4)

always leads to D = n regardless of r:

The expression in equation (4) is commonly known as Macaulay�s duration or, simply, duration,

as measured in periods. When measured in years, it is D=m instead. The greater the measure,

the more sensitive is the bond price in response to a given yield change. As the cash �ows from the

bond investment will arrive at times 1; 2; : : : ; n; with the present-value factors for the corresponding

cash �ows being 1=(1 + r); 1=(1 + r)2; : : : ; 1=(1 + r)n; what equation (4) represents is the weighted

average of arrival times of all cash �ows.

A closed-form expression of duration is

D =
[(1 + r)� (1 + r + nr)(1 + r)�n] c+ nr2(1 + r)�n

r [1� (1 + r)�n] c+ r2(1 + r)�n ; (5)

where c = C=F; the coupon rate each period. Its computational advantage over the expression

in equation (4) will be noticeable if n is large. Its derivation is provided in Appendix B. The

expression of D in equation (5) is equivalent to those in Chua (1984, 1985).

Notice that, if r is exactly zero, equation (5) will fail to provide a value of D: As equation

(5) is intended for practically relevant cases, for which r is strictly positive, its being unable to

accommodate r = 0 is not a concern. However, this does not mean that D is unde�ned for r = 0:

Rather, if r = 0; equation (4) reduces to

D =
c(1 + 2 + � � �+ n) + n

cn+ 1
=
cn(n+ 1)=2 + n

cn+ 1
: (6)
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Of interest is that equation (6) implies D = n if c = r = 0: In contrast, as noted earlier, equation

(4) always leads to D = n if c = 0: Therefore, if c = 0; we always have D = n; regardless of

whether r = 0 or r > 0:

Modi�ed duration, measured in periods and de�ned as

D(M) =
D

1 + r
; (7)

is a more natural measure of bond price sensitivity. It allows equation (3) to be written as

dP

P
= �D(M)dr; (8)

which shows a proportional price change in response to a yield change, without involving the scaling

factor 1 + r: When measured in years, it is D(M)=m instead.

2.1 An Excel Example

Standard textbook illustrations of the computational aspect of Macaulay�s duration are typically

based on an expression equivalent to that in equation (4). The idea is to compute a weighted

average of arrival times of individual cash �ows, with each weight based on the present value of

the corresponding cash �ow. In a spreadsheet setting, the arrival time of each cash �ow and its

weighting factor are conveniently placed, so that a weighted average can easily be obtained via

simple spreadsheet operations.

As Figure 1 illustrates, it is straightforward to set up an Excel worksheet to computeD according

to equation (4) for a given maturity. The example here is based on a semi-annual coupon bond

(where m = 2); for which all input parameters for bond valuation are shaded. Given C = $5

each period, F = $100; n = 10 periods, and r = 3% each period, each term in the numerator and

the denominator of the expression of D in equation (4) can easily be computed, as displayed in

F17:G26. Notice that the arrival times of cash �ows in B17:B26, with B17 being 1; have been

generated by pasting the formula of B18, which is =B17+1, to B18:B26. The computed D; as a

ratio of the sum of the terms in the numerator to the sum of the terms in the denominator, is

displayed in F34. With D known, D(M) follows directly; so do the two duration measures in terms

of years. They are displayed in F35:F37.

A change in n can be accommodated in a spreadsheet setting. For example, if n = 8 periods

instead, the required adjustments to the Excel worksheet include only the following: change of E5

to 4 (which is n=m; the bond�s maturity in years), copy of C26 (which contains C+F ) to C24, and

deletion of the current rows 25 and 26: If n = 16 periods instead, a simple way to accommodate

6
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Figure 1   An Excel Worksheet Showing Two Approaches to Compute Macaulay’s 

Duration for a Basic Bond Model.
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the change, after entering 8 to E5, is to insert 6 new rows, after the current row 18 and before the

current row 26: The current row 18 is then pasted to these 6 new rows. To complete the task, the

current cell formula of B18, which is =B17+1, will have to be pasted to column B in the expanded

block, starting from B18. This will ensure that consecutive integers from 1 to 16; for the arrival

times of cash �ows, be displayed in column B.

Although the above adjustments are already easy to implement, a more convenient way to

compute D is to use equation (5) directly, especially if n is large. The result of the computation

based on equation (5) is displayed in G34. The corresponding cell formula is displayed in rows

40 and 41: Equation (5) can directly accommodate any change in n; all that is required is to

change the corresponding number of n=m in E5. As expected, the results from the two alternative

approaches are exactly the same, for various combinations of the input parameters attempted.

From a pedagogic perspective, it is important to explain to students why equations (4) and (5) are

equivalent. The Excel example in Figure 1 is intended to help in this regard.

3 Impacts on Duration by Each of the Underlying Parameters in
Bond Valuation

In bond quotations, prices and coupons are always scaled to have a common face value F; such as

F = $100 in U.S. markets. For conciseness of various algebraic expressions below, we use c = C=F;

the coupon each period by scaling the face value of the bond to a dollar. To complement the

textbook materials pertaining to a basic bond model, the impact of each of c; r; and n on D is

examined analytically below. For such tasks, we �rst write equation (4) as

D =
c
Pn
h=1 h=(1 + r)

h + n=(1 + r)n

c
Pn
h=1 1=(1 + r)

h + 1=(1 + r)n
: (9)

This is equivalent to substituting C and F in equation (4) with c and 1; respectively, and to using

summation signs for series expressions.

3.1 The Impact of Coupon

According to equation (9), if n = 1; the numerator and the denominator in the expression of D

are both (c+ 1)=(1 + r)n; and thus we always have D = 1 regardless of c: To assess the impact of

changes of c on D analytically, for any given r > 0 and any given integer n � 2; we �rst establish
the weighted average of arrival times for the n coupons only, denoted as q; according to the same

weighting scheme. That is,

q =
c
Pn
h=1 h=(1 + r)

h

c
Pn
h=1 1=(1 + r)

h
=

Pn
h=1 h=(1 + r)

hPn
h=1 1=(1 + r)

h
; (10)
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which is independent of c: Being a weighted average of 1; 2; : : : ; n; with all positive weights, q is

always less than n:

Next, we write equation (9) equivalently as

D =

�
c
Pn
h=1 1=(1 + r)

h
�
q + [1=(1 + r)n]n

c
Pn
h=1 1=(1 + r)

h + 1=(1 + r)n
; (11)

which is a weighted average of q and n: The higher the coupon rate c each period, the higher is the

weight that q receives, and the lower is the weight that n receives. Accordingly, with q < n; the

bond�s duration will be lower. Likewise, a lower coupon rate will lead to a higher duration. That

is, there is an inverse relationship between D and c for any given n and r: With D(M) = D=(1+r);

which di¤ers from D by a scaling factor, there is also an inverse relationship between D(M) and c:

3.2 The Impact of Yield

According to equation (9), if n = 1; we always have D = 1 regardless of r: To assess the impact of

changes in r on D for any given n > 1; we can use equations (10) and (11) again. In equation (10),

a higher r will make the present values of distant coupons progressively lower. As a result, the

earlier coupons will receive progressively higher weights to establish q: The end result is a lower q:

Subsequently, when D is expressed as a weighted average of q and n in equation (11), the weight

that n receives is

1=(1 + r)n

c
Pn
h=1 1=(1 + r)

h + 1=(1 + r)n
=

1

c
Pn
h=1(1 + r)

n�h + 1
: (12)

The higher the yield, the lower the weight that n receives. Thus, a higher r not only makes q

lower, but also provides a higher weight for q in the weighted average of q and n to establish D:

Accordingly, a higher r will result in a lower D: Likewise, a lower r will result in a higher D:

That is, there is an inverse relationship between D and r for any given c and n: Notice that, as

D(M) = D=(1 + r); the inverse relationship extends to D(M) and r as well.

