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Geometric Brownian Motion, Option Pricing, and Simulation: Some
Spreadsheet-Based Exercises in Financial Modeling

Abstract
This paper presents some Excel-based simulation exercises that are suitable for use in financial modeling
courses. Such exercises are based on a stochastic process of stock price movements, called geometric
Brownian motion, that underlies the derivation of the Black-Scholes option pricing model. Guidance is
provided in assigning appropriate values of the drift parameter in the stochastic process for such exercises.
Some further simulation exercises are also suggested. As the analytical underpinning of the materials involved
is provided, this paper is expected to be of interest also to instructors and students of investment courses.
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Geometric Brownian Motion, Option Pricing, and Simulation:
Some Spreadsheet-Based Exercises in Financial Modeling

1 Introduction

In spreadsheet-based �nancial modeling courses, students learn how to apply spreadsheet tools,

such as those in Microsoft ExcelTM ; to various �nancial settings, for which analytical models are

available. Settings requiring only basic present-value concepts tend to include annuity, amortiza-

tion, capital budgeting, and bond valuation. More advanced �nancial settings cover also topics in

risk management, portfolio analysis, alternative risk measures, pricing of various derivative assets,

and simulation. Given the objectives of �nancial modeling courses, sophisticated analytical mate-

rials, if covered, are typically con�ned to end results or recipes. So are such materials in standard

textbooks of �nancial modeling.1

Relevant Excel tools for �nancial modeling courses include Data Validation, Lookup Tables,

Data Tables, and various Form Controls and ActiveX Controls from the Developer tab, in addi-

tion to those numerical and graphical tools that are familiar to general users. Students also have

opportunities to use Excel�s various �nancial and statistical functions pertaining to the �nancial

topics covered. Further, students are introduced to Macros and coding in Visual Basic for Applica-

tions (VBA). Individual or team projects requiring the use of various Excel tools, as well as VBA

programming, are often a key component of the course materials, for enhancing students�learning

experience and for strengthening their technical skills.

In �nancial modeling courses at both undergraduate and M.B.A. levels currently taught by

one of the co-authors of this paper, students are often assigned projects requiring the use of the

Black-Scholes (1973) option pricing model.2 Although the derivation of the model is well beyond

the scope of the standard �nance curriculum, its implementation in Excel is straightforward. As

the well-known Black-Scholes formula contains expressions of the cumulative standardized normal

distribution, the Excel function NORMSDIST can be applied directly for computational purposes.

Further, in view of an exact relationship between the corresponding call and put prices, known as

put-call parity, Excel-based computations of put prices under the assumptions of the Black-Scholes

1See, for example, Benninga (2008), Holden (2011), and Sengupta (2004)
2The Black-Scholes model is for pricing a European call option on a stock that pays no dividend. The option

holder has the right, not the obligation, to buy from the option writer on the expiry date a share of the underlying
stock at a predetermined price, called exercise price or strike price. A put option is the opposite; it gives the option
holder the right to sell the underlying stock to the option writer instead. An American option di¤ers from the
corresponding European version in that it can also be exercised any time prior to the expiry date. For analytical
convenience, the options considered in this paper are con�ned to European options on stocks that pay no dividends.
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model are equally straightforward.

Drawing on an idea pertaining to the above-mentioned student projects, this paper presents

some simulation exercises based on a stochastic process, known as geometric Brownian motion,

for characterizing stock price movements. Such a stochastic process is relevant, as it underlies

the original derivation of the Black-Scholes model. While the model is consistent with various

stochastic processes, such as those identi�ed in Lo and Wang (1995), geometric Brownian motion is

the simplest among them. Its simplicity has made it particularly suitable for pedagogic purposes.

Based on available information on the day of a call or put option investment, which includes the

corresponding stock and option prices at the time, of interest to the option investor is how these

prices can potentially vary over the remaining life of the option. When used to characterize the

underlying stock price movements, geometric Brownian motion will allow the potential time paths

to be simulated. Such simulation exercises are intended to enhance students�understanding of not

only what a stochastic process is all about, but also how stock price movements over time a¤ect

the corresponding option price movements and thus the pro�tability of an option investment. As

a result, students will have a deeper understanding of the risk-return characteristics of an option

investment, from the perspectives of the buyer and the writer of the option.3

To facilitate the Excel illustrations later in this paper, Section 2 �rst describes, without the

encumbrance of analytical details, how values of the two crucial parameters in geometric Brownian

motion, as required for simulation exercises, can be inferred from available information at the time

of an option investment. Stated in annual terms, the two parameters � which are generally known

as drift and volatility � represent the expected instantaneous return and the standard deviation

of returns of the underlying stock, respectively. The issue as to why the drift parameter, though

absent from the Black-Scholes formula, is relevant in simulation exercises is also discussed in Section

2. Such descriptions and discussions are intended to place the analytical materials of Section 3 in

a proper context.

Section 3 has seven subsections. The �rst three subsections are for describing essential ma-

terials on geometric Brownian motion, the Black-Scholes formula, and put-call parity. To avoid

digressions, some derivations pertaining to geometric Brownian motion are provided separately in

Appendix A. The next three subsections cover, in analytical detail, the various ideas in Section

2.4 To the best of our knowledge, Subsections 3.5 and 3.6 are original contributions. The �nal

3 It is up to individual instructors of �nancial modeling courses to decide whether actual or arti�cial data are used,
for the day of an option investment, in simulation exercises. The use of actual data will make such exercises more
practically relevant to students.

4For pedagogic purposes, we derive in this paper most of the analytical materials involved, although the same
materials can also be found elsewhere. In such cases, appropriate references are provided.
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subsection shows how various analytical materials can be utilized to simulate daily stock and option

price movements.5

Some simulation exercises are illustrated in Section 4. It has two subsections. The �rst subsec-

tion provides a simple illustration that requires only Excel�s general numerical and graphical tools,

in order to show the ideas involved. For computational and graphical convenience in performing

simulation exercises, VBA coding is utilized in the second subsection. Section 5 suggests further

simulation exercises, with materials presented in three subsections. Some of these suggested ex-

ercises are also suitable for use in investment courses that cover stochastic processes of stock price

movements. Finally, Section 6 provides some concluding remarks.

2 The Two Parameters in Geometric Brownian Motion

Of the two parameters in geometric Brownian motion, only the volatility parameter is present in the

Black-Scholes formula. The absence of the drift parameter is not surprising, as the derivation of the

model is based on the idea of arbitrage-free pricing. The derivation requires that risk-free hedged

portfolios, based on the call option and the underlying stock, be formed continuously. Accordingly,

the predictability of stock returns in terms of the stock�s expected return over the remaining life of

the option, which can be inferred from the drift parameter, becomes irrelevant.6

For the purpose of simulation exercises involving geometric Brownian motion, values of both the

drift parameter and the volatility parameter are required. The latter parameter can be inferred

directly from the corresponding stock and option prices on the day of the option investment or

estimated empirically from historical time series of stock returns. If the corresponding stock and

option prices are deemed available on the day of the option investment, the use of an implied

volatility for simulation exercises will ensure internal consistency of the data involved. To use

Excel�s Solver or Goal Seek to deduce the volatility parameter from stock and option prices is

straightforward.

Estimation of the volatility parameter based on time series data, which is associated with

the empirical aspect of option pricing, is beyond the scope of typical �nancial modeling courses.7

Thus, for simulation exercises, students are seldom required to estimate the volatility parameter

5Readers who are primarily interested in the Excel-based simulation exercises can skip the derivations in Section
3 and go directly to Section 4. Any speci�c equations in Section 3 as required for such exercises are indicated there.

6Lo and Wang (1995) have shown that the predictability of stock returns, if also considered, can improve the Black-
Scholes option pricing results. The task, which requires the use of stochastic processes that are more sophisticated
than geometric Brown motion, is beyond the pedagogic scope of this paper.

7See, for example, Hull (2009, Chapter 13) for an estimation method that can easily be implemented in Excel.
See also Campbell, Lo, and MacKinlay (1997, Chapter 9) and Yang and Zhang (2000), as well as the references there,
for some other estimation methods.
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themselves; rather, they can attempt di¤erent values for it as user input, with guidance from

empirical results elsewhere. For internal consistency of the input data, however, the volatility

parameter and the option price on the day of an option investment cannot both be from user input.

One of them must be computed instead.

In contrast, the drift parameter is more di¢ cult to deduce. Guidance from textbooks is

inadequate as to what values of the drift parameter ought to be used in simulation exercises.

