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Connecting Binomial and Black-Scholes Option Pricing Models: A
Spreadsheet-Based Illustration

Abstract
The Black-Scholes option pricing model is part of the modern financial curriculum, even at the introductory
level. However, as the derivation of the model, which requires advanced mathematical tools, is well beyond
the scope of standard finance textbooks, the model has remained a great, but mysterious, recipe for many
students. This paper illustrates, from a pedagogic perspective, how a simple binomial model, which converges
to the Black-Scholes formula, can capture the economic insight in the original derivation. Microsoft ExcelTM

plays an important pedagogic role in connecting the two models. The interactivity as provided by scroll bars,
in conjunction with Excel's graphical features, will allow students to visualize the impacts of individual input
parameters on option pricing.
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Connecting Binomial and Black-Scholes Option Pricing Models:
A Spreadsheet-Based Illustration

1 Introduction

Call option is a �nancial instrument that gives its holder the right, not the obligation, to purchase

from its seller one unit of the underlying security, at a predetermined price, at or before an expiry

date. American and European versions di¤er in that the latter can be exercised only at the expiry

date. The seminal work of Black and Scholes (1973) on the pricing of European call options of

stocks has led to many innovations in the �nancial world. The most noticeable are the phenomenal

growth of markets for trading various derivative securities and the corresponding research activities

on creating and pricing such securities.1 Given its academic and practical signi�cance, the Black-

Scholes option pricing model has been part of the �nance curriculum for decades now, even at the

introductory level.

The derivation of the model, which requires advanced mathematical tools including those for

solving partial di¤erential equations, is well beyond the scope of most �nance textbooks. Standard

textbook coverage tends to be con�ned to the derived result � which is the well-known Black-

Scholes formula � and its implications, along with some numerical and graphical illustrations.2

The concepts of �nancial options, in contrast to those pertaining to more traditional �nancial

instruments such as bonds and stocks, are already quite abstract for many students. Therefore, of

relevance to �nance instructors is how best to present the model to students, if its derivation is not

to be bypassed completely. As students can learn more about option pricing if the Black-Scholes

formula is not merely a mysterious recipe to them, the challenge is to �nd a mathematical language

for its derivation that they can understand. With such a constraint in mind, the scope of this

paper is limited to the pricing of European call options.

Cox, Ross, and Rubinstein (1979) have derived instead a binomial option model, which converges

to the Black-Scholes version. The binomial approach shares the same statistical idea of �nding

the probability of some speci�c numbers of heads and tails from repeatedly tossing a biased coin.

What is attractive from a pedagogic perspective is that, while being purely algebraic and much

easier for students to follow, the derivation of the binomial option pricing model still retains the

same economic insight of the Black-Scholes version. Thus, a good understanding of the binomial

1As MacKenzie (2006) indicates, derivative contracts have grown from virtually nothing in 1970 to 273 trillion
U.S. dollars outstanding worldwide by 2004.

2See, for example, Sharpe, Alexander, Bailey, Fowler, and Domian (2000, Chapter 19) and Copeland, Weston,
and Shastri (2005, Chapter 7).
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model will make the Black-Scholes model less mysterious to students. The binomial model has an

additional advantage; it provides a foundation to develop numerical approaches to price derivative

securities for which closed-form solutions are unavailable.3

The matching of numerical results of option prices from the two models may simply require

appropriate choices of the values of their underlying parameters. In contrast, statistical convergence

of the two models also requires that the number of binomial periods � or the number of tosses in the

coin-toss analogy � approaches in�nity, as this is about the conversion of a discrete-time model to

a continuous-time case. However, the analytical materials involved are quite complicated; a crucial

step to connect the two models also requires some advanced statistical knowledge. Indeed, even

in �nancial theory textbooks, the �nal connection between the two models has not been provided

explicitly. Rather, readers are referred to the Cox, Ross, and Rubinstein article for analytical

details.4

To complicate matters further, the binomial option pricing model is actually a family of models,

which under some conditions can all converge to the Black-Scholes model. Chance (2008) has

evaluated 11 of such models in the �nance literature, including the Cox-Ross-Rubinstein version.

In essence, these models di¤er in their characterizations of the up-down movements of the underlying

stock price and of the probabilities of such movements. The �nding of Chance is that none of the 11

models consistently outperform all remaining models, in terms of convergence to the Black-Scholes

model for various combinations of input parameters. However, the Cox-Ross-Rubinstein model,

though being the simplest among all binomial models considered and being one of the two earliest

versions of such models, has received the best overall performance score.5 For ease of exposition in

what follows, we treat the Cox-Ross-Rubinstein version of binomial models simply as the binomial

model, unless noted otherwise.

As the connection of the binomial model to the Black-Scholes model is nearly complete by

relying on algebraic tools alone, of interest is whether option prices based on the two models are

similar or very di¤erent, for some combinations of input parameters. If it turns out that they are

similar, then the binomial model not only can help students reduce the mystery in option pricing,

but also can serve as a good proxy for the original Black-Scholes model. In this paper, we use

Microsoft ExcelTM for a pedagogic illustration.6

3See, for example, Hull and White (1988) for a lattice approach � which is an extension of the binomial approach
� to price American put options on dividend and non-dividend paying stocks, with an e¢ cient numerical method
called the control variate technique.

4See, for example, �nancial theory textbooks such as Copeland, Weston, and Shastri (2005, Chapter 7) and Tucker
(1991, Chapter 13), which provide derivations of the binomial model.

5The other pioneering binomial model, which was subsequently re�ned in the literature, was the work of Rendleman
and Bartter (1979).

6Hereafter, the commercial software Microsoft ExcelTM is referred to as Excel, for simplicity. It is implicit that
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In particular, the Excel functions NORMSDIST and BINOMDIST are applied directly to the

standardized normal distribution in the Black-Scholes formula and to the binomial distribution

in the binomial case, respectively.7 The use of Excel�s scroll bars to vary the common input

parameters, in conjunction of its graphical features, will allow students to explore interactively

the option pricing results for various combinations of input parameters. Thus, Excel will play

an important role in connecting the two models and in reducing the perceived mystery of the

Black-Scholes formula.

This paper is organized as follows: Section 2 reproduces the Black-Scholes formula. An

algebraic derivation of the binomial option pricing model is provided in Section 3. Its connection

to the Black-Scholes version is considered next in Section 4. The pedagogic emphasis of Section

4 is its use of only algebraic tools to connect the two models. Section 5 presents some interactive

Excel illustrations for comparing the two models, both numerically and graphically. Convergence

of the two models is further analyzed and tabulated there. Section 6 provides some concluding

remarks.

Readers who are already familiar with Black-Scholes and binomial option pricing models can

skip Sections 2 and 3, as these two sections are intended to provide the background material. For

other readers, especially business students who require guidance to understand the algebraic and

statistical tools involved, the detailed derivation in Section 3 is still useful. The key pedagogic

contributions of this paper, however, are in Sections 4 and 5.

2 The Black-Scholes Option Pricing Model

Consider a European call option on an underlying stock of price S; in a market where the contin-

uously compounded annual risk-free interest rate is r: The option, which expires in T years (with

T typically being a proportion), has an exercise price of X: Before introducing the Black-Scholes

option pricing model, let us establish below feasible values of the option, which is independent of

the model itself. Such information will also be used for the Excel illustrations in Section 5.

2.1 Feasible Option Values (Boundary Conditions)

First, with C being the option price, we must have C � S: That is, the price of a call option

cannot be higher than the price of the underlying stock. The reason is as follows: The option

gives the holder the right to buy a share of the stock at a predetermined price. Since the stock

the software trademark is recognized whenever the name Excel is mentioned in this paper.
7Notice that the functions NORMSDIST and BINOMDIST, though still supported, are renamed NORM.S.DIST

and BINOM.DIST, respectively, in Excel 2010.
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can also be purchased directly in the market, no rational investor would pay more than the share

price for just the right to buy the stock. Second, we must have C � 0: This is because, as a call
option is a right, not an obligation, for the holder, it is at worst worthless.