3.3 The Impact of Maturity

To explore how duration varies with maturity for a bond, let us attach a subscript n to the symbol

D; indicating that there are n periods before the bond matures. The use of such a subscript

allows equation (9) to be written as Dn = wn=pn; with wn and pn being the numerator and the

denominator of the expression, respectively. For each zero-coupon bond, where c = 0; we have

Dn = n: Accordingly, the graph of Dn versus n for each zero-coupon bond is a 45o line when

adjacent points (Dn; n); for n = 1; 2; 3; : : : ; are connected.
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For each coupon bond, where c > 0; we divide both the numerator and the denominator of the

expression of Dn�1 = wn�1=pn�1 with (1 + r) and simplify the result to obtain

Dn�1 =
wn � pn

pn � c=(1 + r)
: (13)

This is an expression of the duration of a bond that matures in n�1 periods, in terms of information
about the bond with n periods before maturity. It follows that

Dn �Dn�1 =
(1 + r)pn �Dnc
(1 + r)pn � c

; (14)

for any integer n > 1: Notice that, with c < pn for a bond with practical relevance, the denominator,

(1 + r)pn � c; is always positive. As Dn > 1 for n > 1 and then (1 + r)pn �Dnc < (1 + r)pn � c;
we must have Dn � Dn�1 < 1 for each coupon bond. Thus, when adjacent points (Dn; n); for

n = 1; 2; 3; : : : ; are connected, the resulting smooth graph of Dn versus n for each coupon bond

must be below the 45o line, as established earlier for a zero-coupon bond.

Also of interest are the signs of Dn � Dn�1; which capture the relationships between D and

n for various combinations of the input parameters in bond valuation. Typical textbook illustra-

tions of such relationships for some selected values of c and r; are graphical or numerical. For

analytical convenience, available analytical proofs, such as those by Hawawini (1984) and Pianca

(2006), require di¤erential calculus. Speci�cally, the sign of @D=@n is examined. Although the

corresponding analytical results are consistent with textbook illustrations, the fact that n is an

integer in a basic bond model does question the validity of performing the partial derivative of D

with respect to n:

An alternative proof, which is algebraic and explicitly recognizes that n can only have integer

values, is provided in Appendix C. It is shown that, if c � r; duration always increases with

maturity. Otherwise, a monotonic relationship between duration and maturity is not assured; that

is, if the yield is much higher than the coupon rate, the graph of duration versus maturity can have

a single maximum. Again, with D(M) being di¤erent from D only by the scaling factor 1 + r; the

relationships between D and n; as noted above, also extend to those between D(M) and n:

4 Graphs of Duration versus Maturity for a Basic Bond Model
and Interactive Illustrations with Excel

Figure 2 shows some representative graphs of Macaulay�s duration versus maturity, for semi-annual

coupon bonds. To generate these graphs, the valuation dates are con�ned to those that can be

accommodated by a basic bond model. The computations are based on equation (5). Each bond
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Figure 2   Graphs of Macaulay's Duration versus Maturity for a Basic Bond 

Model, with Various Combinations of Coupon Rates and Yields to Maturity.
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either carries no coupon or has a 4% or 14% annual coupon rate, with the annual yield to maturity

being either 4% or 14%: With m = 2 being the frequency of periodic coupon payments each year,

the underlying parameters of equation (5) for these graphs are various combinations of c = 0%;

2%; and 7% and r = 2% and 7%: However, instead of displaying directly D versus n; with the

number of semi-annual periods being the measurement unit as implied by equation (5), the graphs

in Figure 2 are shown in terms of years, with the vertical and horizontal axes being D=m and n=m;

respectively.

The graphs are generated by inserting an X Y (Scatter) Chart to an Excel worksheet. Smooth

curves are drawn between adjacent data points. Each data point, which is not explicitly shown,

captures the corresponding values of D and n; for a pre-determined combination of c and r: Such

graphs are similar to those found in standard investment textbooks. As expected from equation

(4), the 45o line in Figure 2, where D = n; pertains to zero-coupon bonds, regardless of the bond

yield. For a given n; D decreases with increasing c and with increasing r: For a given combination

of c and r; D always increases with increasing n only if c � r; the presence of a single maximum in

D requires that c < r:

Figure 3 illustrates, with year being the measurement unit, how a representative graph of

Macaulay�s duration versus maturity for each semi-coupon bond can be generated in Excel. Two

scroll bars are utilized, separately, for the coupon rate and the yield to maturity. Each scroll

bar is generated via the Developer tab on the Menu bar. Selecting Insert in the Controls group

there leads to Form Controls, in which a scroll bar is available. Adjustments to the properties of

each scroll bar are made via its Format Controls. Besides its appearance, the range of values, the

incremental changes within the range, and the cell in the Excel worksheet to be directly linked, can

be speci�ed.

For the purpose of the graph in Figure 3, each scroll bar covers the range of 0 to 1000; with

increments of 1: The corresponding values are linked to C2 and C6. With m = 2 for a semi-annual

coupon bond, as stored in C10, the minimum and the maximum of each of mc and mr are set to

be 0% and 20%; respectively. They are stored in C3:C4 and C7:C8. All pre-determined values

in Figure 3 are shaded. As displayed in C11:C12, mc and mr are based on C3+(C4-C3)*C2/1000

and C7+(C8-C7)*C6/1000, respectively, from which c and r in C13:C14 are deduced for use in

equation (5). Figure 3 shows the graph of D=m versus n=m for c = 2% and r = 7%: The graph

corresponds to the case of c < r in Figure 2.