Textbook examples either use the risk-free interest rate as the drift parameter or simply assign an

arbitrary value for it. Justi�cation for the former case implicitly requires the assumption that

investors are risk neutral.8

The use of a higher (lower) value of the drift parameter will tend to result, on average, higher

(lower) simulated stock prices over the remaining life of each option that the stock underlies. With

option prices depending on the underlying stock prices, the expected pro�tability of an option

investment inevitably depends on the value of the drift parameter used. There are two opposite

sides in an option investment, the buyer side and the writer side. As a rational individual never

willingly invests for an expected loss, the drift parameter must be perceived to be higher for the

buyer of a call option than for the writer. For an investment in a put option, the opposite is true.

Given di¤erent perspectives from the two sides of an option investment, a relevant question now is

what values of the drift parameter are appropriate for use in simulation exercises.

To seek an answer, let us start with a scenario where an option is not exercised on the expiry

date. In this scenario, the writer of the option will achieve the maximum pro�t, and the buyer

will incur the maximum loss. In the case of a call option, this scenario requires the price of the

underlying stock on the expiry date to be no greater than the exercise price. For this scenario not

to occur, the stock price must be higher. In the case of a put option, the situations are reversed.

Thus, for either a call option or a put option, if we equate the exercise price and the stock price

that is expected for the expiry date, we can deduce a threshold value of the drift parameter. We

can do so because, as shown in Section 3, there is an analytical expression to relate the expected

stock price and the drift parameter. In simulation exercises involving a call option, if the assigned

value of the drift parameter is above (below) this threshold value, the option will be more (less)

likely to be exercised. In the case of a put option, it is the opposite.

However, exercising an option does not necessarily result in a pro�t for the buyer and a loss

for the writer. Thus, a di¤erent threshold value of the drift parameter is required to separate

8See, for example, Hull (2009, Chapter 13), where the drift parameter is set equal to the risk-free interest rate.
See also Hull (2009, Chapter 12) and Sengupta (2004, Chapters 11 and 22), where arbitrary values are used instead.
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the option investment outcomes into pro�table and nonpro�table cases. The idea as mentioned

earlier that a rational individual never willingly invests for an expected loss is applicable here. For

an option investment that precludes neither the buyer nor the writer from expecting a pro�t, we

simply set a threshold value of the drift parameter to correspond to expected pro�ts being zero for

both parties.

Speci�cally, in the case of a call option, this requires that the expected stock price at the

expiry date of the option be equal to the total investment by the buyer, which includes both the

exercise price and the original purchase price of the option as measured at the expiry date. As the

value of the drift parameter thus determined provides a zero expected pro�t for each side of the

option investment, the use of a higher (lower) value will give the buyer (writer) side an advantage.

Analogously, in the case of a put option, this requires that the exercise price be equal to the

expected total investment by the buyer, which includes both the expected stock price at the expiry

date and the original purchase price of the option as measured at the expiry date.9

Given put-call parity, we are able to establish how various threshold values of the drift parameter

compare to each other and to the risk-free interest rate. As shown in Section 3, the threshold value

of the drift parameter based on zero expected pro�ts for both the buyer and the writer of a call

option is always above the risk-free interest rate. In the case of an investment in a put option,

the opposite is true. Accordingly, the range of values between these two threshold values always

encloses the risk-free interest rate. An implication is that, if the risk-free interest rate is used as

the drift parameter, as suggested in textbooks, simulation results of the pro�tability of an option

investment will tend to favour the writer, on average, regardless of whether it is a call option or a

put option.

The same range of values also encloses the threshold value of the drift parameter for expecting

an option to be exercised. However, whether such a threshold value is above or below the risk-free

interest rate depends on the sign of the di¤erence between the corresponding call and put prices.

The analytical details of all these properties are provided in Section 3.

As long as the two sides of an option investment have di¤erent expectations about the investment

outcomes, subjectivity in the choice of values of the drift parameter for simulation exercises is

inevitable. The threshold values considered in this study are intended to guide students in setting

reasonable � rather than totally arbitrary � values of the drift parameter. For the Excel-based

9For analytical convenience, an option investment is evaluated under the assumption that the investment is over
the remaining life of the option considered. In practice, however, the option can always be traded prior to its expiry
date, if desired. To establish a threshold value of the drift parameter in such a setting not only is a formidable task,
but also will cause digressions from the original pedagogic objectives of this paper.
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exercises in Section 4, di¤erent choices for values of the drift parameter are available from a menu.

Speci�cally, the menu items include not only the threshold values as identi�ed above and the

risk-free interest rate, but also user input.

3 Analytical Materials for Simulation Exercises

This section, which consists of seven subsections, covers the analytical materials that are essential

for the simulation exercises in Section 4. As the materials on geometric Brownian motion are

generally unfamiliar to business students, they are covered in some detail in the �rst subsection,

with derivations also provided in Appendix A. In contrast, the Black-Scholes formula, which is

part of the standard �nance curriculum even at the introductory level, does not require a detailed

description; it is brie�y stated in the second subsection. The connection of corresponding call

and put option prices is also provided in this section via the concept of put-call parity in the third

subsection. As the corresponding materials, though analytically simple, are usually not covered

in introductory �nance textbooks, they are provided there. The next three subsections restate

and expand, from an analytical perspective, the various ideas in Section 2. The �nal subsection

describes analytically how the time paths of daily stock and option prices can be simulated.

3.1 Geometric Brownian Motion

A key assumption of the Black-Scholes option pricing model is that the instantaneous stock price

movements can be characterized by

dS = �Sdt+ �Sdz: (1)

Here, S is the stock price, � and � are constants, t is time, and z follows a stochastic process called

Wiener process, under which dz = �
p
dt; where � is a random draw from the standardized normal

distribution. Equation (1) is commonly known as geometric Brownian motion, with � and � called

the drift parameter and the volatility parameter, respectively.

As shown in Appendix A, equation (1) implies

d lnS =

�
�� �

2

2

�
dt+ �dz: (2)

The stochastic process as characterized by equation (2) indicates that lnS is normally distributed.

Equivalently, S is lognormally distributed. With S0 and ST denoted as the stock prices at time 0

and time T; respectively, equation (2) leads to

ST = S0 exp

��
�� �

2

2

�
T + ��

p
T

�
: (3)
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Further, the expected value and the variance of ST are

E(ST ) = S0 exp(�T ) (4)

and

V ar(ST ) = S
2
0 [exp(2�T )]

�
exp(�2T )� 1

�
= [E(ST )]

2 �exp(�2T )� 1� ; (5)

respectively. Equation (5) can be written asp
V ar(ST ) = E(ST )

p
exp(�2T )� 1 (6)

for graphical convenience.

Given equation (4), we have
@E(ST )

@�
= T E(ST ) (7)

and
@E(ST )

@T
= �E(ST ): (8)

Accordingly, E(ST ) increases with � for any given T > 0: It increases with T if � > 0; decreases

instead if � < 0; and remains unchanged if � = 0:

Likewise, given equation (5), we have

@V ar(ST )

@�
= 2T V ar(ST ); (9)

@V ar(ST )

@�
= 2�T [E(ST )]

2 exp(�2T ); (10)

and
@V ar(ST )

@T
= S20

�
(2�+ �2) exp

�
(2�+ �2)T

�
� 2� exp(2�T )

	
: (11)

Thus, V ar(ST ) increases with � and � for any given T > 0: As exp
�
(2�+ �2)T

�
> exp(2�T ) > 0

for T > 0; V ar(ST ) increases with T if 2� + �2 � 0:10 However, if � is negative and low enough

to make 2� + �2 negative, the graph of V ar(ST ) versus T will not always be upward sloping; if

2� + �2 < 0; the graph will be downward sloping once T exceeds a threshold value. Speci�cally,

with the threshold value of T being

T � =
1

�2
ln

�
2�

2�+ �2

�
; (12)

T Q T � corresponds to @V ar(ST )=@T R 0:11

10As �2 > 0; we always have 2�+ �2 > 2� regardless of the sign of �: If � � 0; it follows from exp
�
(2�+ �2)T

�
>

exp(2�T ) > 0 that (2� + �2) exp
�
(2�+ �2)T

�
> 2� exp(2�T ) and thus @V ar(ST )=@T > 0: If � < 0 instead, as

�2� exp(2�T ) > 0; a positive sign of @V ar(ST )=@T is assured if we also have 2�+ �2 � 0:
11According to equation (11), if 2� + �2 < 0; to achieve @V ar(ST )=@T < 0 requires exp(�2T ) > 2�=(2� + �2):

It follows from 2� < 2� + �2 < 0 that 2�=(2� + �2) > 1: As exp(�2T ) increases monotonically with T; there is a
threshold value of T beyond which exp(�2T ) > 2�=(2�+ �2): This idea leads to equation (12).
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3.2 The Black-Scholes Formula