Third, we must have C � S�Xe�rT : That is, the call price cannot be lower than the di¤erence
between the underlying stock price and the present value of the exercise price, which is Xe�rT : To

see this, let us compare the current values of the following investment plans: (i) an investment in

the option and X risk-free bonds, each of which pays a dollar on the expiry date of the option,

for a total of C + Xe�rT ; and (ii) an investment in the underlying stock alone. Let C� and S�

be the option and stock prices, respectively, on the expiry date of the option. We have C� = 0 if

S� < X; and C� = S� � X otherwise. Accordingly, on the expiry date of the option, plan (i) is

worth C� +Xe�r�0 = X if S� < X; and worth S� otherwise, and plan (ii) is worth S�: Thus, the

current value of plan (i) cannot be lower; that is, C+Xe�rT � S or, equivalently, C � S�Xe�rT :
The above feasible values of the option can be stated succinctly as

S � C � max(0; S �Xe�rT ): (1)

Thus, the graph of C versus S for a given combination of the input parameters pertaining to a

call option pricing model, including X; r; T; and any others, must be in the open area on the

(S;C)-plane, bounded by the following lines: C = S; C = 0; and C = S �Xe�rT : The �rst and
the third are parallel lines, with each slope being 1: The area narrows as T increases; it collapses

to the line C = S in the �rst quadrant of the (S;C)-plane, as T approaches in�nity. In contrast,

the area widens as T decreases; the third line becomes C = S �X if T = 0:

2.2 The Black-Scholes Formula

The well-known Black-Scholes option pricing formula is

C = S N(d1)�X e�rT N(d2); (2)

where

d1 =
1

�
p
T

�
ln

�
S

X

�
+ rT

�
+
1

2
�
p
T (3)

and

d2 = d1 � �
p
T : (4)

Here, besides the various symbols previously de�ned, � is the standard deviation of annual returns

of the underlying stock and N(�) is the cumulative standardized normal distribution. In the
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normal distribution function f(z); which has a zero mean and a unit standard deviation, N(d1);

for example, is the area under the symmetric bell-shaped curve from z = �1 to z = d1; that is,

N(d1) =
Z d1

z=�1
f(z)dz: (5)

Notice that N(�1) = 0; N(0) = 0:5; and N(1) = 1:
As revealed in equations (2)-(4), C depends explicitly on S; X; T; r; and �: It can be proven

that @C=@X is negative and all of @C=@S; @C=@T; @C=@r; and @C=@� are positive. Given the

signs of these �rst partial derivatives, the impact of each of the underlying parameters on the option

price can be explained.8

A crucial economic insight in the derivation of the Black-Scholes formula is the formation of

hedged portfolios instantaneously. Such portfolios, which are based on the call option and its

underlying stock, are risk-free. The Black-Scholes formula is the solution of the corresponding

partial di¤erential equation.

However, without knowing the derivation or at least the idea underlying the derivation, many

business students would simply view the Black-Scholes formula as a great recipe. How the recipe

was generated and why it worked so well would remain a mystery to them. As a result, they

would not have the foundation to understand the pricing of any derivative securities. By using an

algebraic approach, the next two sections of this paper are intended to dispel the perceived mystery

of the Black-Scholes formula, thus building a better foundation for such students.

3 The Binomial Option Pricing Model

As shown below, the binomial option pricing model in a single-period setting � which is like a

single toss of a biased coin in the coin-toss analogy � is able to reveal the crucial idea underlying

the Black-Scholes derivation. To see this, let us consider an option that can be exercised at the end

of the period with an exercise price X: Suppose that the underlying stock has a beginning-of-period

price S and that its end-of-period price will be either uS or dS: Here, u and d; with u > 1 > d > 0;

are given multiplicative factors, capturing the up-down movements of S with probabilities q and

1� q; respectively.
Suppose also that the beginning-of-period option price is c: Let cu and cd be the two potential

end-of-period option prices, corresponding to the up-down price movements of the underlying stock.

8 Intuitively, the lower the exercise price of a call option or the higher the underlying stock price, the greater is the
potential gain from exercising the option. The higher the risk-free interest rate or the longer the time to expiry, the
lower is the present value of the exercise price. Further, the greater the volatility of the underlying stock, the more
upside potential is available from exercising the option while the maximum downside loss is limited. They all have
positive impacts on the option price. See, for example, Hull (2002, Chapter 14) for more detail.
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As option prices can never be negative, we have cu = max(0; uS �X) and cd = max(0; dS �X):
At the beginning of the period, an investor buys one unit of the stock and writes (sells), as a hedge

against any possible losses, m units of the call option that the stock underlies. The net investment

is S�mc: A risk-free hedged portfolio requires uS�mcu = dS�mcd; from which the hedge ratio

m =
(u� d)S
cu � cd

(6)

can be deduced. Notice that the use of a risk-free hedged portfolio also underlies the derivation of

the Black-Scholes model.

Letting rf be the one-period risk-free interest rate, we also have

(1 + rf )(S �mc) = uS �mcu: (7)

Combining equations (6) and (7) to eliminate m leads to

c =
pcu + (1� p)cd

1 + rf

=
[pmax(0; uS �X) + (1� p)max(0; dS �X)]

1 + rf
; (8)

where

p =
1 + rf � d
u� d : (9)

An interesting feature of equation (8) is the absence of the probabilities q and 1� q of the up-down
price movements.

Further, the beginning-of-period option price turns out to be the present value of the expected

end-of-period option values, with p and 1 � p taking the roles of the probabilities for cu and cd;
respectively. As d < 1 < u; the condition for 0 < p < 1 is 1 + rf < u: The condition, if violated,

would provide arbitrage opportunities to exploit the inferior risk-return trade-o¤ in the underlying

stock, given the availability of a higher risk-free return.

With the condition for 0 < p < 1 satis�ed, p and 1 � p are commonly called risk-neutral
probabilities. The term originates from a special case where the investor involved is risk neutral.

In the above analytical setting, a risk-neutral investor is indi¤erent between investing risk-free a

dollar amount equal to S to achieve (1 + rf )S at the end of the period and investing in the stock

instead for an expected end-of-period value of quS + (1� q)dS: Equating the two dollar amounts
leads to q = p; that is, the expression of q in terms of rf ; u; and d is the same as that in equation

(9). This is why p can be viewed as a risk-neutral probability.

However, although p has the properties of a probability in a mathematical sense, it is not an

actual probability of occurrence. This distinction is crucial, as the beginning-of-period option
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price c that equation (8) provides does not require risk neutrality of investors. In fact, p is a

compounded price of a pure security under the state preference framework, with 1 + rf being the

compounding factor. To avoid digressions, the concept of pure securities and its connection to

risk-neutral probabilities is covered in the Appendix.9

3.1 An Extension to a Multi-period Setting

Equation (8) can be written equivalently as

c =
hX1

n=0
pn(1� p)1�nmax

�
0; und1�nS �X

�i 1

1 + rf
: (10)

Although the use of a summation sign here may appear unnecessary at �rst glance, it actually

facilitates an extension of the same model to a multi-period setting. In a two-period setting, with

up-down stock price movements captured by the multiplicative factors u and d each period, the

eventual stock price is among u2S; udS; and d2S: The corresponding risk-neutral probabilities are

p2; 2p(1 � p); and (1 � p)2; respectively. Likewise, in a three-period setting, the eventual stock

price is among u3S; u2dS; ud2S; and d3S; corresponding to probabilities p3; 3p2(1� p); 3p(1� p)2;
and (1� p)3; respectively. As the coe¢ cients for the probability terms are from Pascal�s triangle,

we can easily extend the same idea to a general N -period setting. Students who have learned the

statistical materials pertaining to coin-toss experiments should be able to understand the concepts

involved.