The interactive nature of using the two scroll bars to change the underlying parameters of

bond valuation in generating a graph of D=m versus n=m will allow students to see immediately
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8

9
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12

13

14

15

16

17

18

19

20

21

22

23

24

25

A B C D E F G

scroll bar (0 1000) 200

annual coupon rate (min) 0%

annual coupon rate (max) 20%

scroll bar (0 1000) 700

annual yield (min) 0%

annual yield (max) 20%

m: number of annual coupon payments 2

mc: annual coupon rate 4.000% C11 =C3+(C4 C3)*C2/1000

mr: annual yield 14.000% C12 =C7+(C8 C7)*C6/1000

c: coupon rate each period 2.000% C13 =C11/C$10

r: yield each period 7.000% C14 =C12/C$10

n: maturity in periods

n/m: maturity in years

D: Macaulay's duration in periods

D/m: Macaulay's duration in years

n n/m D/m

0 0 0

1 0.5 0.5

2 1 0.989725

3 1.5 1.468432

4 2 1 93538825

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

4 2 1.935388

5 2.5 2.389884

6 3 2.831236

7 3.5 3.258795

8 4 3.671956

9 4.5 4.07016

10 5 4.452905

11 5.5 4.819748

12 6 5.170314

13 6.5 5.504297

14 7 5.821465

15 7.5 6.121665

16 8 6.404817

17 8.5 6.670922

18 9 6.92006

19 9.5 7.152383

20 10 7.368118

Figure 3   An Excel Worksheet Showing the Computations of Macaulay's Duration for 

Different Maturities and the Resulting Graph for a Basic Bond Model, with Coupon 

Rates and Yields to Maturity Generated via Two Scroll Bars.
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B21 =A21/C$10 copied to B21:B81

C21 =IF(C$14=0,(C$13*A21*(A21+1)/2+A21)/(C$13*A21+1)/C$10,

((1+C$14 (1+C$14+$A21*C$14)*(1+C$14)^( $A21))*C$13
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Figure 3   An Excel Worksheet Showing the Computations of Macaulay's Duration for 

Different Maturities and the Resulting Graph for a Basic Bond Model, with Coupon 

Rates and Yields to Maturity Generated via Two Scroll Bars (Continued).
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the impact of each parameter on the graph, as implied by the analytical materials in Section

3. Given prevailing bond market conditions, students themselves can also enter minimum and

maximum values ofmc andmr to C3:C4 and C7:C8. This interactive feature will enhance students�

understanding of the corresponding textbook materials on bond duration.

To accommodate r � 0 for computational convenience, each cell formula in C21:C81 uses an IF
statement to choose between equations (5) and (6) for the computations involved. For each integer

n in A21:A81 over the range of 0 to 60; the corresponding n=m and D=m are stored in B21:C81.

Notice that the part of the Excel worksheet containing the data in A42:C81, for which n = 21 to

60; is not displayed. In addition to the cell formulas to generate c and r as described earlier, the

representative cell formulas to generate n and to compute n=m and D=m; pertaining to A21:C81,

are displayed, along with the corresponding graph in Figure 3.

5 Duration Measures Based on a More Realistic Bond Model

Consider a bond that has a face value F and pays coupon C each period until maturity. Implicitly,

the bond pays m periodic coupons each year. Let us label each day in terms of the time elapsed

since the most recent coupon date, as proportion � of a full period, for 0 � � < 1: Suppose that,
as of the day corresponding to the proportion �; the bond has n remaining coupon payments until

maturity. For a required return r each period, as of that day, the full price of the bond is

P + �C =
C

(1 + r)1��
+

C

(1 + r)2��
+ � � �+ C

(1 + r)n��
+

F

(1 + r)n��
; (15)

where �C is the accrued interest. The price P is commonly called the clean price.

Equation (15) captures the idea that, when an investor buys a bond with the settlement date

not at the start of a full period, the investor is required to pay also the accrued interest, which is

part of the coupon that the seller is entitled to receive. The proportion � can be deduced from the

coupon dates and the valuation date, which is the settlement date for any buy-sell transactions.

Although the exact value of � depends on the day-counting conventions of the markets involved,

it does not a¤ect the analytical feature of equation (15).

As the way the accrued interest is determined is independent of r; the �rst derivative of the full

price of the bond or its clean price with respect to r is the same; that is,

dP

dr
= � 1

1 + r

�
(1� �)C
(1 + r)1��

+
(2� �)C
(1 + r)2��

+ � � �+ (n� �)C
(1 + r)n��

+
(n� �)F
(1 + r)n��

�
: (16)

Combining equations (15) and (16) leads to

dP

P + �C
= �D dr

1 + r
= �D(M)dr: (17)
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Here,

D =

�
(1� �)C
(1 + r)1��

+
(2� �)C
(1 + r)2��

+ � � �+ (n� �)C
(1 + r)n��

+
(n� �)F
(1 + r)n��

��
�

C

(1 + r)1��
+

C

(1 + r)2��
+ � � �+ C

(1 + r)n��
+

F

(1 + r)n��

�
(18)

is Macaulay�s duration and D(M) = D=(1 + r) is modi�ed duration, as measured in the number of

periods. When measured in years, they are D=m and D(M)=m instead.

To give equation (18) an intuitive interpretation, let the day corresponding to the proportion

� of a period be time 0: Accordingly, the cash �ows from the bond investment will arrive at the

following times: 1 � �; 2 � �; : : : ; n � �: With the present-value factor for each cash �ow at time
t� � being 1=(1 + r)t��; for t = 1; 2; : : : ; n; what equation (18) represents is the weighted average
of arrival times of all cash �ows.

6 A Saw-toothed Time Pattern

To explore the time pattern of Macaulay�s duration, let us attach a subscript n� � to the symbol
D; indicating that there are n � � periods before the bond matures. Let us also multiply both

the numerator and the denominator of the expression in equation (18) with (1 + r)�� to obtain

Dn�� =

�
(1� �)C
1 + r

+
(2� �)C
(1 + r)2

+ � � �+ (n� �)C
(1 + r)n

+
(n� �)F
(1 + r)n

��
�
C

1 + r
+

C

(1 + r)2
+ � � �+ C

(1 + r)n
+

F

(1 + r)n

�
: (19)

Separating � from the remaining terms in the above expression leads to

Dn�� = Dn � �; (20)

where Dn represents Macaulay�s duration of the bond, as measured in the number of periods, when

there are n full periods before maturity.

If there are no changes in r as time passes by, equation (20) implies the following: On the day

immediately before the next coupon date, as � � 1; the corresponding duration Dn�� has declined
to a level that is almost one period lower than Dn; before it is reset at Dn�1: If each Dn�� di¤ers

from Dn�1 by a nontrivial amount, then the presence of a saw-toothed time pattern of Macaulay�s

duration will be noticeable, with a one-day jump at each coupon date or, more precisely, from the

day before each coupon date to the coupon date in question.
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6.1 The Magnitude and the Direction of the Jump in Duration at Each Coupon
Date

As c = C=F and pn = Pn=F; combining equations (14) and (20) leads to

Dn�1 �Dn�� = ��
(1 + r)pn �Dnc
(1 + r)pn � c

= �� 1 + (Dn � 1)C
(1 + r)Pn � C

: (21)

Does this equation imply a jump in duration, from the day before a coupon date to the coupon

date? If so, is the jump always upward? To answer the two questions, let us �rst explore what

the term (1 + r)Pn � C in this equation represents. Once we multiply both sides of equation (1)

with 1 + r and re-arrange the resulting terms, it will become obvious that (1 + r)Pn � C = Pn�1:
With C=Pn�1 being the current yield of the bond with n�1 periods before maturity, the �nal term
on the right-hand side of equation (21) is the current yield scaled by the factor Dn � 1:

Graphically, equation (14) provides points (n;Dn) and (n� 1; Dn�1) on the maturity-duration
plane. The slope of the connecting line is strictly less than 1: Equation (20) provides instead

a family of points on a di¤erent line segment, with (n � �;Dn��) representing each point, for
0 � � < 1: The slope of the latter line segment is exactly 1: Of interest are the two end points,
which are (n;Dn) and (n � �;Dn��); with � corresponding to the day immediately prior to the
next coupon date. The two line segments meet at point (n;Dn):

Should � = 1 be allowed for the purpose of computing Dn��; a vertical line drawn from the

corresponding point (n��;Dn��) based on equation (20) would pass the point (n�1; Dn�1) based
on equation (14). With the former point being lower, Dn�1 �Dn�� would be positive. However,
given that � is strictly less than 1; a non-positive Dn�1�Dn�� cannot be ruled out. Its occurrence
requires either (Dn � 1) or C=Pn�1; or both, be numerically close to zero.