In addition to the various symbols already de�ned, let r be the continuously compounded annual

risk-free interest rate, C be the value of a European call option on a stock that pays no dividend, X

be the exercise price of the option, and N(�) be the cumulative standardized normal distribution.
Further, let T now denote the proportion of a year before the option expires. The Black-Scholes

formula is

C = S N(d1)�X exp(�rT )N(d2); (13)

where

d1 =
1

�
p
T

�
ln

�
S

X

�
+ rT

�
+
1

2
�
p
T (14)

and

d2 = d1 � �
p
T : (15)

3.3 Put-Call Parity

For European options on stocks that pay no dividends, there is a relationship between put and call

prices � P and C; respectively � for the same exercise price X and the same maturity T on an

underlying stock. This is what put-call parity is all about. To establish such a relationship, let

us construct a portfolio by holding the underlying stock and the put option and writing the call

option, for a net investment of S + P � C:
On the expiry date, which is time T; the underlying stock price is ST : The following represents

three potential scenarios:

Value of Stock + Value of Put � Value of Call = Value of Portfolio

If ST < X ST + (X � ST ) � 0 = X

If ST = X ST + 0 � 0 = ST = X

If ST > X ST + 0 � (ST �X) = X

The idea is that, if ST < X; we exercise the put option in the portfolio, but the holder of the call

option does not exercise it. If ST = X; neither option is exercised. If ST > X instead, we do not

exercise the put option, but the holder of the call option exercises it. Regardless of which scenario

prevails, the investment outcome is still X: That is, the net investment of S + P � C is risk-free.

Thus, with r being a continuously compounded annual risk-free interest rate, we must have

(S + P � C) exp(rT ) = X (16)

or, equivalently,

C � P = S �X exp(�rT ): (17)

8
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Equation (17) allows the put price to be determined once the corresponding call price is known.12

Upon substituting the expression of C in equation (13), we can write

P = �S[1�N(d1)] +X exp(�rT )[1�N(d2)]

= �S N(�d1) +X exp(�rT ) N(�d2): (18)

With N(�) being a cumulative distribution, 1�N(�) is the corresponding complementary cumulative
distribution. From an algebraic perspective, the expressions in equations (13) and (18) are similar

to each other. Thus, for the purpose of simulation exercises, to change from a setting involving

a call option to a setting involving the corresponding put option requires only minor algebraic

adjustments.

3.4 Implied Volatility

Regardless of whether a simulation exercise requires the use of equation (13) or equation (18), we

consider the available information for an option investor to be con�ned to the corresponding stock

and option prices on the day of the option investment, the exercise price and the expiry date of the

option, and the risk-free interest rate. The day of the option investment is also the day for price

simulation over the remaining life of the option. The investor in question can be the buyer or the

writer of the option.

However, values of the drift parameter and the volatility parameter are not considered to be

part of the available information. Given the presence of the volatility parameter in the Black-

Scholes formula, to deduce its value objectively from the available information is straightforward.

Thus, a brief description here is adequate.13 In contrast, to �nd appropriate values of the drift

parameter for simulation exercises is not as simple. The analytical detail is provided in the next

two subsections.

To determine values of � for simulation exercises, let us label the corresponding stock and option

prices on the day of the option investment as S0 and C0; or as S0 and P0; depending on whether

a call option or a put option is involved. As C0 and P0 are each a function of S0; X; T; r; and

� according to equations (13) and (18), there must be a speci�c value of �; when combined with

the given values of S0; X; T; and r; that allows C0 and P0 to be deduced. Such a value of � is

commonly known as the implied volatility.

It has been well established in the �nance literature that the price of an option increases with

the volatility of its underlying stock. That is, for a given set of parameters for option pricing,
12The derivation of equation (17) draws on Copeland, Weston, and Shastri (2005, Chapter 7).
13See, for example, Chance and Brooks (2008, Chapter 5) for an Excel illustration.
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there is a monotonic relationship between the option price and the volatility parameter.14 Thus,

there will not be any concern of whether there are some other values of the volatility parameters

that also correspond to the same option price. In view of this option property, Excel�s Solver or

Goal Seek can be used to infer � numerically from values of S0; X; T; r; and C0 or P0; depending

on whether equation (13) or equation (18) is applicable to the simulation exercise involved. By

using either numerical tool, we can search for the value of � that allows the given price and the

computed price of the option to be matched.

Implicit in the above numerical search is that the available options are properly priced. For

this to be true, the user input of S0; X; T; r; and C0 or P0 in each simulation exercise must

not be inconsistent with each other. Speci�cally, the no-arbitrage conditions of 0 � C0 � S0;

C0 � S0 � X exp(�rT ); 0 � P0 � X exp(�rT ); and P0 � X exp(�rT ) � S0 must be satis�ed.
Otherwise, the implied value of � will not be meaningful; neither will the simulation results.

The potential inconsistency of user input can be avoided in simulation exercises if the input is

to consist of S0; X; T; r; and � instead. Given equations (13) and (18), each computed option price

for the day of an option investment will always satisfy the no-arbitrage conditions as noted above.

In this revised setting, we assume that an option with a computed price based on the values of S0;

X; T; r; and � is available for investing and that the simulation exercise to follow is for such an

option.

3.5 Threshold Values of the Drift Parameter

As explained in Section 2, to set appropriate values of the drift parameter for simulation exercises,

some of its threshold values are relevant. One of such values is from matching the expected stock

price and the exercise price; that is,

E(ST ) = X: (19)

Let us label the corresponding drift parameter as �x: Given equation (4), we can deduce �x from

S0 exp(�xT ) = X: (20)

or, equivalently,

�x =
1

T
ln

�
X

S0

�
: (21)

For an investment in a call option, also relevant is the threshold value of the drift parameter

that allows the expected stock price to match the total investment by the buyer, as measured at the

expiry date of the option. Let us label the drift parameter here as �c: At time 0; the buyer pays

14See, for example, Hull (2009, Chapter 9).
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C0 for the option. If the option is to be exercised at the expiry date, which is time T; the buyer

pays the exercise price X in addition. Thus, the total amount of the investment, as measured at

the expiry date, is C0 exp(rT )+X: The investment is pro�table for the buyer only if ST is greater

than C0 exp(rT ) +X:

Thus, we can deduce the value of �c that bene�ts neither the buyer nor the writer of the call

option by specifying that

E (ST ) = C0 exp(rT ) +X: (22)

Given equation (4), we can write

S0 exp(�cT ) = C0 exp(rT ) +X: (23)

It follows that

�c =
1

T
ln

�
C0 exp(rT ) +X

S0

�
: (24)

For an investment in a put option, the corresponding threshold value of the drift parameter,

labeled as �p; can be determined in an analogous manner. Speci�cally, at time 0; an investor who

buys the put option pays P0 for it. At time T; the expiry date of the option, if the option is to be

exercised, the investor acquires the underlying stock for ST and sells it for X:

The initial investment of P0; as evaluated at time T; is P0 exp(rT ): At time 0; if the option

investment is expected to bene�t neither the buyer nor the writer, the following equality must hold:

P0 exp(rT ) + E(ST ) = X: (25)

Given equation (4) for an explicit expression of E(ST ); we can write

S0 exp(�pT ) = X � P0 exp(rT ); (26)

which leads to

�p =
1

T
ln

�
X � P0 exp(rT )

S0

�
: (27)

3.6 A Comparison of Threshold Values of the Drift Parameter

In view of the analytical expressions in equations (21), (24), and (27), we can establish the following

properties:
(i) �p < �x < �c;

(ii) �p < r < �c;

(iii) �x R r for C0 Q P0:
(28)
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These properties can provide some guidance in setting appropriate values of the drift parame-

ter for simulation exercises. Thus, after deriving each of these properties, we also explore the

corresponding implications.

As ln a (where a is any positive real variable) increases with a; property (i) can be deduced

directly by comparing the expressions in equations (21), (24), and (27). On the day of a call option

investment, if the buyer of the option considers the drift parameter � in the stochastic process of

the underlying stock price movements to be above �c; a pro�t is expected. The expected pro�t

increases with � that is above �c: For the writer of the same option, it is the opposite; an expected

pro�t requires the value of the drift parameter to be below �c: As � decreases from �c to �x; the

writer�s expected pro�t increases. The maximum expected pro�t requires � � �x:
The corresponding implications pertaining to a put option investment are analogous. Speci�-

cally, for the buyer, the drift parameter � must be below �p for an expected pro�t, and the pro�t

increases as � decreases from this threshold value. For the writer, an expected pro�t requires

� > �p; and the maximum expected pro�t requires � � �x: A further implication of property (i)
is that the use of �x for the drift parameter will favour the writer for expecting a pro�t from an

option investment, regardless of whether the investment is in a call option or a put option.