In an N -period setting, we can extend equation (10) to

c =

�XN

n=0

�
N
n

�
pn(1� p)N�nmax

�
0; undN�nS �X

�� 1

(1 + rf )N
; (11)

where �
N
n

�
=

N !

(N � n)!n! ; (12)

with n! = n(n � 1)(n � 2) � � � (2)(1); for n � 1; and 0! = 1: The positive terms among cases of

max
�
0; undN�nS �X

�
all have undN�nS > X: We can establish the lowest n that ensures positive

values of max
�
0; undN�nS �X

�
by solving this inequality or, equivalently, (u=d)n > X=(dNS) for

n: The result is the lowest integer n; in the range of 0 to N; satisfying the condition of

n >
ln[X=(dNS)]

ln(u=d)
: (13)

Let us label this speci�c integer n as a:

9See, for example, Copeland, Weston, and Shastri (2005, Chapter 4) for a description of the state preference
framework.
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Then, equation (11) reduces to

c =

�XN

n=a

N !

(N � n)!n!p
n(1� p)N�n

�
undN�nS �X

�� 1

(1 + rf )N
: (14)

Letting

p0 =
pu

1 + rf
; (15)

we can write equation (14) as

c = S B(n � ajN; p0)� X

(1 + rf )N
B(n � ajN; p); (16)

where

B(n � ajN; p) =
XN

n=a

N !

(N � n)!n!p
n(1� p)N�n: (17)

The functions B(n � ajN; p0) and B(n � ajN; p); with each being a complementary binomial
distribution function, di¤er only in the probabilities involved.10

Notice that, under the condition of 1 + rf < u; which already ensures that 0 < p < 1; we also

have 0 < p0 < 1: To see this, let us write

p0 =
1 + rf � d
u� d � u

1 + rf
=

(1 + rf )u� ud
(1 + rf )u� (1 + rf )d

: (18)

As p0 > p > 0; the condition of 1 + rf < u ensures that 0 < p0 < 1:

4 A Connection between Binomial and Black-Scholes Formulas

Analytically, the Black-Scholes model is a continuous-time model, and the binomial model can

be viewed as its discrete-time version. This analytical di¤erence, however, does not a¤ect the

crucial idea that underlies the derivation of each model; risk-free hedging is equally important in

both cases. Being a continuous-time case, the Black-Scholes model relies on continuous risk-free

hedging by revising the required hedge ratio instantaneously. The binomial model, in contrast,

allows changes in the hedge ratio from one period to the next, thus allowing students to follow the

analytical process involved.

A comparison of equations (2) and (16) reveals the similarities between the two pricing formulas.

Let us �rst compare the present value factors there. In the Black-Scholes case, the option expires

in T years; in the binomial case, it expires in N periods instead. With r being the continuously

compounded risk-free interest rate each year, the present value factor for the exercise price is e�rT

10The two functions are complementary distribution functions of their corresponding cumulative distribution func-
tions, which are B(n < ajN; p0) and B(n < ajN; p); respectively. As B(n < ajN; p0) + B(n � ajN; p0) = 1 and
B(n < ajN; p) + B(n � ajN; p) = 1; each pair of such functions fully covers all potential outcomes as characterized
by the corresponding distribution.
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in the Black-Scholes case. In the binomial version, as the risk-free interest rate each period is rf ;

the present value factor for the exercise price is (1 + rf )�N instead. Thus, r and rf are related

via11

erT = (1 + rf )
N : (19)

For the two pricing formulas to match, we require both the equality of B(n � ajN; p0) and
N(d1) and the equality of B(n � ajN; p) and N(d2): The binomial distribution, which is the

distribution of the number of successes from repeated Bernoulli trials with given probabilities of

success and failure for each attempt, can be viewed as the sum of the individual trial results.12

When the number of Bernoulli trials increases, we can rely on the central limit theorem in statistics

to get a better approximation of each binomial distribution function in equation (16) with a normal

distribution function.

However, no matter how close to normality that each approximation can achieve, there is

no assurance that it approximates the corresponding cumulative normal distribution function in

equation (2). To achieve a good numerical match requires that the underlying parameters in the

two models be connected in a speci�c way. We now follow Cox-Ross-Rubinstein to �nd the required

connection, with more algebraic details provided for the pedagogic purpose of this paper.

Let S� be the random price of the underlying stock at the end of the N periods. For n upward

price movements over the N periods, we have, from S� = undN�nS;

ln

�
S�

S

�
= n ln(u) + (N � n) ln d = n ln

�u
d

�
+N ln d: (20)

Here, ln(S�=S) is the natural logarithm of one-plus-return for holding the stock over the N periods;

it is equivalent to a continuously compounded return over the N periods.

For a binomial distribution with the probability of each upward movement being q; the expected

value and the variance of n are E(n) = Nq and V ar(n) = Nq(1� q); respectively.13 Accordingly,

11Equation (19) can also be established by recognizing that each of the N periods is equivalent to the proportion
T=N of a year. A dollar that is invested risk-free at the beginning of each of the N periods will become 1+rf dollars
at the end of the same period. Over the proportion T=N of a year, the use of a continuously compounded annual
risk-free interest rate r instead will allow the same dollar to become (er)T=N dollars. Given the equivalence of the
two risk-free investment outcomes, equation (19) follows directly.
12A Bernoulli trial is a statistical term in honour of Jacob Bernoulli (1654-1705). It pertains to an experiment

that has two random outcomes with given probabilities, commonly known as success or failure. Repeated Bernoulli
trials are independent repetitions of such an experiment.
13Given

PN
n=0

�
N
n

�
qn(1 � q)N�n = 1; we can establish, after some simple algebraic steps, that E(n) =PN

n=0 n

�
N
n

�
qn(1�q)N�n = Nq: To show that V ar(n) = Nq(1�q); a simple way is via V ar(n) = E(n2)�[E(n)]2;

where E(n2) =
PN

n=0 n
2

�
N
n

�
qn(1� q)N�n:
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we have

E

�
ln

�
S�

S

��
= Nq ln

�u
d

�
+N ln d = [q lnu+ (1� q) ln d]N (21)

and

V ar

�
ln

�
S�

S

��
= q(1� q)

h
ln
�u
d

�i2
N: (22)

We can capture the above expressions more succinctly by de�ning

b� = q lnu+ (1� q) ln d (23)

and b�2 = q(1� q) hln�u
d

�i2
: (24)

As a total of N periods represents the time interval of T years, b�N and b�2N when stated

as annual �gures are b�N=T and b�2N=T; respectively. Suppose that � and �2 are the stock�s

annual expected return and variance of returns, respectively, which can be estimated with empirical

data. Suppose also that this � is the same as the parameter � in the Black-Scholes model. The

convergence of the two models requires that b�N=T and b�2N=T converge to � and �2; respectively,
as N approaches in�nity.

Before proceeding to look for some speci�c expressions of u; d; and q in terms of some or all of

�; �; N; and T for the convergence to occur, let us clarify what N approaches in�nity entails in the

context of the analytical setting here. The idea is to divide the entire time interval, between the

time when we price the option and the time when the option expires, into an increasingly larger

number of shorter periods. In doing so, we allow the stock price to have increasingly more, but

individually smaller, up-down movements over the entire time interval.

Analytically, the de�nitions of b� and b�2 give us two equations to use. In addition, we have two
conditions for convergence, which is, b�N=T ! � and b�2N=T ! �2 as N !1: However, we have
seven parameters � which include u; d; q; N; �; �2; and T � to connect. Thus, the solution will

not be unique.