For a semi-annual coupon bond, for example, the proportion of a period, from the day before

a coupon date to the coupon date, which 1 � � represents, is 1=180 = 0:00556 for a 360-day

year. For bonds with practically relevant coupon rates, the corresponding current yields do exceed

0:00556 = 0:556% by some wide margins. If such bonds are not near their maturity dates, the

scaling factor Dn � 1 will also help in making Dn�1 � Dn�� positive. Thus, in practice, we can

normally expect an upward jump in duration, from the day before a coupon date to the coupon

date.

For a bond selling at a premium or at par, as Dn always increases with n; the jump that

Dn�1�Dn�� represents is always less than 1 period. For a bond selling at a discount, if n is small
enough to ensure that Dn �Dn�1 be positive, the corresponding jump is still less than 1 period.
For a deep-discount bond, however, the graph of Dn versus n can have a single maximum. For
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such a bond, if n is large enough to make Dn � Dn�1 negative, the corresponding jump will be
greater than 1 period.

Upon dividing Dn�1 �Dn�� with Dn��; we have (Dn�1 �Dn��)=Dn��; a term that captures

the jump in percentage terms.5 As � approaches 1; Dn�� and Dn�1�Dn�� reduce to Dn� 1 and
(Dn � 1)C=Pn�1; respectively. Thus, (Dn�1 � Dn��)=Dn�� approaches C=Pn�1 or simply C=P;
with the subscript omitted, the current yield at the coupon date where the jump occurs. Notice

that the percentage jump in modi�ed duration is also (Dn�1�Dn��)=Dn��: Further, regardless of
whether Macaulay�s duration or modi�ed duration is computed, the percentage jump is una¤ected

by the choice of measurement units.

To gauge the severity of the saw-tooth problem in terms of the current yield C=P; let us

examine the impact on it by each of the underlying parameters in bond valuation, by holding all

other parameters constant. As there is an inverse relationship between r and P; C=P increases

with r: For a bond selling at a premium, the premium declines as time passes by. For such a bond,

as P increases with n; an increase in n will lead to a decrease in C=P: In contrast, for a bond

selling at a discount, the discount becomes smaller as time passes by. For such a bond, given the

inverse relationship between P and n; C=P increases with n: For a bond selling at par, as P = F;

C=P does not vary with n:

To see how C=P varies with C; let us write equation (15) equivalently as

P

C
=

1

(1 + r)1��
+

1

(1 + r)2��
+ � � �+ 1

(1 + r)n��
� �+ F

C(1 + r)n��
: (22)

This equation con�rms that there is an inverse relationship between P=C and C: Thus, C=P

increases with C:

6.2 An Interactive Excel Illustration of the Saw-tooth Problem with Some
Guidance on the Choice of Input Parameters

In view of equation (20), the Excel worksheet used for Figure 3 can easily be revised for the purpose

of computing duration of a semi-annual coupon bond with both integer and non-integer maturities.

Figure 4 shows such a worksheet. The idea is to use equation (5) for coupon dates and equation (20)

for other dates. As duration varies linearly with maturity within each period, the computations

for Figure 4 pertain to each coupon date and the day preceding it.

Figure 4 shows the case where the annual coupon rate is 16% and the annual yield is 12%: The

maturities considered are between 0 and 8 years. Again, all pre-determined values are shaded.

5Strictly speaking, (Dn�1 �Dn��)=Dn�� is a proportion, rather than a percentage. Only when written equiva-
lently as [100(Dn�1 �Dn��)=Dn��]%; it is in percentage terms.
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21

22
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A B C D E F G

scroll bar (0 1000) 800

annual coupon rate (min) 0%

annual coupon rate (max) 20%

scroll bar (1 1000) 600

annual yield (min) 0%

annual yield (max) 20%

m: number of annual coupon payments 2

mc: annual coupon rate 16.000%

mr: annual yield 12.000%

c: coupon rate each period 8.000%

r: yield each period 6.000%

n: maturity in periods

n/m: maturity in years

D: Macaulay's duration in periods

D/m: Macaulay's duration in years

alpha: proportion of a period elapsed 0.994444 C19 =1 1/(360/C$10)

n n/m D/m C11:C14, B22:C22, B23, and

16 8 5.067536 B24:C24

15.005556 7.502778 4.570314 same as corres

15 7.5 4.873506 ponding cells in

14 005556 7 002778 4 376284 Figure 325

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

14.005556 7.002778 4.376284 Figure 3

14 7 4.66854

13.005556 6.502778 4.171317 A23 =A22 C$19

13 6.5 4.45186 C23 =C22 C$19/C$10

12.005556 6.002778 3.954638 A24 =A22 1

12 6 4.22261

11.005556 5.502778 3.725388 A23:C23 copied to A25:C25

11 5.5 3.979844 A24:C25 copied to A24:C53

10.005556 5.002778 3.482621

10 5 3.72251

9.005556 4.502778 3.225288

9 4.5 3.449441

8.005556 4.002778 2.952219

8 4 3.159329

7.005556 3.502778 2.662107

7 3.5 2.850708

6.005556 3.002778 2.353486

Figure 4   An Excel Worksheet Showing the Computations of Macaulay’s Duration for 

Different Maturities and the Resulting Saw-toothed Graph, with Coupon Rates and 

Yields to Maturity Generated via Two Scroll Bars.
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4 2 1.796136

3.005556 1.502778 1.298914

3 1.5 1.394565

2.005556 1.002778 0.897343

2 1 0.963599
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1 0.5 0.5
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Figure 4   An Excel Worksheet Showing the Computations of Macaulay’s Duration for 

Different Maturities and the Resulting Saw-toothed Graph, with Coupon Rates and 

Yields to Maturity Generated via Two Scroll Bars (Continued).
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Some representative cell formulas are indicated. The graph of duration versus maturity uses

Excel�s graphical feature that displays the connecting line between each pair of adjacent points.

This graphical feature works particular well for the purpose of illustrating the saw-tooth problem

that the combination of equations (20) and (5) implies.

For the speci�c combination of the input parameters as shown in Figure 4, the saw-toothed

pattern of the graph of duration versus maturity is clearly noticeable. The interactive nature of the

two scroll bars will allow students to explore the severity of the problem for various combinations

of the input parameters. Again, the range of values that each scroll bar covers can be adjusted,

so that a wider range of each input parameter can be attempted.

Notice that a longer or shorter maturity can easily be accommodated. For example, to reduce

n=m to 6 years, A22 will have to be changed to 12: As the change will make each cell in A46:A53

negative, A46:C53 ought to be deleted. The axes of the graph will have to be adjusted as well.