To derive properties (ii) and (iii); we rely on put-call parity repeatedly. When applied to day

0; put-call parity that equation (17) represents can be stated as

C0 exp(rT ) +X = (S0 + P0) exp(rT ): (29)

Thus, equation (24) is equivalent to

�c =
1

T
ln

�
(S0 + P0) exp(rT )

S0

�
= r +

1

T
ln

�
1 +

P0
S0

�
: (30)

With P0 being strictly positive, we must have

1

T
ln

�
1 +

P0
S0

�
> 0 (31)

and, accordingly,

�c > r: (32)

Likewise, with equation (29) written equivalently as

X � P0 exp(rT ) = (S0 � C0) exp(rT ); (33)

12

Spreadsheets in Education (eJSiE), Vol. 5, Iss. 3 [2012], Art. 4

http://epublications.bond.edu.au/ejsie/vol5/iss3/4



equation (27) becomes

�p =
1

T
ln

�
(S0 � C0) exp(rT )

S0

�
= r +

1

T
ln

�
1� C0

S0

�
: (34)

As C0 is strictly positive, we must have

1

T
ln

�
1� C0

S0

�
< 0: (35)

It follows that

�p < r: (36)

Thus, property (ii) is con�rmed.

The implications of property (ii) are essentially the same as those of property (i): The only

exception is that the risk-free interest rate does not correspond to a threshold value for the maximum

expected pro�t to the writer in an option investment. If the value of the drift parameter is set to

equal the risk-free interest rate, as recommended in textbooks, it will favour the writer for expecting

a pro�t. This implication of property (ii) pertains to both call and put options.

To derive property (iii); let us state put-call parity equivalently as

X = (S0 � C0 + P0) exp(rT ): (37)

Combining equations (20) and (37) leads to

S0 exp(�xT ) = (S0 � C0 + P0) exp(rT ); (38)

which can be written as

exp(�xT � rT ) =
S0 � C0 + P0

S0
(39)

and then

�x � r =
1

T
ln

�
1� C0 � P0

S0

�
: (40)

Accordingly, the sign of �x � r is opposite to that of C0 � P0; with �x � r = 0 for C0 � P0 = 0:

Thus, property (iii) is con�rmed.

With equation (37) being equivalent to

C0 � P0 = S0 �X exp(�rT ); (41)

we can state property (iii) alternatively as �x R r for S0 Q X exp(�rT ): That is, the sign

of �x � r is opposite to that of the di¤erence between S0 and the present value of X; which is
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X exp(�rT ): Thus, for the purpose of simulating stock and option price movements to evaluate
an option investment on day 0; if S0 is greater (less) than the present value of X; using r instead

of �x for the drift parameter will produce, on average, simulation results that are relatively more

favourable, from the perspective of the writer of a put (call) option.

3.7 Simulated Daily Stock and Option Price Movements

Although geometric Brownian motion is a stochastic process in continuous time, its implementation

in simulation exercises requires that it be approximated in a discrete time setting. We assume

for now that a day as a proportion of a year is short enough for such an approximation to work

well. The issue as to whether there is any need for using a shorter time interval and, if so, how the

Excel-based simulation exercises as described in the next section can be revised accordingly will be

addressed in Section 5.

To simulate the time paths of daily stock and option prices, from the day of an option investment

to the expiry date of an option, we need an explicit expression of the stock price on each day in

terms of the stock price a day earlier. Such an expression is a recursive version of equation (3).

Speci�cally, if we use t and t +4t; instead of 0 and T > 0; to indicate two successive points in

time, equation (3) can be written as

St+4t = St exp

��
�� �

2

2

�
4t+ ��

p
4t
�
: (42)

Now, let n be the number of days in a year. Here, the number can be based on calendar days

or trading days; however, the latter is more common in practice. The time interval 4t between
two adjacent days is the proportion 1=n of a year. For notational convenience, let St and St+1 be

the stock prices on two adjacent days, for t = 0; 1; 2; : : : ; until the expiry date of the option that

the stock underlies. Provided that � and � are stated in annual terms, we can write equation (42)

as

St+1 = St exp

��
�� �

2

2

�
1

n
+

�p
n
�

�
: (43)

For a given initial price S0 and given constant values of � and �; equation (43) will allow

S1; S2; S3; : : : to be generated. The idea is to use equation (43) recursively, starting from day 0; for

each day, we generate a new random draw of � from the standardized normal distribution for the

equation to simulate the stock price of the next day. These simulated daily stock prices, in turn,

will allow the corresponding call and put option prices, C1; C2; C3; : : : and P1; P2; P3; : : : ; based on

equations (13) and (18), to be computed successively until the expiry date of each option.
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Given the stochastic nature of price movements as characterized by geometric Brownian motion,

each set of simulated time paths of stock and option prices will inevitably di¤er from any other

set as generated repeatedly in simulation runs. From a statistical perspective, we are interested

in knowing what simulated prices can be expected and how widely dispersed are such prices.

Equations (4) and (6) can be used directly to compute the expected stock price and the standard

deviation of stock prices, respectively, on each day until the expiry of the option that the stock

underlies. With t being a day label, we simply substitute T on the right hand side of each of the

two equations with t=n; for t = 1; 2; : : : ; until the expiry date of the option; that is,

E(St) = S0 exp

�
�t

n

�
(44)

and p
V ar(St) = E(St)

s
exp

�
�2t

n

�
� 1: (45)

Suppose that, for some given values of S0; �; and �; we have the results of a set of simulation

runs. On each day t; the sample average of the simulated stock prices and the sample standard

deviation of such prices can easily be computed with Excel. The signs as established for the various

expressions in equations (7)-(11) are useful for expecting how the sample average and the sample

standard deviation vary with t and with one or both of � and �: Further, the threshold value of

T as established in equation (12), with T = t=n; is useful for determining whether a downward

sloping segment in the time path of the sample standard deviations of simulated prices can exist

before the expiry date of an option that the stock underlies.

4 Some Excel-Based Simulation Exercises

Having covered various analytical materials, we now turn our attention to some Excel-based sim-

ulation exercises. The illustrations below, based on four Excel �les accompanying this paper,

are presented in two subsections. The �rst subsection is to illustrate, given available information

on the day of an option investment, how a set of time paths of corresponding stock and option

prices can be simulated. The task requires primarily Excel�s general computational and graphical

tools. The second subsection illustrates how multiple simulation runs can be generated, with the

simulation results organized and displayed. For computational and graphical convenience, VBA

programming in Excel is utilized.
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4.1 Individual Simulation Runs

Figure 1 shows part of an Excel worksheet that illustrates a simulation exercise pertaining to a call

option investment. The shaded cells are for user input. They include B2:B5 for r; S0; X; and C0;

B15 for �; F2:F3 for T; and F23 for �: The value of T; as shown in F5 (=F3/F2), is deduced from

the number of days in a year (in F2) and the number of days to expiry (in F3). Such numbers

can be based on calendar days or trading days. Besides the obvious requirements that none of the

input data, with the exception of �; be negative, the basic option conditions of 0 � C0 � S0 and
C0 � S0 �X exp(�rT ) must also be satis�ed to ensure self-consistency of the input data. Given
that r and X; as well as T on the day of an option investment, are strictly positive and �nite for

simulation runs, these conditions can be restated as 0 < C0 < S0 and C0 > S0�X exp(�rT ); with
the equality signs omitted.

Further guidance for user input is also available. Speci�cally, we show in B7 max[0; S0 �
X exp(�rT )]; the lower bound of C0: For the input data to be self-consistent, C0 must exceed
the computed value in B7. Consistency check of the input data is performed in B8 via the

formula =IF(OR(call>=IPr,call<=IPr-exPr*EXP(-Rf*Time/dC),call<=0),"Fail","Pass"). Here,

�Rf, IPr, exPr, call, dC,� and �Time� are the names assigned to B2, B3, B4, B5, F2, and F3,

respectively. If B5 is the last cell among B2:B5 and F2:F3 for data entry, data validation can

be performed there as well. This can be achieved via Data Validation under Data on the menu

bar. In the Settings tab there, the validation criteria are set for AllowjCustom with the following

Formula:
=AND(CELL("contents")<IPr,CELL("contents")
>IPr-exPr*EXP(-Rf*Time/dC),CELL("contents")>0)

Here, CELL("contents") represents user input for B5. A nice feature of Data Validation is that

any violation of the three conditions � C0 < S0; C0 > S0�X exp(�rT ); and C0 > 0 � will cause

an error message to appear and that the simulation exercise will not proceed until the input data

are properly corrected. In the example as shown in Figure 1, as r = 3%; S0 = $40; X = $38;

T = 160=250 = 0:64; C0 = $4; and max[0; S0 � X exp(�rT )] = $2:72; none of the basic option

conditions are violated.