For simplicity, it is reasonable to impose u = 1=d; as this condition ensures that the original

stock price be retained after an equal number of upward and downward price movements in any

up-down sequences. For algebraic convenience that will soon be clear, let us write q = 1=2 + b;

where the parameter b has yet to be determined. Accordingly, we can write

b� = (2q � 1) lnu = 2b lnu (25)

and b�2 = 4q(1� q)(lnu)2 = (1� 4b2)(lnu)2 = (lnu)2 � b�2: (26)
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If we express u as an exponential function of the form u = eh; equations (25) and (26) reduce

to b� = 2bh and b�2 = h2(1 � 4b2); respectively. There are various combinations of b and h

that can satisfy the condition of � = b�N=T = 2bhN=T: One of such combinations is revealed byb�2N=T = (h2N=T )(1�4b2): Speci�cally, by equating h2N=T and �2 for allN; we have h = �pT=N:
With b = �

p
T=(2�

p
N); it follows that 4b2 = �2T=(�2N) decreases as N increases; that is, the

condition of

lim
n!1

�b�2N
T

�
= �2 (27)

is assured.

Finally, we have

u =
1

d
= e�

p
T=N (28)

and

q =
1

2
+
�

2�

r
T

N
(29)

to connect the binomial model and the Black-Scholes model. Of interest now is whether the

speci�cations of u; d; and q in equations (28) and (29) always lead to 0 < p < 1 and 0 < p0 < 1; as

required for equation (16) to work. As established earlier, the feasibility of p and p0 requires the

condition of 1 + rf < u to be satis�ed.

Given equation (28), the condition becomes

e�
p
T=N > 1 + rf : (30)

In view of equation (19), this inequality is equivalent to

e�
p
T=N > erT=N (31)

or, simply,

� > r

r
T

N
: (32)

For any given �; r; and T; the greater the number of binomial periods, the easier is for inequality (32)

to hold. Then, provided that a large number of binomial periods is involved in the implementation

of equation (16), the potential violation of inequality (32) is not a concern.

To conclude this section, we acknowledge that the above is as far as we can go by using only

algebraic tools.14 No attempt has been made here to seek formal convergence of the two models

� that is, B(n � ajN; p0) !N(d1) and B(n � ajN; p) !N(d2) as N ! 1 � by converting the

14See, for example, Chance (2008) for more sophisticated characterizations of u; d; and q; as well as the correspond-
ing references to the binomial models involved.
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discrete-time binomial model into a continuous-time setting. To do so will require advanced statis-

tical knowledge.15 Therefore, instead of relying on a formal approach to make the �nal connection

between the two models, we illustrate their numerical convergence via some Excel examples in the

next section.

5 Interactive Excel Illustrations

We start our Excel illustrations in Figure 1 to compare the option prices from the two models. As

rf ; u; d; p; and p0 in the binomial model with N binomial periods can be expressed directly in

terms of r; T; and � from the Black-Scholes model, we place the latter set of input parameters,

along with X and N; in B2:B6. Predetermined values of S; from $5 to $100 in increments of $5;

are placed in A15:A34. The choice of the combination of r; T; �; X; and N is via �ve scroll bars,

which are linked individually to E2:E6.16 The values in B2:B6 are connected to those in E2:E6

via some simple cell formulas. For example, with the scroll bar for � set to cover the range of 10

to 100; the formula in B4 is =E4/200, so that the value 70 in E4, as provided by the scroll bar,

corresponds to � = 35% in B4.

The range of values covered by each scroll bar can easily be revised by changing the correspond-

ing settings via its format control. The input parameters as required for the computations, along

with those cells with assigned zero values in row 14 of the worksheet for graphical convenience, are

shaded. All representative cell formulas are displayed in the worksheet. The various computed

values, pertaining to each S as shown in Figure 1, are based on r = 5%; T = 0:75 years, � = 35%;

X = $40; and N = 60 periods.

The computational results of u; d; p; and p0 are stored in B8:B11. These parameters, in con-

junction with other required parameters, allow a and c to be computed, as displayed in B15:C34.

Notice that, for the computation of c pertaining to the binomial model, we have relied on di¤erences

in cumulative probabilities,

B(n � ajN; p0) = B(n � N jN; p0)�B(n < ajN; p0) (33)

and

B(n � ajN; p) = B(n � N jN; p)�B(n < ajN; p); (34)

15Leisen and Reimer (1996) have considered the convergence properties of various binomial models including the
Cox-Ross-Rubinstein version. Such properties pertain to both the behaviour and the speed of conversion. That
study has also revised the binomial formulation to achieve improvements in convergence to the Black-Scholes model.
16The use of scroll bars, which is more convenient than manual data entry, is intended to facilitate the interactivity

of the Excel illustrations in this paper. Further, students who have limited prior experience in computations involving
option pricing models can bene�t from some guidance as to what parameter values are reasonable. The range of
values that each scroll bar initially provides can serve such a purpose.
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1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

A B C D E F G H I

r 5.00% 50

T 0.75 75

sigma 35.00% 70

X 40 40

N 60 60

u 1.03991

d 0.96162

p 0.4982

p' 0.51776

S a c(Binom) d1 d2 c(BS) c(max) c(min) c(min0)

0 0 0 0 0 0

5 56 3.3E 14 6.58511 6.88821 4.8E 12 5 0 0

10 47 2.6E 06 4.29831 4.60142 5.2E 06 10 0 0

15 42 0.00158 2.96062 3.26373 0.00184 15 0 0

20 38 0.04277 2.01152 2.31463 0.04523 20 0 0

25 36 0.31162 1.27534 1.57845 0.32237 25 0 0

30 33 1.18097 0.67383 0.97694 1.17619 30 0 0

35 31 2.89295 0.16527 0.46838 2.88328 35 0 0

40 30 5.48197 0.27527 0.02784 5.50177 40 1.47222 0

45 28 8.92414 0.66386 0.36075 8.90665 45 6.47222 5

50 27 12.8983 1.01146 0.70835 12.8995 50 11.4722 10

55 25 17.2812 1.3259 1.02279 17.2908 55 16.4722 1525

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

55 25 17.2812 1.3259 1.02279 17.2908 55 16.4722 15

60 24 21.9311 1.61296 1.30985 21.9345 60 21.4722 20

65 23 26.7274 1.87703 1.57392 26.7306 65 26.4722 25

70 22 31.6116 2.12153 1.81842 31.6157 70 31.4722 30

75 21 36.5467 2.34914 2.04603 36.5517 75 36.4722 35

80 21 41.514 2.56206 2.25896 41.5162 80 41.4722 40

85 20 46.4957 2.76207 2.45897 46.4965 85 46.4722 45

90 19 51.4848 2.95065 2.64754 51.4857 90 51.4722 50

95 18 56.4786 3.12902 2.82591 56.4797 95 56.4722 55

100 18 61.476 3.29825 2.99514 61.4764 100 61.4722 60

Cell Formulas

B2 =E2/1000

B3 =E3/100

B4 =E4/200

B5 =E5

B6 =E6

Figure 1     An Excel Worksheet Illustrating, Numerically and Graphically, the 

Option Prices Based on the Binomial Model and the Black-Scholes Model.
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22
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24

25

J K L M N O P Q R

Cell Formulas

B8 =EXP(B$4*SQRT(B$3/B$6))

B9 =1/B8

B10 =(EXP(B$2*B$3/B$6) B9)/(B8 B9)

B11 =B8*B10*EXP( B$2*B$3/B$6)

A15 =A14+5

B15 =MIN(B$6,MAX(0,INT(LN(B$5/A15/(B$9^B$6))/LN(B$8/B$9))))

C15 =A15*(BINOMDIST(B$6,B$6,B$11,TRUE) BINOMDIST(B15,B$6,B$11,TRUE))

B$5*EXP( B$2*B$3)*(BINOMDIST(B$6,B$6,B$10,TRUE)

BINOMDIST(B15,B$6,B$10,TRUE))

D15 =(LN(A15/B$5)+B$2*B$3)/B$4/SQRT(B$3)+B$4*SQRT(B$3)/2

E15 =D15 B$4*SQRT(B$3)