Likewise, to extend to n=m = 10 years instead, A22 will have to be changed to 20: To generate

additional data for the graph, A52:C53 will have to be copied to A52:C61. The data series for the

graph will have to be expanded to cover B22:C61. In addition, the axes of the graph will also have

to be adjusted accordingly. Alternatively, instead of covering maturities from 0 to n=m years in

the graph, the coverage can be between any two speci�c maturities. In such cases, changes to the

worksheet and the axes of the graph in Figure 4 are analogous.

As explained in Subsection 6.1, the percentage jump in duration at each coupon date is con-

nected directly to the current yield C=P which, in turn, is determined by the underlying parameters

in bond valuation. In view of this analytical feature, Table 1 shows numerically how various com-

binations of the underlying parameters a¤ect the jumps in Macaulay�s duration at some selected

coupon dates. Such information is also intended to provide some guidance for the choice of para-

meter values for the interactive Excel exercise as illustrated in Figure 4.

For a 360-day year, � = 179=180 represents the proportion of a semi-annual period elapsed

since the previous coupon date. With m = 2; the annual coupon rates (mc) and the annual yields

to maturity (mr) considered are 4%; 8%; and 12%: The maturities [(n � 1)=m] considered are 5;
15; and 25 years.

As expected, the percentage jump increases with the coupon rate and with the yield to maturity.

For example, in the case of a 4% annual yield to maturity and 5 years to maturity, as shown in

the �rst row of the displayed �gures, the 1:9%; 3:3%; and 4:3% jumps correspond to 4%; 8%; and

12% annual coupon rates, respectively. Likewise, in the case of a 12% annual coupon and 5 years

to maturity, as shown in the last column of the displayed �gures, the 4:3%; 5:1%; and 5:9% jumps
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correspond to 4%; 8%; and 12% annual yields, respectively. The same patterns can be noted for

other combinations of such given parameters as well.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Table 1 Values of Macaulay�s duration on the day before each coupon date, measured in years,

and its one-day jump, measured in years and in percentage terms (in parentheses), for various

combinations of annual coupon rates, annual yields to maturity, and years to maturity.

Coupon Rate 4% Coupon Rate 8% Coupon Rate 12%
Years to Yield to
Maturity Maturity Duration Jump Duration Jump Duration Jump

4% 4:49 0:09 (1:9%) 4:15 0:14 (3:3%) 3:91 0:17 (4:3%)
5 8% 4:43 0:10 (2:3%) 4:06 0:16 (3:9%) 3:80 0:19 (5:1%)

12% 4:36 0:12 (2:8%) 3:96 0:18 (4:6%) 3:68 0:22 (5:9%)

4% 11:20 0:22 (2:0%) 9:79 0:27 (2:7%) 9:05 0:28 (3:1%)
15 8% 10:10 0:31 (3:0%) 8:65 0:34 (4:0%) 7:95 0:35 (4:4%)

12% 8:89 0:39 (4:4%) 7:50 0:41 (5:5%) 6:89 0:41 (6:0%)

4% 15:71 0:31 (2:0%) 13:65 0:33 (2:4%) 12:74 0:34 (2:6%)
25 8% 12:44 0:43 (3:5%) 10:74 0:43 (4:0%) 10:07 0:42 (4:2%)

12% 9:47 0:51 (5:4%) 8:31 0:48 (5:8%) 7:88 0:47 (6:0%)

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Table 1 also shows that, as expected, for cases where the coupon rate is below the yield to

maturity, percentage jump increases with maturity. Further, as expected, for cases where the

coupon rate exceeds the yield to maturity, the longer it takes for a bond to mature, the lower is the

percentage jump. For example, the set of displayed �gures in parentheses in the middle columns

of Table 1, where the annual coupon rate is 8%; con�rms such analytical features. Speci�cally,

for the case of a 12% yield, the 4:6%; 5:5%; and 5:8% jumps correspond to 5; 15; and 25 years to

maturity, respectively. For the case of a 4% annual yield, the corresponding jumps are 3:3%; 2:7%;

and 2:4% instead.

As Table 1 shows, given the underlying parameters for bond valuation, the percentage jump

ranges from 1:9% to 6:0%: The former �gure corresponds to a 4% annual coupon and a 4% annual

22

Spreadsheets in Education (eJSiE), Vol. 5, Iss. 3 [2012], Art. 1

http://epublications.bond.edu.au/ejsie/vol5/iss3/1



yield; the latter, a 12% for the same underlying parameters. Thus, for a given term to maturity,

the combination of a high coupon rate and a high yield is a recipe for a high percentage jump.

7 A Corrective Measure

In the absence of any changes in r; as the maturity date of the bond gets closer, the magnitude

of any premium or discount, which P � F represents, becomes smaller. However, as time passes

by, the accrued interest �C exhibits a periodic, saw-toothed pattern that resets itself to zero at

all coupon dates. Thus, a saw-toothed time pattern in the full price, P + �C; is an inevitable

outcome.

As a corrective measure, let us combine equations (15) and (16) into

dP

P
= �D(R) dr

1 + r
= �D(RM)dr; (23)

which di¤ers from equation (17) in that the clean price of the bond is used instead. Here, the

corresponding proportionality constants,

D(R) =

�
(1� �)C
(1 + r)1��

+
(2� �)C
(1 + r)2��

+ � � �+ (n� �)C
(1 + r)n��

+
(n� �)F
(1 + r)n��

��
�

C

(1 + r)1��
+

C

(1 + r)2��
+ � � �+ C

(1 + r)n��
+

F

(1 + r)n��
� �C

�
(24)

and D(RM) = D(R)=(1 + r); can be viewed as revised duration measures; they are the counterparts

of D and D(M); respectively. These duration measures are related by D(R) = D(P + �C)=P and

D(RM) = D(M)(P +�C)=P: Again, both D(R) and D(RM) are measured in the number of periods.

When measured in years instead, they are D(R)=m and D(RM)=m; respectively, where m is the

annual frequency of coupon payments.

In the case of a pure discount bond, where C = 0; equation (24) reduces to D(R) = n � �:
Thus, just like what is shown in standard investment textbooks, the graph of a revised duration

measure versus maturity for such a bond is also a 45o line. The graph can be either D(R) versus

n�� or D(R)=m versus (n��)=m; depending on whether the measurement unit is period or year.

7.1 A Weighted Average of Arrival Times of Cash Flows

Can the revised duration measure, as de�ned by equation (24), still be interpreted as a weighted

average of arrival times of cash �ows from a bond investment? To answer this question, recall

that we have treated the settlement date of the buy-sell transactions as time 0: In order to

receive the full amount of the next coupon at time 1 � �; the buyer pays at time 0 not only the
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clean price P; but also the accrued interest �C: The accrued-interest payment can be viewed as

a negative cash �ow of ��C at time 0: The cash �ows ��C;C;C; : : : ; C; C + F occur at times

0; 1��; 2��; : : : ; n�1��; n��; respectively. The cash �ow of ��C at time 0 has no contribution
to the numerator in the expression of D(R) in equation (24), where the present value of each cash

�ow is multiplied by the corresponding time of occurrence. In such a context, D(R) is still a

weighted average of arrival times of all cash �ows from the bond investment.