To compute the implied volatility, we �rst enter an arbitrary initial value of � to B10, named

�StdDev�for computational convenience. Based on this initial value of � and the given values of

S0; X; r; and T; the corresponding C0 is computed, by using equations (13)-(15), and stored in

B13. The di¤erence between (1) the given C0 in B5 and (2) the computed C0 in B13 is computed

in F8. We then use Solver to search for the value of � in �StdDev�that makes the di¤erence equal
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24

25

A B C D E F

Risk free Int Rate 3.00% Number of Days in a Year 250

Initial Stock Price $40.00 Number of Days to Expiry 160

Exercise Price $38.00 (enter up to 500)

Call Price, User Input (1) $4.00 Expiry, in Years 0.64

Call Price, Lower Bound $2.72 Run Solver for Implied Volatility

Consistency Check Pass Difference, (1) (2) $0.00

Implied Volatility 19.46% Choice of Volatility Indicator

d1 0.53059 Implied Volatility 1

d2 0.37489 User Input

Call Price, Computed (2) $4.00

Choice of Drift Indicator

Volatility, User Input 25.00% Expected Price = Exercise 2

d1 0.45247 Expected Profit = 0

d2 0.25247 Risk free Interest Rate

Call Price, Computed $4.63 User Input

Drift

Volatility for Simulation 19.46% Exp. Price = Exercise Price 8.01%

Call Price for Simulation $4.00 Expected Profit = 0 7.91%

Drift for Simulation 7.91% Risk free Interest Rate 3.00%

User Input 5.50%

Stock Price at Expiry $45.13

Profit for Buyer $3.05

Simulation of Stock and Call Option Prices

Implied Volatility

User Input

Expected Price = Exercise Price

Expected Profit = 0

Risk-free Interest Rate

User Input
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y $

d1 d2 Random Day Stock Price Call Price

0.53059 0.37489 0 $40.00 $4.00

0.47808 0.32287 0.2461 1 $39.67 $3.76
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Figure 1   An Excel Example Illustrating the Time Paths of Corresponding Stock 

and Call Option Prices from a Simulation Run

17

Brewer et al.: Geometric Brownian Motion, Option Pricing, and Simulation

Published by ePublications@bond, 2012



to 0: The search result is the implied volatility.15 Alternatively, if the value of � for use in the

simulation exercise is based on user input in B15 instead, the corresponding C0 is stored in B18.

The selections of the volatility parameter and the drift parameter are from choosing items in

two List Boxes. Each box is produced via InsertjControls under the Developer tab on the menu
bar. For the volatility parameter, if the choice is the implied volatility, the indicator in F11 for

the corresponding list box will show a 1; and the values of � and C0 for the simulation exercise

will be from B10 and B13, respectively. Otherwise, with the indicator in F11 showing a 2; the

corresponding values will be from B15 and B18 instead. The values of � and C0 in B20:B21, for

use in the simulation exercise, will depend on which of the two choices is selected. Chosen for

Figure 1 is the implied volatility; that is, user input of the call price in B5 is used.

For the drift parameter, the indicator for the corresponding list box will show in F15 1; 2; 3;

or 4 instead. The four choices of the drift parameter are listed in F20:F23 as indicated, with F23

being from user input. The value of � to be used for the simulation exercise is indicated in B22.

Chosen for Figure 1 is �c; the case of zero expected pro�t for either the buyer or the writer of the

option; it corresponds to a 2 for the indicator in F15.

To simulate the time paths of stock and option prices based on values of r; S0; X; �; C0; and

� in B2:B4 and B20:B22, the corresponding values of d1; d2; S0; and C0 are computed again and

displayed in A39:B39 and E39:F39, with D39 indicating day 0; the day of the option investment.

The simulation results for day 1 are displayed in A40:F40. Speci�cally, by using the Excel function

RAND, C40 generates a random draw from a uniform distribution in the range of 0 to 1: This

random number, when interpreted as a cumulative probability, allows the Excel function NORM-

SINV to generate the corresponding value of �; a random variable from the standardized normal

distribution, in equation (43). For the simulated stock price S1 in E40 according to equation

(43), as t = 1; St�1 is given by S0 in E39, and n is given by F2, under the cell name �dC.� The

corresponding simulated call price C1 in F40 is based on equations (13)-(15), with the special case

of day 1 being the expiry data of the option also accommodated; in such a case, we simply let

C1 = max(0; S1 �X):
As the day label in D40 is based on D39+1, A40:F40 when copied to A40:F540 allows us to

accommodate the expiry of the option for as many as approximately 500 days since day 0: However,

as shown in the representative cell formulas of the Excel worksheet in Figure 1, the use of some

15The numerical search can also be performed with Goal Seek. See, for example, the Macroption website
<http://www.macroption.com/implied-volatility-excel/> for an illustration that uses Goal Seek to search for the
implied volatility. A disadvantage with Goal Seek, however, is that the information for its dialog box has to be
re-entered for each new search. In contrast, Solver retains all previously entered information in the worksheet until
it is cleared or overwritten.
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appropriate IF statements will ensure that the simulated prices always end on the expiry date of

the option. To generate a di¤erent set of random numbers for a new simulation run, all that is

required is to trigger a recalculation, by changing anything or by pressing F9.

For the example in Figure 1, the option expires in 160 days. Although the numerical results

from a simulation run are displayed until row 199 of the Excel worksheet, the part below row 42

is omitted from Figure 1; however, graphical results for the simulated stock and option prices in

D39:F199 are still provided.16 With the Axis Options of the graph set to be �Auto,� instead of

�Fixed,�we are able to accommodate various inputs for B3 and F3.

The simulated stock price at the expiry date of the option, which is displayed in E199 for day 160;

is duplicated in B24. This is achieved by using the Excel function OFFSET; speci�cally, noting that

the value in F3 under the cell name �Time� is 160; we use the formula =OFFSET(E39,Time,0)

in B24 to display the value of E199, which is 160 rows below E39 in the same column. The

corresponding pro�t for the buyer of the option, with a negative value indicating a loss, is shown in

B25. The computation is based on max(0; St�X)�C0 exp(rT ); where St = S160 is the simulated
stock price in B24 and, as of day 0; T = 160=250 is the proportion of a year before the option

expires.

Figure 2 shows part of an Excel worksheet for simulating stock and put price movements with

a di¤erent set of input data, which include r = 3%; S0 = $40; X = $39:50; T = 125=250 = 0:5;

and P0 = $2: Like Figure 1, only the part containing A1:F42 is shown here. The worksheets

accompanying the two �gures are similar. Indeed, to change from equation (13) to equation (18)

requires only minor algebraic adjustments. Further, in view of put-call parity, so does changing

option properties from those of a call option to those of a put option, for the purpose of simulation

exercises.

However, there are some notable di¤erences between the two �gures. Speci�cally, to ensure

self-consistency in user input, the condition of P0 < X exp(�rT ) is shown explicitly in B6 of
Figure 2. In contrast, the corresponding condition of C0 < S0 for a call option is so obvious that a

reminder in B6 for Figure 1 is unnecessary. The cell formula in B8 for consistency check also di¤ers

in the two �gures; in Figure 2, it is =IF(OR(put>=exPr*EXP(-Rf*Time/dC),put<=exPr*EXP(-

Rf*Time/dC)-IPr,put<=0),"Fail","Pass") instead, where �put�is the name assigned to P0 in B5.