F15 =A15*NORMSDIST(D15) B$5*EXP( B$2*B$3)*NORMSDIST(E15)

G15 =A15

H15 =MAX(0,A15 B$5*EXP( B$2*B$3))

I15 =MAX(0,A15 B$5)

A15:I15 copied to A15:I34

100

25
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27

28
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34
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41

0
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O
p
ti
o
n
P
ri
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($
)

Stock Price ($)

c(Binom)

c(BS)

c(max)

c(min)

c(min0)

Figure 1     An Excel Worksheet Illustrating, Numerically and Graphically, the 

Option Prices Based on the Binomial Model and the Black-Scholes Model 

(Continued).
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in order to use Excel�s BINOMDIST. The function BINOMDIST has four arguments, namely, the

number of successful trials, the total number of trials, the probability of a successful trial, and

a true/false indicator of whether a cumulative distribution is intended. Thus, for example, the

di¤erence between BINOMDIST(B$6,B$6,B$11,TRUE) and BINOMDIST(B15,B$6,B$11,TRUE),

which is part of the formula for C15, allows B(n � ajN; p0) for the speci�c case of a in B15 to be
computed.

The computational results of d1; d2; and C pertaining to the Black-Scholes model are displayed

in D15:F34. For the computations of C; the Excel function NORMSDIST is used directly for all

cases of N(d1) and N(d2); by indicating the cells where the corresponding d1 and d2 are stored.

The upper and lower bounds of feasible option values as described in Subsection 2.1 are displayed

in G15:H34, with the lower bound for cases where T = 0 also shown in I15:I34.

The results in A14:A34, C14:C34, and F14:I34 are captured graphically in Figure 1 as well.

The graphical part of Figure 1 � which is drawn by using Excel�s XY (Scatter) Chart � is just

like typical textbook illustrations of the Black-Scholes model. The only di¤erence here is that the

results from the binomial model based on the same set of input parameters are also included. The

computed values of option prices for the two models are similar for each value of S ranging from

$5 to $100 in increments of $5: The greatest di¤erence occurs at S = X = $40: With c = $5:4820

and C = $5:5018; the binomial model understates the Black-Scholes result by $0:0198: Although

such a di¤erence is too small to be noticeable graphically, this nearly 2-cent di¤erence in price is

not a trivial amount.

To improve the match of the option prices from the two models for the same set of input

parameters, many more binomial periods are required. For example, if we let N = 120 (by setting

the scroll bar that links to E6 at 120); the greatest di¤erence between the two computed option

prices still occurs at S = X = $40: With c = $5:4919 and C = $5:5018; the Black-Scholes result is

understated by only $0:0099:

If we attempt only a few binomial periods instead, the mismatch between the option prices

from the two models will be easily noticeable. In fact, for the same set of input parameters, but

with N < 10; the computed c according to equation (16) will fall below the line C = S �Xe�rT

if the option is deep in the money (that is, if S is much greater than X): As c cannot be less

than S �Xe�rT regardless of S; such an option price is unacceptable. In view of this undesirable
feature, considered next is how the mismatch of the two computed option prices varies with N:
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5.1 The Number of Binomial Periods and the Mismatch in Option Prices

The Excel worksheet for Figure 2 is primarily the result of a re-arrangement of various cells in the

Excel worksheet for Figure 1, intended for graphical convenience. The computations leading to c

and C remain the same. Instead of showing how each of c and C varies with S; for a common set

of input parameters and for a given N; we now show how the di¤erence between c and C varies

with N; for the same set of input parameters. For the illustration in Figure 2, we use r = 3:5%;

T = 0:4 years, � = 30%; X = $60; and S = $55; with N ranging from 1 to 160 periods. Just like

Figure 1, all input parameters (in B2:B6) and values of N (in A13:A172) are shaded.

As d1; d2; and C; which pertain to the Black-Scholes model, remain the same regardless of N;

they are shown in B8:B10. The results of u; d; p; p0; a; B(n � ajN; p0); B(n � ajN; p); and c
corresponding to N = 1 to 160 are placed in B13:I172. To accommodate the width reduction of

columns G and H in the worksheet, the headings for B(n � ajN; p0) and B(n � ajN; p) in G12:H12
are abbreviated as B(p0) and B(p); respectively. The price di¤erences, as captured by c � C; are
stored in J13:J172. For graphical convenience, N(d1) and N(d2) are shown in K13:L172 as well.

The part of the worksheet below row 36, which contains all computational results for N > 24; is

omitted from Figure 2.

The graphs in Figure 2 are also drawn by using Excel�s XY (Scatter) Chart. The graph of

price di¤erence, c � C; versus N shows a high level of �uctuations for N < 10: Such �uctuations

for greater values of N are still noticeable graphically. For the magnitudes of the �uctuations, as

measured by jc � Cj; to be consistently within $0:010 for N;N + 1; N + 2; : : : ; the minimum N

pertaining to the set of input parameters in Figure 2 is 84:

The graphs of binomial distributions, B(n � ajN; p0) and B(n � ajN; p); versus N show that

they oscillate in a synchronized pattern, over the corresponding cumulative normal distributions,

N(d1) and N(d2); in the entire range of N considered. Although the noise in each graph is

gradually subsided as N increases, the synchronized oscillation pattern remains visible. Such a

pattern seems to have caused the computed values of c to deviate from C in opposite signs, as N

alternates between adjacent even and odd numbers. Therefore, it seems that the average of the

computed values of c based on N and N �1 binomial periods approximates C better than does the
computed value of c for the same N without taking an average.

Figure 3 is intended for illustrating the issue. For the illustration in Figure 3, we use r = 5%;

T = 0:25 years, � = 30%; X = $50; and S = $45; with N ranging from 1 to 500 periods. The

worksheet for Figure 3 is a variant of that for Figure 2. In order to leave adequate space for

displaying the cell formulas beyond those in Figure 2, the �ve scroll bars, columns J, K, and L, and
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1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

A B C D E F G H I J K L

r 3.5% 35

T 0.4 40

sigma 30.0% 60

X 60 60

S 55 55

d1 0.290

d2 0.480

c(BS) 2.546

N u d p p' a B(p') B(p) c(Bin) c diff N(d1) N(d2)