7.2 A Connection to the Current Yield

As established earlier in this section, the multiplicative correction factor for either D or D(M) is

(P +�C)=P = 1+�C=P: Here, C=P is the current yield per period of the bond, as of the valuation

date at which a proportion � of a period has elapsed. In the case of D; the percentage correction

at such a date is [D(1+�C=P )�D]=D = �C=P: Likewise, with the symbol D here substituted by

D(M); the corresponding percentage correction pertaining to modi�ed duration is �C=P as well.

The above analytical feature allows us to understand better the one-day jump in duration at

each coupon date, as described in Subsection 6.1. Speci�cally, as the accrued interest �C � which

is an immediate cash out�ow for the bond purchaser involved � is ignored, a consequence is an

understatement of the corresponding duration measure. As � increases, the problem worsens.

On the day immediately prior to each coupon date, as � � 1; the percentage understatement in

either duration measure is almost at the level of C=P: This is consistent with the one-day jump in

duration at each coupon date being nearly C=P; as established in Subsection 6.1. Notice that, as

the way C=P varies with each of C; n; and r has already been established in that subsection, there

is no need to repeat the same results here.

7.3 A Closed-form Expression

As shown in Appendix D, equation (24) can be equivalently written as

D(R) =
[(1 + r � �r)(1 + r)n � (1 + r � �r + nr)] c+ (n� �)r2

r [(1 + r)n � 1� r(1 + r)n���] c+ r2 : (25)

This is an explicit expression in terms of c; n; �; and r: With D(R) known, D(RM) = D(R)=(1 + r)

can be deduced directly. Notice that, for the special case where � = 0; once a common factor

(1 + r)�n is multiplied to both the numerator and the denominator of the expression of D(R);

equation (25) reduces to equation (5) for a basic model.

Notice also that, like equation (5), equation (25) is intended for practically relevant cases where

r is strictly positive. If r = 0; equation (25) will fail to provide a value of D(R): Likewise, this
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does not mean that D(R) is unde�ned if r = 0: In such a case, equation (24) reduces to

D(R) =
c(1 + 2 + � � �+ n)� �cn+ n� �

c(n� �) + 1 =
cn[(n+ 1)=2� �] + n� �

c(n� �) + 1 : (26)

Equation (26) implies that D(R) = n�� if c = r = 0: However, as indicated earlier, equation (24)
leads to the same result if c = 0: Thus, regardless of whether r = 0 or r > 0; cases of c = 0 always

correspond to D(R) = n� �:

8 Duration Functions in Excel: An Assessment of the Saw-tooth
Problem with Bond Quotations and a Corrective Measure

As indicated in the introductory section, Excel has speci�c functions to compute Macaulay�s dura-

tion and modi�ed duration, which are DURATION and MDURATION, respectively. Each function

has six arguments, including the settlement date, the maturity date, the annual coupon rate, the

annual yield to maturity, the frequency of coupon payments each year, and a code for the day-

counting convention involved. The settlement date is the date to settle any buy-sell transactions;

this is also the valuation date for the bond in question. The two Excel functions are intended to

be used for any valuation dates, regardless of whether such dates can be accommodated by a basic

bond model.

From a practical perspective, a relevant question is whether the daily yield �uctuations in bond

markets are severe enough to render the saw-tooth problem in duration practically irrelevant. If

so, the two Excel functions can still serve their intended purposes. Otherwise, there are both

practical and pedagogical implications.

To assess the situation, we �rst rely on quotation data of two Canadian federal government

bonds. Daily quotations until July 5, 2011 were accessed from the GlobeInvestor Gold website

of The Globe and Mail, a Canadian national newspaper.6 Both are semi-annual coupon bonds.

The day-counting convention for the accrued interest is based on the actual calendar days elapsed.

The quoted price and yield data are on the bid side. The bond that matures on June 1, 2020,

labeled as Bond A, pays $3:50 coupons annually for a $100 face value has data since September

2, 2009. The bond that matures on March 15, 2021, labeled as Bond B, pays $10:50 coupons

annually has available data commencing on March 26, 2009 instead. The coupon dates are June 1

and December 1 for Bond A, and March 15 and September 15 for Bond B. As the settlement date

is unavailable from this data source, a three-business-day settlement is assumed.

6Data access from the website http://gold.globeinvestor.com/ is subscription-based.
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As an illustration, let us consider the daily quotations of Bond B for Thursday, September 9,

2010 and Friday, September 10, 2010. The quoted annual yields for the two days are 3:11% and

3:12%; respectively. Under the assumption of a three-business-day settlement, the corresponding

valuation dates are Tuesday, September 14, 2010 and Wednesday, September 15, 2010, with the

latter date being a coupon date. Although the quoted annual yields for the two consecutive

dates in question di¤er in only 1 basis point, the results from the Excel function DURATION are

7:29404 and 7:52106 years, for September 14, 2010 and September 15, 2010, respectively. Likewise,

the corresponding results from the Excel function MDURATION are 7:18236 and 7:40554 years.

With a one-day jump in either Macaulay�s duration or modi�ed duration exceeding 0:22 years, the

adequacy of these Excel functions seems questionable.

Indeed, some saw-toothed time patterns are clearly noticeable in Macaulay�s duration and

modi�ed duration, based on daily quotations for the two bonds over the sample period. As the

latter is smaller in magnitude than the former because of the multiplicative factor 1=(1 + r); its

saw-toothed time pattern would tend to be easier to conceal, for given yield �uctuations in the

bond market. Thus, only the latter is shown in Figure 5. Analytically, when measured in years,

rather than in periods, what is shown is D(M)=m; where m = 2: Any day-to-day yield �uctuations

notwithstanding, there is a clear one-day jump in duration at each coupon date.

The two lighter-shade graphs, also shown in Figure 5, pertain to a revised duration measure in

response to the saw-tooth problem. Such graphs are based on D(RM)=m; the revision is by applying

directly the multiplicative factor (P +�C)=P to D(M)=m: The results are the same as those from

computing D(RM)=m directly, where D(RM) = D(R)=(1 + r); with D(R) based on equation (25).

This revised version has apparently removed the jumps that are associated with the traditional

duration measure D(M)=m:

As Canadian corporate bonds are much riskier than Canadian government bonds, daily �uctua-

tions of their annual yields have a better potential to mask the saw-tooth problem in the traditional

duration measures. Thus, to gauge the potential severity of the problem empirically, we accessed

some Canadian corporate bond quotations from the same data source for Figure 5. The data col-

lection process started with identifying bonds with annual coupon rates that exceed 9%: To net out

any maturity e¤ects, we considered additional bonds with matching maturities within �2 months
of the each of these high coupon bonds, for two groups of lower annual coupon rates. The lowest

coupon group had annual coupon rates up to 4:5%: Each of the three groups had 33 bonds, for a

total of 99 matching bonds in the sample.