In case that B5 is the last cell among B2:B5 and F2:F3 for data entry, the corresponding formula

16See A24:F199 of the Excel worksheet accompanying Figure 1 for the results of a simulation run based on the
current set of input data. Notice that the number of rows as required to display the simulation results depends on
the number of days before the option expires. In general, if the option expires in t days as indicated in F3, the last
row for the display will be row 39+ t: See also G1:O42 in the same Excel worksheet for a complete list of cell names,
as well as some representative cell formulas.
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A B C D E F

Risk free Int Rate 3.00% Number of Days in a Year 250

Initial Stock Price $40.00 Number of Days to Expiry 125

Exercise Price $39.50 (enter up to 500)

Put Price, User Input (1) $2.00 Expiry, in Years 0.5

Put Price, Upper Bound $38.91

Put Price, Lower Bound $0.00 Run Solver for Implied Volatility

Consistency Check Pass Difference, (1) (2) $0.00

Implied Volatility 22.55% Choice of Volatility Indicator

d1 0.25271 Implied Volatility 1

d2 0.09329 User Input

Put Price, Computed (2) $2.00

Choice of Drift Indicator

Volatility, User Input 25.00% Expected Price = Exercise 2

d1 0.24440 Expected Profit = 0

d2 0.06762 Risk free Interest Rate

Put Price, Computed $2.27 User Input

Drift

Volatility for Simulation 22.55% Exp. Price = Exercise Price 2.52%

Put Price for Simulation $2.00 Expected Profit = 0 13.07%

Drift for Simulation 13.07% Risk free Interest Rate 3.00%

User Input 2.00%

Stock Price at Expiry $35.62

Profit for Buyer $1.85

Simulation of Stock and Put Option Prices
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Figure 2   An Excel Example Illustrating the Time Paths of Corresponding Stock 

and Put Option Prices from a Simulation Run
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for data validation of the cell is as follows instead:

=AND(CELL("contents")<exPr*EXP(-Rf*Time/dC),CELL("contents")
>exPr*EXP(-Rf*Time/dC)-IPr,CELL("contents")>0)

The additional cell names here are the same as those in Figure 1. The cell formula for F21 in

Figure 2 � the case of a zero expected pro�t for either the buyer or the writer of a put option � is

based on equation (27), rather than equation (24) for the corresponding cell in Figure 1. Further,

the simulated pro�t for the buyer in B25 is based on max(0; X � St)� P0 exp(rT ) instead.17

4.2 Multiple Simulation Runs

As the Excel �les underlying Figures 1 and 2 are intended to be for illustrating one simulation run

at a time, they are inconvenient for statistical purposes. To explore statistical properties of the

simulation results, many repeated simulation runs are required. The Excel �les, on which Figures

3 and 4 are based, utilize VBA to generate and organize multiple sets of simulated time paths of

stock and option prices. The VBA code in each �le can be accessed via Visual Basic under the

Developer tab. Figure 3, which uses the same input data from Figure 1, is considered �rst.

The block A1:E23 in Figure 3 is essentially the same as A1:F23 in Figure 1. The only notable

di¤erence is the presence of a button at D6:D7 in Figure 3; pressing it will activate the part of the

VBA code for �nding the implied volatility with Excel�s Goal Seek. Instead of responding to a

dialog box each time Goal Seek is used, a three-line subroutine (or, simply, sub) in VBA � with

Range("D8").GoalSeek Goal:=0, ChangingCell:=Range("B10") to search for the value in B10 that

makes D8 equal to 0 � will allow the implied volatility in B10 to be determined.

The shaded cell G2 is for user input of the number of simulation runs. In Figure 3, the number

is set at 2; 000: Pressing the button at F3:G4 will allow the simulation to commence. As in Figure

1, the simulation exercise is based on the use of the implied volatility, with the value of the drift

parameter being �c; corresponding to a zero expected pro�t for the buyer and the writer.

Some selected simulation results for the expiry date of the option are summarized in G9:H16.

Speci�cally, G9 shows the expected stock price, E(St) = $42:08; based on equation (44) for S0 = $40

(�IPr� in B3), � = 7:91% (in E21), n = 250 days (in D2), and t = 160 days (in D3). The mean,

the median, the maximum, and the minimum of the 2; 000 simulated values of St are displayed in

G10:G13. The pro�t for the buyer, as measured on the expiry date of the option, is the di¤erence

of (1) the maximum of 0 and St � X and (2) C0 exp(rt=n); with a negative value indicating a

loss. The mean, the median, the maximum, and the minimum of the 2; 000 simulated pro�ts are
17See the worksheet accompanying Figure 2 for all cell names and representative cell formulas in G1:O42, as well

as the results from a simulation run in A24:F164.

21

Brewer et al.: Geometric Brownian Motion, Option Pricing, and Simulation

Published by ePublications@bond, 2012



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

A B C D E F G H

Risk free Int Rate 3.00% Days in a Year 250 2000

Initial Stock Price $40.00 Days to Expiry 160

Exercise Price $38.00 (enter up to 500)

Call Price, User Input (1) $4.00 Expiry, in Years 0.64

Call Price, Lower Bound $2.72 Find Implied Volatility Stock Price Call Profit

Consistency Check Pass Difference, (1) (2) $0.00 (Exp Date) (for Buyer)

Expected $42.08

Implied Volatility 19.47% Choice of Volatility Indicator Mean $42.11 $0.98

d1 0.53047 Implied Volatility 1 Median $41.60 $0.48

d2 0.37472 User Input Max $71.08 $29.00

Call Price, Computed (2) $4.00 Min $26.19 $4.08

Choice of Drift Indicator

Volatility, User Input 25.00% Expected Price = Exercise Price 2 Exercised 1454 72.70%

d1 0.45247 Expected Profit = 0 Profitable 937 46.85%

d2 0.25247 Risk free Interest Rate (for buyer)

Call Price, Computed $4.63 User Input

Drift

Volatility for Simulation 19.47% Exp. Price = Exercise Price 8.01%

Call Price for Simulation $4.00 Expected Profit = 0 7.91%

Drift for Simulation 7.91% Risk free Interest Rate 3.00%

User Input 5.50%

Simulation of Stock and Call Option Prices
Simulation Runs

$70 00

$80.00

Run the simulation

Find

Implied Volatility

User Input

Expected Price = Exercise Price

Expected Profit = 0

Risk-free Interest Rate

User Input

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

12

25

500Sorted Run Number

$0.00

$10.00

$20.00

$30.00

$40.00

$50.00

$60.00

$70.00

0 20 40 60 80 100 120 140 160

S
to
ck

a
n
d
O
p
ti
o
n
P
ri
ce
s

Days

Stock Price

Call Price

Figure 3   An Excel Example Illustrating the Time Paths of Corresponding Stock 

and Call Option Prices and a Summary of Various Simulation Results
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Figure 3   An Excel Example Illustrating the Time Paths of Corresponding Stock 

and Call Option Prices and a Summary of Various Simulation Results (Continued)
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displayed in H10:H13. Out of the 2; 000 simulation runs, the number of cases where the option is

exercised and the number of pro�table cases are shown in G15:G16. The corresponding numbers

in percentage terms are provided in H15:H16 as well.

The simulated daily stock and option prices over the remaining life of the option, as of day 0;

are stored in two separate worksheets. For graphical convenience, the time paths of these prices

are sorted in a descending order of the simulated stock prices on the expiry date of the option, with

each row of a worksheet storing a simulated time path.18 A scroll bar is provided in the vicinity of

A48:G49, with the selected value from it stored in H50, named �RunDisplayed�for programming

and graphical convenience. In Figure 3, with the selected value being 500; the corresponding

stock and option prices � the 500-th pair of sorted prices � over the 160 days since the option

investment on day 0 are shown graphically.19 Given the way the prices are sorted, the lower the

number selected for H50, the greater will be the upward price movements over time in the graphical

display.

The second graph in Figure 3 shows the simulated pro�t for the buyer versus the sorted run

number. This graph complements the numerical results in G9:H16. The horizontal part of the

graph captures all cases where St � X on the expiry date of the option; in such cases, the option

will not be exercised. This graph illustrates that, from the perspective of the buyer, while the

downside risk of an option investment is always limited, its upside potential is great.

The third graph in Figure 3 compares the expected price and the average of the simulated prices

of the underlying stock over the remaining life of the call option. The fourth graph compares instead

the corresponding expected and simulated standard deviations of such prices. The expected values

for each of the 160 days are based on equations (44) and (45). These values are compared against

the corresponding average and standard deviation based on the 2; 000 simulated stock prices each

day.

It is the nature of simulation that repeating a set of simulation runs seldom yields the same set

of results. However, if the number of runs is adequately high, the di¤erences in the results among

various sets of runs will not be substantial. According to the graphical results in Figure 3, as

18To make the Excel �les accompanying this paper accessible to more readers, each is saved as a 1997-2003 version.
The maximum number of columns in a worksheet in such a version, which is only 256; does limit what can be entered
to D3, the cell for the number of days until expiry. Readers who use Excel 2007 or 2010 can extend the column limit
to 16; 384 by saving the corresponding �le as a macro-enabled version.
19For VBA programming convenience, the simulated stock and option prices are sorted separately. To avoid any

mismatch of the sorted prices, the sorting of option prices is based on the di¤erence between the stock price on the
expiry date and the exercise price, rather than the greater between zero and such a di¤erence. The exercise price
being a constant, both stock and option prices can be viewed as being sorted according to the stock price on the
expiry date. As the unsorted stock and option prices are stored in the same order as they are generated, the sorting
in Excel will not alter their relative positions in case of a tie.
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well as those based on di¤erent sets of input data and 500 or more simulation runs, the average of

simulated stock prices and standard deviations of such prices are seldom far from the corresponding

expected values. Further, the signs of the various expressions in equations (7)-(11) are found to

hold. With values of � being positive, the corresponding time paths of standard deviations of

simulated stock prices are upward sloping, as expected.