1 1.209 0.827 0.490 0.584 0 0.584 0.490 3.134 0.588 0.386 0.316

2 1.144 0.874 0.493 0.559 1 0.313 0.243 2.854 0.308 0.386 0.316

3 1.116 0.896 0.494 0.549 1 0.573 0.491 2.448 0.098 0.386 0.316

4 1.100 0.909 0.495 0.542 2 0.378 0.305 2.771 0.225 0.386 0.316

5 1.089 0.919 0.495 0.538 3 0.238 0.182 2.346 0.199 0.386 0.316

6 1.081 0.925 0.496 0.534 3 0.410 0.336 2.698 0.152 0.386 0.316

7 1.074 0.931 0.496 0.532 4 0.282 0.220 2.490 0.056 0.386 0.316

8 1.069 0.935 0.496 0.530 4 0.430 0.355 2.643 0.097 0.386 0.316

9 1.065 0.939 0.496 0.528 5 0.312 0.247 2.553 0.007 0.386 0.316

10 1.062 0.942 0.497 0.527 5 0.444 0.369 2.601 0.055 0.386 0.316

11 1.059 0.944 0.497 0.525 6 0.334 0.267 2.581 0.036 0.386 0.316

12 1.056 0.947 0.497 0.524 6 0.454 0.379 2.568 0.022 0.386 0.316

13 1 054 0 949 0 497 0 523 7 0 352 0 283 2 594 0 048 0 386 0 31625

26

27

28

29

30

31

32

33

34

35

36

13 1.054 0.949 0.497 0.523 7 0.352 0.283 2.594 0.048 0.386 0.316

14 1.052 0.951 0.497 0.523 7 0.463 0.387 2.540 0.006 0.386 0.316

15 1.050 0.952 0.497 0.522 8 0.366 0.296 2.598 0.052 0.386 0.316

16 1.049 0.954 0.497 0.521 8 0.469 0.394 2.517 0.029 0.386 0.316

17 1.047 0.955 0.497 0.520 9 0.377 0.307 2.597 0.051 0.386 0.316

18 1.046 0.956 0.498 0.520 9 0.475 0.399 2.497 0.049 0.386 0.316

19 1.044 0.957 0.498 0.519 10 0.387 0.316 2.594 0.048 0.386 0.316

20 1.043 0.958 0.498 0.519 11 0.309 0.245 2.500 0.046 0.386 0.316

21 1.042 0.959 0.498 0.518 11 0.396 0.324 2.588 0.043 0.386 0.316

22 1.041 0.960 0.498 0.518 12 0.320 0.255 2.520 0.026 0.386 0.316

23 1.040 0.961 0.498 0.518 12 0.403 0.331 2.583 0.037 0.386 0.316

24 1.039 0.962 0.498 0.517 13 0.330 0.264 2.535 0.011 0.386 0.316

Figure 2     An Excel Worksheet Illustrating, Numerically and Graphically, the 

Differences between Option Prices from the Binomial Model and the Black-

Scholes Model, and between the Probability Distributions Involved, for 

Different Numbers of Binomial Periods.
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M N O P Q R S T U V

Cell Formulas

B2 =E2/1000

B3 =E3/100

B4 =E4/200

B5 =E5

B6 =E6

B8 =(LN(B$6/B$5)+B$2*B$3)/B$4/SQRT(B$3)+B$4*SQRT(B$3)/2

B9 =B8 B$4*SQRT(B$3)

B10 =B$6*NORMSDIST(B8) B$5*EXP( B$2*B$3)*NORMSDIST(B9)

B13 =EXP(B$4*SQRT(B$3/A13))

C13 =1/B13

B13:C13 copied to B13:C172
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Figure 2     An Excel Worksheet Illustrating, Numerically and Graphically, the 

Differences between Option Prices from the Binomial Model and the Black-

Scholes Model, and between the Probability Distributions Involved, for 

Different Numbers of Binomial Periods (Continued).
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M N O P Q R S T U V

Cell Formulas

D13 =(EXP(B$2*B$3/A13) C13)/(B13 C13)

E13 =B13*D13*EXP( B$2*B$3/A13)

F13 =MIN(A13,MAX(0,INT(LN(B$5/B$6/(C13^A13))/LN(B13/C13))))

G13 =BINOMDIST(A13,A13,E13,TRUE) BINOMDIST(F13,A13,E13,TRUE)

H13 =BINOMDIST(A13,A13,D13,TRUE) BINOMDIST(F13,A13,D13,TRUE)

I13 =B$6*G13 B$5*EXP( B$2*B$3)*H13

J13 =I13 B$10

K13 =NORMSDIST(B$8) D13:J13 copied to D13:J172

L13 =NORMSDIST(B$9) K13:L13 copied to K13:L172

A14 =A13+1 A14 copied to A14:A172
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Figure 2     An Excel Worksheet Illustrating, Numerically and Graphically, the 

Differences between Option Prices from the Binomial Model and the Black-

Scholes Model, and between the Probability Distributions Involved, for 

Different Numbers of Binomial Periods (Continued).
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both XY (Scatter) Charts there, along with the original descriptions of the cell formulas have been

deleted. Two additional rows have been inserted after row 10. The headings for B(n � ajN; p0)
and B(n � ajN; p) in G14:H14 are also abbreviated as B(p0) and B(p); respectively. Not displayed
in Figure 3 is the part of the worksheet below row 72, which contains all numerical results for

N > 58: The absolute di¤erence, jc � Cj (under the heading of �jdi¤1j�), for all cases of N; are
placed in J15:J514, with K15:K514 (under the heading of �<�lter�) showing only those cases under

$0:010: For example, with jc�Cj in J15 being 0:017 > 0:010; K15 is left black in the display; with
jc� Cj in J26 being 0:003 < 0:010; the number 0:003 is retained in K26.

Each cell in L15:L514 (under the heading of �N1�) is intended to show the corresponding N

for the cell in K15:K514 from the same row where, starting from it, none of the remaining cells in

column K until K514 are blank. For example, although the number 0:003 is shown in K26, many

cells in K26:K514 have no displayed numbers. Thus, L26 is left blank. In contrast, the number

0:007 is shown in K70 and none of the cells in K70:K514 are blank, L70 shows the number in A70,

which is N = 56: For N � 56; the departure of the corresponding c from C is always under $0:010:
The minimum among the cells in L15:L514, which is 52; as displayed in B11, is the lowest N to

ensure the imposed accuracy of c for the current set of input parameters.

The same idea for J15:L514 is repeated for M16:O514 (with analogous headings, �jdi¤2j, <�lter,�
and �N2�). The di¤erence is that, instead of using the c for N periods in establishing jc� Cj; we
now use the average of the c for N periods and the c for N � 1 periods. The minimum among

the cells in O16:O514 is displayed in B12. For the current set of input parameters, the number is

15; which is much lower. For the sake of clarity, the two blocks of cells, as well as B11:B12, are

shaded in di¤erent colours.

5.2 Numerical Convergence of the Two Models

Although it has been illustrated above that using the average of two adjacent values of c for N

and N � 1 periods allows numerical convergence of the two models to be achieved with far fewer
binomial periods, whether this is generally true has yet to be con�rmed or refuted. For this task,

we follow the general idea of Chance (2008) as intended for comparing di¤erent binomial models.

As applied to the current setting, where there is only the Cox-Ross-Rubinstein model to consider,

we repeat the same computations as illustrated in Figure 3, for X = $50 and all combinations of

the following input parameters: r = 1%; 5%; and 10%; T = 0:25; 1; and 4 years; � = 10%; 30%;

and 50%; and S = $45; $50; and $55:

With three di¤erent values for each of the four input parameters, there are 34 = 81 combinations
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Cell J15 =ABS(I15 B$10)

r 5% Formulas K15 =IF(J15>0.01,"",J15)

T 0.25 L15 =IF(K15="","",IF(COUNT(K15:K$514)=ROW(K$514)

sigma 30% ROW(K14),A15,""))

X 50 J15:L15 copied to J15:L514

S 45 M16 =ABS((I15+I16)/2 B$10)

N16 =IF(M16>0.01,"",M16)

d1 0.54 O16 =IF(N16="","",IF(COUNT(N16:N$514)=ROW(N$514)

d2 0.69 ROW(N15),A16,""))

c(BS) 1.154 M16:O16 copied to M16:O514

minN1 52 B11 =MIN(L15:L514)

minN2 15 B12 =MIN(O16:O514)