Macaulay�s duration and modi�ed duration were computed by using Excel functions DURA-
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TION and MDURATION, respectively. For either duration measure, the average one-day jumps

at the most recent coupon date of each bond, prior to July 2011, for the low, mid, and high coupon

groups, were 1:7%; 2:6%; and 4:0%; respectively. As such results indicate, even for low coupon

bonds in today�s market that is characterized by low bond yields, the observed jumps in duration

are far from being trivially small.

9 Concluding Remarks

Macaulay�s duration and its popular variant, called modi�ed duration, can be stated in terms of a

weighted average of arrival times of cash �ows from a bond investment. To complement the coverage

on bond duration in standard investment textbooks, this paper has considered analytically both a

basic model and a more realistic model for bond valuation. The di¤erence between the two models

is the absence or the presence of an accrued interest. The accrued interest is the part of the coupon

that the seller of a bond is entitled to receive, if the settlement date of the transaction is not on a

coupon date.

For a basic bond model, for which the issue of accrued interest is not a concern, this paper

has utilized both Excel�s graphical features and the interactive nature of scroll bars to enhance

students�understanding of the duration concept. Although textbook justi�cation of the duration

concept pertains to a basic bond model, its applications, including its Excel implementation, seem

to be more versatile in practice. In particular, to assist investment decisions, the Excel functions

for computing Macaulay�s duration and modi�ed duration � the two traditionally-de�ned duration

measures � are intended to accommodate any settlement dates.

As this paper has shown, the saw-toothed time pattern of Macaulay�s duration and modi�ed

duration can be traced to the accrued interest in bond valuation. The accrued interest, which

increases linearly with the passage of time between two adjacent coupon dates, is reset to zero once

the next coupon date is reached. Once it is established that these duration measures imply the use

of the full price of a bond, which includes the accrued interest, what underlies the saw-toothed time

pattern there becomes obvious. This paper has also used Excel�s graphical features to illustrate

the saw-tooth problem. The interactive nature of scroll bars is particularly useful, as it allows

students to assess the severity of the problem for various combinations of the input parameters in

bond valuation.

Given the direct connection between the accrued interest and the saw-tooth problem in duration,

it is easy to rectify the situation. All it takes is to use the clean price instead when establishing

the percentage price changes in response to interest-rate changes. For investors who are relying
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on canned programs to provide duration measures, a revised version can be reached by applying

directly a multiplicative factor, which is the ratio of the full price and the clean price of the bond in

question. From a pedagogic perspective, a nice feature of this corrective measure is that, with the

accrued interest treated as an immediate cash �ow from a bond investment, the idea of a weighted

average of arrival times of cash �ows is retained.

For analytical convenience, a �at yield curve has been assumed in this paper; that is, as in

standard investment textbooks, the graph of yield versus maturity has been treated as a horizontal

line. However, the simple idea in this paper still holds when Macaulay�s duration is used for

other shapes of the yield curve. Regardless of how future cash �ows from a bond investment

are discounted, the accrued interest, which is una¤ected by the shape of the yield curve, can

still be treated as an immediate cash �ow. Again, to implement the idea, all it takes is to

apply a multiplication factor that is the ratio of the bond�s full price to its clean price. This

simple corrective measure will contribute to improve the accuracy of duration measures in bond

immunization strategies.
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Appendix A: Algebraic Derivation of Duration for a Basic Bond
Model

Suppose that there is a small change in the yield to maturity from r to r+4r: The corresponding
change in the bond price is from P to P +4P: As the bond price given by equation (1) in the
main text is the sum of the present values of future coupons and the face value upon maturity, the

price change 4P is the sum of the changes of the individual present values. For the cash �ow at

time h; where h = 1; 2; : : : ; n; the change in the present-value factor is

1

(1 + r +4r)h �
1

(1 + r)h
=
(1 + r)h � (1 + r +4r)h
(1 + r +4r)h(1 + r)h ; (A1)

which can be simpli�ed via a binomial expansion of (1 + r + 4r)h: Provided that 4r is small
as compared to r; the term (1 + r + 4r)h in the numerator can be approximated as (1 + r)h +
h(1 + r)h�1 4 r; with terms containing any of (4r)2; (4r)3; : : : ; (4r)h ignored.7 Noting that the

denominator does not involve the di¤erence of two numerically similar terms, we can approximate

the term (1 + r +4r)h there simply as (1 + r)h: Thus, the change in the present-value factor for
time h can be approximated as �[h(1 + r)h�1 4 r]=(1 + r)2h or, simply, �[h=(1 + r)h+1]4 r:

7According to the binomial theorem, (a+ b)h; where h is any positive integer, can be expressed as the sum of h+1
terms, with each term being h!

(h�k)!k!a
h�kbk; for k = 0; 1; 2; : : : ; h: With a = 1+r; and b = 4r; the term (1+r+4r)h

can be expressed as (1 + r)2 + 2(1 + r)4r + (4r)2; for h = 2; (1 + r)3 + 3(1 + r)24r + 3(1 + r)(4r)2 + (4r)3; for
h = 3; (1 + r)4 + 4(1 + r)34r + 6(1 + r)2(4r)2 + 4(1 + r)(4r)3 + (4r)4; for h = 4; and so on. Thus, the second
term in the expansion of (1 + r +4r)h is h(1 + r)h�14r:
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Accordingly, we can write

4P = � 1

1 + r

�
C

1 + r
+

2C

(1 + r)2
+ � � �+ nC

(1 + r)n
+

nF

(1 + r)n

�
4 r: (A2)

Combining equations (1) and (A2) leads to

4P
P

= �D 4r
1 + r

= �D(M) 4 r: (A3)

Here, the proportionality constantsD andD(M) are as de�ned in equations (4) and (7), respectively.

Appendix B: Derivation of a Closed-form Expression of Macaulay�s
Duration for a Basic Bond Model

To express equation (4) in an equivalent but computationally convenient form, let

A =
1

1 + r
+

1

(1 + r)2
+ � � �+ 1

(1 + r)n
: (B1)

As the expression of A is a geometric series, we can write

(1 + r)A = 1 +
1

1 + r
+

1

(1 + r)2
+ � � �+ 1

(1 + r)n�1
: (B2)

Di¤erencing the two expressions leads to

rA = 1� 1

(1 + r)n
(B3)

and, equivalently,

A =
1

r

�
1� 1

(1 + r)n

�
; (B4)

provided that r 6= 0:
Likewise, letting

B =
1

1 + r
+

2

(1 + r)2
+ � � �+ n

(1 + r)n
; (B5)

we have

(1 + r)B = 1 +
2

1 + r
+ � � �+ n

(1 + r)n�1
: (B6)

Di¤erencing the two expressions gives us

rB = 1 +
1

1 + r
+

1

(1 + r)2
+ � � �+ 1

(1 + r)n�1
� n

(1 + r)n
; (B7)

which contains a geometric series as well. In view of equation (B4), equation (B7) can be written

as

B =
1

r

�
1 +

1� (1 + r)�n
r

� n+ 1

(1 + r)n

�
=
1

r2
�
(1 + r)� (1 + r + nr)(1 + r)�n

�
: (B8)
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As equation (4) is equivalent to

D =
Bc+ n(1 + r)�n

Ac+ (1 + r)�n
; (B9)

equation (5) follows directly upon substituting the expressions of A and B from equations (B4)

and (B8).