Figure 4, which shows the simulation results for an investment in a put option, is based on the

same set of input data as in Figure 2. The part of Figure 4 that duplicates the corresponding part

in Figure 2 requires no further descriptions. The Excel �les corresponding to Figures 3 and 4 are

so similar that only a brief mention of the latter is adequate.

Like Figure 3, Figure 4 shows a set of four graphs. The �rst graph displays the simulated time

paths of stock and put prices for sorted run number 1; 500; out of a total of 2; 000 runs. Given the

way simulated prices are sorted, with the highest stock price on the expiry date of the put option

treated as that from run number 1; the time path of simulated stock prices in run number 1; 500

shows a small downward trend. Accordingly, the trend in the put prices is slightly upward. The

second graph � a graph of the pro�t for the buyer versus the sorted run number � has a shape

that is opposite to that in Figure 3. That is, the horizontal part of the second graph in Figure

4 corresponds to low sorted run numbers. As the value of the drift parameter for the simulation

runs is negative, both expected and average simulated stock prices as shown in the third graph in

Figure 4 are downward sloping. Provided that there are 500 or more simulation runs, the expected

and average simulated stock prices tend to match quite well. So do the expected and simulated

standard deviations of stock prices in the fourth graph.

Notice that, in the fourth graph,
p
V ar(St) always increases with t between day 0 and day 125;

the expiry date of the option, although the value of the drift parameter used in the simulation runs

is negative, with 2� + �2 = �21:06%: Thus, provided that � and � remain constant over time,p
V ar(St) will eventually decrease with increasing t beyond a certain date in the future. According

to equation (12), the threshold value of T for @
p
V ar(St)

.
@T to become negative is T � = 4:254

years or about 1; 064 trading days.20

5 Suggestions for Further Simulation Exercises

The simulation exercises as described in Section 4 can be re�ned and extended in various ways.

In this section, we o¤ers some suggestions that are suitable for use in student projects in �nancial
20The analytical materials in Subsection 3.1, which connect E(ST ) and V ar(ST ) to their underlying parameters,

can also be examined numerically via the same simulation exercises as illustrated in Figures 3 and 4. These exercises
will enhance students�understanding of such analytical materials.
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Figure 4   An Excel Example Illustrating the Time Paths of Corresponding Stock 

and Put Option Prices and a Summary of Various Simulation Results
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Figure 4   An Excel Example Illustrating the Time Paths of Corresponding Stock 
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modeling courses, as well as investment courses that cover the Black-Scholes option pricing model

in some detail. Although students in the latter courses may not be familiar with VBA coding,

they can still use the same Excel �les accompanying the four �gures of this paper to explore various

relevant investment issues.

5.1 An Implication of Geometric Brownian Motion: Lognormally Distributed
Stock Prices

One of the implications of geometric Brownian motion for characterizing the stochastic process of

stock price movements is that stock prices are lognormally distributed. That is, the logarithmic

stock prices are normally distributed. The exercise as suggested below is based on such an im-

plication. The idea of the exercise is to examine the distributions of the simulated stock prices

for various combinations of the values of the two parameters in geometric Brownian motion, as

observed on some selected days between day 0 and the expiry date of the option that the stock

underlies.

In the simulation exercises as illustrated in Figures 3 and 4, each set of simulated stock prices

is stored in a worksheet for graphical convenience. The simulated time path of stock prices in the

�rst graph of each �gure is for the sorted run number in H50 as speci�ed by the user via a scroll

bar. The same idea can also be used to select all simulated stock prices for any speci�ed day.

In the Excel �le accompanying Figure 3, the 2; 000 sets of simulated stock prices over 160

days are stored in a block of cells covering 2; 000 rows and 160 columns of a worksheet. Just

like retrieving the prices in the 500-th row, as speci�ed by the sorted run number 500 in H50, for

generating the �rst graph of Figure 3, we can also retrieve the prices in any speci�ed column of the

same block for an exercise to examine the price distribution for the corresponding day. Guided

by the idea of the VBA code for Figure 3, students in �nancial modeling courses are expected

to be able to perform such a task. For students in investment courses who are unfamiliar with

VBA coding, the simulated stock prices on any given day can still be retrieved manually from the

simulation results. As Excel can graph distributions in the form of histograms, to examine how

simulated stock prices are distributed is not an onerous task. Further, as normality tests are well

established, statistical statements pertaining to the goodness of �t can also be made.

To illustrate, suppose that the simulated stock prices for a given day have been retrieved and

transformed logarithmically. The range of values of the transformed prices can be used to produce

a number of bins to place them, so that a histogram can be drawn. The histogram feature

in Excel is accessible via Data Analysis under the Data tab. Alternatively, the Excel function
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FREQUENCY, which is more versatile for the same task, can be used instead. The histogram as

produced either way, when displayed along with a normal distribution (based on the mean and the

standard deviation of the transformed prices), will reveal how well the transformed prices follow a

normal distribution.

A well-known statistical test for the goodness of �t, which can easily be implemented in Excel

as a normality test, is a chi-square test. The test statistic is

�2 =
Xk

i=1

(oi � ei)2

ei
; (46)

where k is the number of bins, oi is the observed frequency in bin i; and ei is the expected frequency

in bin i according to a speci�c distribution. The test statistic follows approximately a chi-square

distribution with k�h� 1 degrees of freedom, where h is the number of parameters characterizing
the distribution in question. In the case of a normal distribution, which is characterized by its

mean and standard deviation, as h = 2; we have k � 3 degrees of freedom for the chi-square test.

The Excel function CHIDIST can be used directly to provide the p-value of the test statistic.21

5.2 Simulation in Discrete Time Based on a Stochastic Process in Continuous
Time

As a stochastic process, geometric Brownian motion is intended to be for a continuous time setting.

When this stochastic process is applied to simulation exercises involving daily stock and option

prices, as is done in this paper, an implicit assumption is that it can work well for such a discrete

time setting. From a pedagogic perspective, therefore, a relevant issue is whether a day is short

enough to approximate an instantaneous time interval well. If so, also of pedagogic relevance is

whether a longer time interval, such as a week, a month, or a quarter of a year, can still be short

enough for the corresponding simulation results to be meaningful. Otherwise, of interest is how

short a time interval, in terms of a proportion of a day, is required for a discrete time approximation

of a continuous time stochastic process to work adequately.

In the Excel �les accompanying Figures 3 and 4, the two cells in D2:D3 are for user input of the

number of days in a year and the number of days for an option to expire. However, they need not

be measured in days. If we divide a year into 52; 12; or 4 equal time intervals instead and enter

the corresponding number to D2, the expiry of the option in D3 (which must be an integer) will

be measured in weeks, months, or quarters. Alternatively, if we divide a year into progressively

greater numbers of equal time intervals, such as multiples of 250 (365) and replace the numbers in

21See, for example, Anderson, Sweeney, and Williams (2008, Chapter 12) for a description of the chi-square test
and Black and Eldredge (2001, Chapter 11) for an Excel illustration.
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D2:D3 with such multiples, each time interval can be interpreted as a proportion of a trading day

(calendar day).

For example, instead of entering n and t to D2:D3 of either Excel worksheet that utilizes

VBA, such as 250 and 160 in Figure 3, we can enter mn and mt there, with m = 1; 2; 3; : : : ; for

successive sets of simulation runs. If m = 2; each interval represents one half of a day; if m = 3;

it is one-third of a day instead. A similar idea applies to higher values of m: Regardless of m;

T = mt=(mn) = t=n; which is the proportion of a year before the option expires as of day 0; remains

the same.

With a year divided into di¤erent sets of equal time intervals, ranging from a quarter of a

year to progressively shorter intervals, we can use a common set of input data to compare the

corresponding simulation results. For each set of input data, T is based on a common ratio of the

integers in D3 and D2. As these simulation runs are based on a common set of input data and the

same choice of the values of the two parameters in geometric Brownian motion, improvements in

the simulation results for shortening the time intervals involved, if any, will be noticeable.