N u d p p' a B(p') B(p) c(Bin)|diff1| <filter N1|diff2| <filter N2

1 1.16 0.86 0.50 0.58 0 0.58 0.50 1.137 0.017

2 1.11 0.90 0.50 0.56 1 0.31 0.25 1.408 0.253 0.118

3 1.09 0.92 0.50 0.55 2 0.16 0.13 1.046 0.108 0.073

4 1.08 0.93 0.50 0.54 2 0.37 0.32 1.243 0.088 0.010 0.010

5 1.07 0.94 0.50 0.54 3 0.23 0.19 1.192 0.038 0.063

6 1.06 0.94 0.50 0.53 3 0.41 0.35 1.140 0.014 0.012

7 1.06 0.94 0.50 0.53 4 0.28 0.23 1.215 0.061 0.023

8 1.05 0.95 0.50 0.53 4 0.43 0.37 1.070 0.084 0.012

9 1.05 0.95 0.50 0.53 5 0.31 0.26 1.207 0.052 0.016

10 1.05 0.95 0.50 0.53 6 0.22 0.17 1.125 0.029 0.012

11 1.05 0.96 0.50 0.52 6 0.33 0.28 1.189 0.034 0.003 0.003

12 1.04 0.96 0.50 0.52 7 0.24 0.20 1.157 0.003 0.003 0.019

13 1.04 0.96 0.50 0.52 7 0.35 0.29 1.168 0.014 0.008 0.008

14 1.04 0.96 0.50 0.52 8 0.26 0.21 1.173 0.019 0.016

15 1.04 0.96 0.50 0.52 8 0.36 0.31 1.147 0.007 0.007 0.006 0.006 15

16 1.04 0.96 0.50 0.52 9 0.28 0.23 1.179 0.025 0.009 0.009 16

17 1.04 0.96 0.50 0.52 9 0.37 0.32 1.127 0.027 0.001 0.001 17

18 1.04 0.97 0.50 0.52 10 0.29 0.24 1.180 0.026 0.001 0.001 18

19 1.04 0.97 0.50 0.52 11 0.22 0.18 1.124 0.030 0.002 0.002 19

20 1.03 0.97 0.50 0.52 11 0.31 0.25 1.177 0.023 0.004 0.004 20

21 1.03 0.97 0.50 0.52 12 0.24 0.19 1.141 0.013 0.005 0.005 21

22 1.03 0.97 0.50 0.52 12 0.32 0.26 1.172 0.018 0.002 0.002 22

Figure 3     An Excel Worksheet Illustrating the Computations of the Lowest 

Numbers of Binomial Periods for Numerical Convergence of the Binomial Model 

and Black-Scholes Model.
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23 1.03 0.97 0.50 0.52 13 0.25 0.20 1.152 0.002 0.002 0.008 0.008 23

24 1.03 0.97 0.50 0.52 13 0.33 0.27 1.165 0.011 0.005 0.005 24

25 1.03 0.97 0.50 0.52 14 0.26 0.21 1.160 0.006 0.006 0.009 0.009 25

26 1.03 0.97 0.50 0.52 14 0.33 0.28 1.158 0.004 0.004 0.005 0.005 26

27 1.03 0.97 0.50 0.52 15 0.27 0.22 1.165 0.011 0.007 0.007 27

28 1.03 0.97 0.50 0.51 15 0.34 0.29 1.150 0.004 0.004 0.003 0.003 28

29 1.03 0.97 0.50 0.51 16 0.28 0.23 1.168 0.013 0.005 0.005 29

30 1.03 0.97 0.50 0.51 16 0.35 0.30 1.142 0.012 0.001 0.001 30

31 1.03 0.97 0.50 0.51 17 0.29 0.24 1.169 0.014 0.001 0.001 31

32 1.03 0.97 0.50 0.51 17 0.36 0.30 1.134 0.020 0.003 0.003 32

33 1.03 0.97 0.50 0.51 18 0.30 0.25 1.168 0.014 0.003 0.003 33

34 1.03 0.97 0.50 0.51 19 0.24 0.20 1.139 0.015 0.000 0.000 34

35 1.03 0.97 0.50 0.51 19 0.30 0.25 1.167 0.013 0.001 0.001 35

36 1.03 0.98 0.50 0.51 20 0.25 0.20 1.146 0.008 0.008 0.002 0.002 36

37 1.02 0.98 0.50 0.51 20 0.31 0.26 1.165 0.011 0.001 0.001 37

38 1.02 0.98 0.50 0.51 21 0.26 0.21 1.152 0.002 0.002 0.004 0.004 38

39 1.02 0.98 0.50 0.51 21 0.32 0.26 1.162 0.008 0.008 0.003 0.003 39

40 1.02 0.98 0.50 0.51 22 0.26 0.22 1.156 0.002 0.002 0.005 0.005 40

41 1.02 0.98 0.50 0.51 22 0.32 0.27 1.159 0.005 0.005 0.003 0.003 41

42 1.02 0.98 0.50 0.51 23 0.27 0.22 1.159 0.005 0.005 0.005 0.005 42

43 1.02 0.98 0.50 0.51 23 0.33 0.27 1.156 0.001 0.001 0.003 0.003 43

44 1.02 0.98 0.50 0.51 24 0.28 0.23 1.161 0.007 0.007 0.004 0.004 44

45 1.02 0.98 0.50 0.51 24 0.33 0.28 1.152 0.002 0.002 0.002 0.002 45

46 1.02 0.98 0.50 0.51 25 0.28 0.23 1.163 0.008 0.008 0.003 0.003 46

47 1.02 0.98 0.50 0.51 25 0.34 0.28 1.148 0.006 0.006 0.001 0.001 47

48 1.02 0.98 0.50 0.51 26 0.29 0.24 1.163 0.009 0.009 0.001 0.001 48

49 1.02 0.98 0.50 0.51 26 0.34 0.29 1.144 0.010 0.001 0.001 49

50 1.02 0.98 0.50 0.51 27 0.29 0.24 1.163 0.009 0.009 0.001 0.001 50

51 1.02 0.98 0.50 0.51 28 0.25 0.20 1.141 0.013 0.002 0.002 51

52 1.02 0.98 0.50 0.51 28 0.30 0.25 1.163 0.009 0.009 52 0.002 0.002 52

53 1.02 0.98 0.50 0.51 29 0.25 0.21 1.145 0.009 0.009 53 0.000 0.000 53

54 1.02 0.98 0.50 0.51 29 0.30 0.25 1.162 0.008 0.008 54 0.000 0.000 54

55 1.02 0.98 0.50 0.51 30 0.26 0.21 1.149 0.005 0.005 55 0.001 0.001 55

56 1.02 0.98 0.50 0.51 30 0.31 0.25 1.161 0.007 0.007 56 0.001 0.001 56

57 1.02 0.98 0.50 0.51 31 0.26 0.22 1.152 0.002 0.002 57 0.002 0.002 57

58 1.02 0.98 0.50 0.51 31 0.31 0.26 1.160 0.006 0.006 58 0.002 0.002 58

Figure 3     An Excel Worksheet Illustrating the Computations of the Lowest 

Numbers of Binomial Periods for Numerical Convergence of the Binomial Model 

and Black-Scholes Model (Continued).
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of them to cover.17 This requires repeated copy-and-paste operations for such combinations to

record the corresponding values in B11:B12 of the worksheet for Figure 3. Table 1 shows the

summary statistics of the lowest numbers of binomial periods as required to achieve numerical

convergence of the two models. The convergence criterion, just like that in Figure 3, is the

absolute price di¤erence being less than $0:010: The summary statistics include the average, the

median, the minimum, and the maximum of such numbers, for each given value of any of the four

input parameters. Case (i) and case (ii) di¤er only in that, in the latter case, the average of two

adjacent values of c is used instead for establishing jc� Cj:
For example, in the �rst row, the summary statistics for r = 1% pertain to those of the 33 = 27

combinations of T; �; and S: For this speci�c r; although case (i) and case (ii) have the same

minimum in the lowest numbers of binomial periods to achieve numerical convergence of the two

models, the latter case shows much lower average, median, and maximum. The displayed values in

all other rows, each of which focuses on a speci�c value of a given input parameter, show a similar

pattern. Case (ii) even provides much lower minimum �gures than case (i) does for some input

parameters; examples include � = 30% and 50%; as well as S = $50:

Regardless of whether the average or the median is used to compare the two cases, it is clear that

case (ii) represents an e¤ective approach to reduce the number of binomial periods for numerical

convergence of the two models. This is also con�rmed by the numbers in the last row of Table 1,

which represent the overall results for the 81 di¤erent combinations of the input parameters. For

each of the two cases, the lowest number of binomial periods for numerical convergence of the two

models increases with increasing T; as well as increasing �:

For example, in case (i); for T = 0:25; 1; and 4; the medians of the lowest numbers of binomial

periods are 52; 131; and 194; respectively. Likewise, for � = 10%; 30%; and 50%; the corresponding

medians are 33; 131; and 209 periods. Given equation (28), such monotonic relationships are as

expected. As an increase in N tends to allow the two models to converge, an increase in T or in

� will require a higher N to provide a similar set of u and d for use in equation (16).