Appendix C: The Relationship between Macaulay�s Duration and
Maturity for a Basic Bond Model

Given Dn = wn=pn; for n = 1; 2; 3; : : : ; as de�ned in Subsection 3.3 of the main text, we can also

write Dn+1 = wn+1=pn+1: It follows that8

Dn+1 �Dn =
c+ pn + wn
c+ pn

� wn
pn

= 1� cwn
pn(c+ pn)

: (C1)

Thus, if pn(c+ pn)� cwn > 0; increasing the maturity from n to n+ 1 full periods will correspond

to an increase in Macaulay�s duration; that is, Dn+1 > Dn:

To establish the sign of pn(c+ pn)� cwn; let us start with

pn(c+ pn) =

�
c
Xn

h=1

1

(1 + r)h
+

1

(1 + r)n

� �
c
Xn

k=0

1

(1 + r)k
+

1

(1 + r)n

�
= c2

Xn

h=1

Xn

k=0

1

(1 + r)h+k

+
2c

(1 + r)n

Xn

h=1

1

(1 + r)h
+

c

(1 + r)n
+

1

(1 + r)2n
: (C2)

The double summation
Pn
h=1

Pn
k=0 1=(1 + r)

h+k; with n cases of h and n + 1 cases of k; consists

of n(n+1) terms. They can be combined into the sum of the following 2n terms: (1 + r)�1; 2(1+

r)�2; : : : ; n(1 + r)�n and n(1 + r)�(n+1); (n� 1)(1 + r)�(n+2); : : : ; (1 + r)�2n:9 AsXn

h=1

Xn

k=0

1

(1 + r)h+k
=

Xn

h=1

h

(1 + r)h
+
X2n

h=n+1

2n� h+ 1
(1 + r)h

=
Xn

h=1

h

(1 + r)h
+

1

(1 + r)n

Xn

h=1

n� h+ 1
(1 + r)h

; (C3)

8 In Subsection 3.3, the use of the di¤erence Dn � Dn�1 allows the analytical expression involved to be applied
directly to Section 6, where the saw-tooth problem is examined analytically. For the purpose of the algebraic proof
here, the use of the di¤erence Dn+1 �Dn instead, with Dn and its underlying parameters being the reference point,
is for notational convenience.

9To illustrate, suppose that n = 3: As h = 1; 2; 3 and k = 0; 1; 2; 3; expanding the double summation will result
in the sum of 12 individual terms among (1 + r)�1; (1 + r)�2; : : : ; (1 + r)�6: The only way to reach (1 + r)�1 is
with h = 1 and k = 0: There are two ways to reach (1 + r)�2; that is, with h = 2 and k = 0 or with h = 1 and
k = 1: There are three ways to reach (1 + r)�3; that is, with h = 3 and k = 0; with h = 2 and k = 1; or with h = 1
and k = 2: There is also three ways to reach (1 + r)�4; that is, with h = 3 and k = 1; with h = 2 and k = 2; or
with h = 1 and k = 3: There are two ways to reach (1 + r)�5; that is, with h = 3 and k = 2; or with h = 2 and
k = 3: The only way to reach (1 + r)�6 is with h = 3 and k = 3: Thus, the double summation can be written as
(1 + r)�1 + 2(1 + r)�2 + 3(1 + r)�3 + 3(1 + r)�4 + 2(1 + r)�5 + (1 + r)�6: As 1 + 2+ 3+ 3+ 2+ 1 = 12; all cases of
h and k in the double summation are accounted for.
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we have

pn(c+ pn)� cwn =
1

(1 + r)n

�Xn

h=1

c2(n� h+ 1) + 2c
(1 + r)h

� (n� 1)c+ 1

(1 + r)n

�
: (C4)

Given equation (C4), we now proceed to show by induction that Dn+1 � Dn > 0; for n =

1; 2; 3; : : : ; if c � r: As D1 = 1 and 1 < D2 < 2; we have D2�D1 > 0: Suppose that Dn�Dn�1 > 0:
Equation (C4) with n substituted by n� 1 gives us

pn�1(c+ pn�1)� cwn�1 =
an�1

(1 + r)n�1
; (C5)

where

an�1 =
Xn�1

h=1

c2(n� h) + 2c
(1 + r)h

� (n� 2)c+ 1

(1 + r)n�1
(C6)

is positive.

To show that Dn+1 �Dn > 0; we write equation (C4) as

pn(c+ pn)� cwn =
1

(1 + r)n

�
an�1 + c

�
c
Xn

h=1

1

(1 + r)h
+

1

(1 + r)n
� 1
�

+
c

(1 + r)n
+

1

(1 + r)n
� 1

(1 + r)n�1

�
=

1

(1 + r)n

�
an�1 + c(pn � 1) +

c� r
(1 + r)n

�
: (C7)

As c = r implies pn = 1 and c > r implies pn > 1; the above expression is positive if c � r: This
completes the proof by induction.

If c < r instead, we have pn < 1: If so, an increase in maturity does not always correspond

to an increase in duration. To see this, suppose that p1(c + p1) � cw1; p2(c + p2) � cw2; : : : ;
pn�1(c + pn�1) � cwn�1 are all positively or, simply, that a1; a2; : : : ; an�1 are all positive. As

soon as the combined negative e¤ect of c(pn � 1) and (c � r)=(1 + r)n is strong enough to o¤-
set completely the positive an�1 in equation (C7), an will not be positive. Once this happens,

we must have Dn+1 � Dn: When equation (C7) is used again recursively, pn+1(c + pn+1) �
cwn+1; pn+2(c+ pn+2)� cwn+2; : : : ; as well as an+1; an+2; : : : ; must all be negative. It follows that
D1 < D2 < : : : < Dn and Dn � Dn+1 > Dn+2 > Dn+3 > : : : Thus, there will be a single maximum
in the graph of duration versus maturity.

Appendix D: Derivation of Closed-form Expressions of Revised Du-
ration Measures

The revised duration measures as proposed in Section 7 in the main text can be obtained by revising

their conventional counterparts via D(R) = D(P + �C)=P and D(RM) = D(R)=(1 + r): However,
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they can also be computed directly in terms of c; n; �; and r; where c = C=F is the coupon rate each

period. For this task, let us multiply both the numerator and the denominator of the expression

in equation (24) with (1 + r)�� to obtain

D(R) =

�
(1� �)C
1 + r

+
(2� �)C
(1 + r)2

+ � � �+ (n� �)C
(1 + r)n

+
(n� �)F
(1 + r)n

��
�
C

1 + r
+

C

(1 + r)2
+ � � �+ C

(1 + r)n
+

F

(1 + r)n
� �C

(1 + r)�

�
: (D1)

We can write equation (D1) as

D(R) =

�
cB � �cA+ n� �

(1 + r)n

���
cA+

1

(1 + r)n
� �c

(1 + r)�

�
: (D2)

Here, A and B are as de�ned in equations (B1) and (B5), respectively, in Appendix B. Once the

expressions of A and B in equations (B4) and (B8), respectively, in Appendix B are substituted

into equation (D2), equation 25 in Section 7 of the main text follows directly.
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