6 Concluding Remarks

This paper has presented, from a pedagogic perspective, a binomial option pricing model, which

eventually converges to the well-known Black-Scholes (1973) formula as the number of binomial

periods increases. The binomial model considered is the Cox-Ross-Rubinstein (1979) version,

17The combination of r = 10%; T = 4 years, � = 10%; and N � 4 is problematic, as it inevitably leads to
unacceptable p and p0 as probability measures. However, as numerical convergence of the two models requires more
than 4 binomial steps for such a combination of input parameters, the exclusion of these problematic cases has no
impact on the summary statistics we seek.
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� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Table 1 The Minimum Number of Periods N for the Binomial Model in Equation (16), as

Required to Achieve Numerical Convergence to the Black-Scholes Model in Equation (2). [Con-

vergence criterion: the absolute di¤erence in the option prices from the two models be consistently

less than $0:010; for N binomial periods or more; input parameters: for an exercise price of $50;

there is a total of 34 = 81 di¤erent combinations of input parameters, with each row (except the

last row) in the table pertaining to 33 = 27 combinations; case (i) and case (ii): each option price

from the binomial model for computing the absolute di¤erence is based on N binomial periods [case

(i)] and the average of two option prices for N and N � 1 binomial periods [case (ii)]; notation:
r = the risk-free annual interest rate, T = the expiry of the option in years, � = the standard

deviation of annual returns of the underlying stock, and S = the price of the underlying stock.

Case (i) Case (ii)

Average Median Min Max Average Median Min Max

r = 1% 148:74 111 5 467 35:81 19 5 114
5% 144:56 112 4 441 40:00 38 4 95
10% 135:37 123 4 413 40:15 32 5 113

T = 0:25 61:33 52 4 125 17:93 9 4 49
1 130:56 131 7 248 38:89 30 5 92
4 236:78 194 12 467 59:15 56 8 114

� = 10% 50:81 33 4 178 25:00 9 4 113
30% 139:48 131 46 294 40:22 24 7 114
50% 238:37 209 96 467 50:74 49 9 86

S = $45 144:70 131 5 377 48:59 46 6 113
$50 163:96 123 25 467 23:19 12 4 90
$55 120:00 107 4 449 44:19 47 5 114

All 81 Combinations 142:89 112 4 467 38:65 32 4 114

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
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which can be derived by using algebraic tools alone. Though being the simplest among all available

binomial models in the �nance literature, the Cox-Ross-Rubinstein model still compares well against

various other versions, in terms of convergence to the Black-Scholes model. It also retains the

crucial insights of the Black-Scholes model. Thus, this simple binomial model is suitable for

classroom coverage, as it allows students to understand the concepts of option pricing, all without

the encumbrance of advanced analytical tools.

Excel plays a very important role in this pedagogic illustration. It is the interactivity of the

various examples provided, in conjunction with the Excel graphical features utilized, that allows

students to visualize how the results from the binomial model can eventually match those from

the Black-Scholes model. The graphical part of Figure 1, which is similar to typical textbook

illustrations of the Black-Scholes model, is readily suitable for classroom use. By varying the

input parameters via the various scroll bars in the corresponding worksheet, students can explore

interactively how well the binomial model works.

The remaining �gures in this paper can be presented successively in class to illustrate di¤erent

aspects of how changes in individual input parameters a¤ect the convergence of the two models.

Alternatively, students can be asked to produce the corresponding spreadsheets as exercises. As

the three �gures in this paper do have many common computational features, such exercises are not

likely to be burdensome for students, once they are made aware of the workings of the worksheet for

Figure 1. Such hands-on experience will enhance students�understanding of the binomial model

and reduce the perceived mystery of option pricing.

The scope of this study has been con�ned to pricing of European call options on stocks that pay

no dividends. Extensions to other options, such as American and European call and put options

on dividend-paying stocks � where put options are options to sell the underlying stocks instead �

are analytically much more challenging. It is hoped that this paper can improve the foundation

for students on option pricing, so that they can be better prepared when encountering more option

pricing models.
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Appendix: Risk-Neutral Probabilities and Pure Security Prices

In a single-period setting of the state preference framework, the end of the period is characterized

as having a known number of states of nature. The end-of-period payo¤ of each risky security

is state-contingent, and there is a known payo¤ for each state. However, at the beginning of the

period, it is unknown which state will occur.

Suppose that there are k states in total and that at least k securities are available in the market

for investing at the beginning of the period. For the market to be arbitrage-free, all securities and

portfolios of securities with the same set of state-contingent payo¤s must have the same beginning-

of-period price. For the market to be complete, we must be able to generate a complete set of k

pure securities by forming portfolios of available securities in the market.
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One share of pure security i will pay $1 if state i occurs, but it will pay nothing if state i does

not occur. Suppose that the beginning-of-period price of pure security i is $si; for i = 1; 2; : : : ; k:

A risk-free investment can be achieved by holding one share of each pure security for a total

of $
�Pk

i=1 si

�
; because the end-of-period pay-o¤ is always $1; regardless of which state occurs.

Therefore, the condition of
1Pk
i=1 si

= 1 + rf (A1)

must hold. Implicitly, we have 0 < si < 1; for i = 1; 2; : : : ; k:

Conversely, a risky security that will pay $xi if state i occurs, for i = 1; 2; : : : ; k; can be

replicated by a portfolio of pure securities. The portfolio is to consist of xi shares of pure security

i; for i = 1; 2; : : : ; k: The equivalence of this risky security and the portfolio of pure securities

ensures that the beginning-of-period price of the security be $
�Pk

i=1 sixi

�
:

Letting

pi = si(1 + rf ); for i = 1; 2; : : : ; k; (A2)

we can write equation (A1) equivalently asXk

i=1
pi = 1: (A3)

Given equation (A3), the set of compounded prices of pure securities, p1; p2; : : : ; pk; with 1 +

rf being a compounding factor, is mathematically equivalent to a set of probabilities. As the

beginning-of-period price of a risky security that will pay $xi if state i occurs, for i = 1; 2; : : : ; k;

is $
�Pk

i=1 pixi

�.
(1 + rf ); we can treat this price as the discounted value of the expected payo¤,

with 1=(1 + rf ) being the discounting factor.

In a single-period setting of the binomial option pricing model as described in Section 3 of the

main text, there are only two end-of-period states; that is, k = 2: The risky security in question is

a European call option, with end-of-period state-contingent prices being x1 = cu = max(0; uS�X)
and x2 = cd = max(0; dS�X): The corresponding compounded prices of pure securities are p1 = p
and p2 = 1� p: The beginning-of-period price of the option, which is c =

�P2
i=1 pixi

�.
(1 + rf );

is equivalent to that given by equation (8). Thus, the risk-neutral probabilities p and 1� p are the
same as compounded prices of pure securities under the state preference framework.

27

Feng and Kwan: Connecting Binomial and Black-Scholes Option Pricing Models

Published by ePublications@bond, 2012


	Spreadsheets in Education (eJSiE)
	July 2012

	Connecting Binomial and Black-Scholes Option Pricing Models: A Spreadsheet-Based Illustration
	Yi Feng
	Clarence C. Y. Kwan
	Recommended Citation

	Connecting Binomial and Black-Scholes Option Pricing Models: A Spreadsheet-Based Illustration
	Abstract
	Keywords
	Distribution License
	Cover Page Footnote


	Connecting Binomial and Black-Scholes Option Pricing Models: A Spreadsheet-Based Illustration