In the case of an investment in a call (put) option, if the value of the drift parameter for

simulation runs is based on �c (�p); the benchmark for assessing the adequacy of the corresponding

simulation runs is 50% for H16 in Figure 3 (Figure 4). Likewise, if the value of the drift parameter is

based on �x; the benchmark is 50% for H15 instead. For more in-depth examination, distributions

of the simulated stock prices on some selected dates, including the expiry date of the option, can be

utilized as well. As indicated in the previous subsection, geometric Brownian motion implies that

stock prices are lognormally distributed. It will be a good exercise for students to explore, with

di¤erent sets of input data, how the simulated stock prices can match the theoretical distributions,

as a year is divided into progressively shorter equal time intervals.

It is true that dividing a year into smaller time intervals always provides better approximations

of a continuous time setting with a discrete time setting. However, any increases in the numbers

in D2:D3, when combined with a high number of simulation runs, will inevitably increase both the

computer time to perform the task and the storage space for the individual simulation results. The

exercises as suggested above will help in establishing a practical trade-o¤ between computational

e¢ ciency and adequacy of the simulation runs involved.

5.3 Combinations of Call and Put Options

There are various other option-based simulation exercises that are also suitable for pedagogic pur-

poses. The idea is that an option investment need not be con�ned to a call option or a put option
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alone. Investment strategies involving combinations of di¤erent options can also be assessed via

simulation exercises. For example, a combination of a call option and a put option on a stock,

with the same expiry date and the same exercise price, is called a straddle. A large increase or

decrease in the underlying stock price is bene�cial to the buyer of a straddle. In contrast, it is a

stable stock price that ensures the writer�s pro�t.

In simulation exercises involving a straddle, the threshold value �x of the drift parameter can

still be deduced from equating the expected stock price E(ST ) and the exercise price X: That

is, equation (21) still holds. However, instead of using the same threshold values, �c and �p; as

established in equations (24) and (27), respectively, we must revise them to account for an increase

in the investment cost for the buyer on day 0:

Speci�cally, for a revised �c; we start with

E(ST ) = (C0 + P0) exp(rT ) +X; (47)

where E(ST ) is given by equation (4). This is the situation where exercising the call option by the

buyer of the straddle provides no expected pro�t for either side of the option investment. Instead

of equation (24), we now have

�c =
1

T
ln

�
(C0 + P0) exp(rT ) +X

S0

�
: (48)

The threshold value here is higher than that in equation (24) because of an increased investment

cost for the buyer on day 0:

Likewise, for a revised �p; we start with

(C0 + P0) exp(rT ) + E(ST ) = X; (49)

which corresponds to the situation where no pro�t is expected for either side if the put option is

exercised. Equation (27) now becomes

�p =
1

T
ln

�
X � (C0 + P0) exp(rT )

S0

�
: (50)

Accounting for an increased investment cost to the buyer, the threshold value here is lower than

that in equation (27).

The above approach for deducing threshold values of the drift parameter, which is based on a

zero expected pro�t, will also work well for many other option strategies. For example, a strap

di¤ers from a straddle in that it is a portfolio of two call options and a put option. A strip is

the opposite; it is a portfolio of a call option and two put options. Option strategies such as a
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butter�y and its variants involve portfolios of call options with di¤erent exercise prices. In contrast,

a strangle and its variants require the use of put and call options with di¤erent exercise prices.

The presence of more than one exercise price for one type of options will inevitably increase the

number of threshold values of the drift parameter. However, from a computational standpoint, the

change from simulating prices of an option to that of a portfolio of options is a simple extension.

Simulation exercises involving various option strategies will enhance students� understanding of

geometric Brown motion as a stochastic process and simulation in Excel as a practical numerical

tool.

To implement a simulation exercise based on any of the option strategies above, students in

investment courses who are unfamiliar with VBA coding can still follow the same idea in the Excel

�les accompanying Figures 1 and 2. Although the simulation can only be performed with one

run at a time, the graphical and numerical results from repeated simulation runs will still be able

to provide useful information to assess the strategy involved. For students in �nancial modeling

courses where VBA coding is part of the course elements, to revise the Excel �les accompanying

Figures 3 and 4, for assessing the pro�tability of any of the above-mentioned option strategies via

a simulation exercise, is a manageable task.

6 Concluding Remarks

This paper has presented some simulation exercises that are suitable for use not only in Excel-based

�nancial modeling courses, but also in some investment courses. Such exercises are intended to

help students gain some hands-on experience in working with geometric Brownian motion and the

well-known Black-Scholes formula, as well as the concept of put-call parity. Being the simplest

stochastic process that underlies the derivation of the Black-Scholes model for option pricing,

geometric Brownian motion is important from a pedagogic perspective.

The approach of this paper di¤ers from that in typical �nancial modeling courses because of

its emphasis on the analytical underpinning of the materials involved. It is true that, given the

technical nature of such courses, a recipe-based approach still works very well for great many �nance

topics. However, a recipe-based approach, when applied to simulation exercises for assessing the

pro�tability of an option investment, does not always work well. A problem is the lack of adequate

textbook guidance in assigning appropriate values of the drift parameter for use in simulation runs.

In spite of the fact that the choice of the value of the drift parameter does depend on the

subjective view of the investor involved, the choice should not be entirely arbitrary and unguided.

As explained in this paper, neither should it simply be set equal to the risk-free interest rate, which
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tends to favour the writer when simulating the pro�tability of an option investment. Using the

idea that a rational individual never willingly chooses to invest for an expected loss, as well as

various other ideas, this paper has provided some guidance in setting appropriate values of the

drift parameter for simulation runs.

To understand a stochastic process of price movements properly will require students to have

knowledge in stochastic calculus and advanced statistics. As such topics are beyond the scope

of the standard �nance curriculum, such requirements have given us challenges as instructors of

�nance courses at various academic levels. It is hope that the Excel-based simulation exercises in

this pedagogic paper, as supported by the underlying analytical materials and further Excel-based

exercises, can help students reduce the conceptual burden in learning stochastic processes.
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Appendix A: Derivations of Various Analytical Expressions Based
on Geometric Brownian Motion

Equation (1) in the main text can be viewed as the description of an Itō process,

dS = a(S; t)dt+ b(S; t)dz; (A1)

where a(S; t) and b(S; t) are functions of S and t: Speci�cally, these two functions are a(S; t) = �S

and b(S; t) = �S: According to Itō�s lemma, we have, for any twice di¤erentiable function G(S; t)

of S and t;

dG =

�
@G

@S
a+

@G

@t
+
1

2

@2G

@S2
b2
�
dt+

@G

@S
bdz: (A2)

Here, for notational simplicity, the arguments of the functions a(S; t) and b(S; t) are not displayed.

An informal derivation of Itō�s lemma, which can be found in options textbooks, is as follows:22

The derivation starts with Taylor�s expansion of G(S; t); which gives

4G = @G

@S
4S + @G

@t
4t+ 1

2

@2G

@S2
(4S)2 + @2G

@S@t
4S4t+ 1

2

@2G

@t2
(4t)2 + � � � ; (A3)

where 4G; 4S; and 4t represent incremental changes of the corresponding variables. The idea

here is to express 4S in terms of 4t and, as 4t approaches zero, to ignore all terms of higher order
in 4t: To implement such an idea, recall that z follows a Wiener process, under which dz = �

p
dt:

Then, it follows from equation (A1) that

4S = a4t+ b�
p
4t (A4)

and

(4S)2 = b2�24t+ 2ab�(4t)3=2 + a2(4t)2: (A5)

22See, for example, Hull (2009, Chapter 12, Appendix).
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The second and third terms on the right hand side of equation (A5), as compared to the �rst term

there, are of higher order in4t: Thus, their magnitudes attenuate at faster rates, as4t approaches
zero.

We can deduce from E(�) = 0 and V ar(�) = Ef[�� E(�)]2g = 1 that E(�2) = 1: Accordingly,
the expected value of b2�24t is b24t; and its variance is of order (4t)2: The term 2ab�(4t)3=2 has
a zero mean and a variance of 4a2b2(4t)3; which is trivially small as 4t approaches zero. Then,

as 4t approaches zero, (4S)2 approaches b24t; which is non-stochastic; that is, we can write
(dS)2 = b2dt: As all terms beyond the �rst three terms in Taylor�s expansion of 4G in equation

(A3) are of higher order in 4t; letting t approach zero will directly lead to Itō�s lemma, as shown
in equation (A2).

Now, let G = lnS: As @G=@S = 1=S; @2G=@S2 = �1=S2; and @G=@t = 0; equation (A2)

becomes

dG =

��
1

S

�
a+ 0 +

1

2

�
� 1

S2

��
b2
��
dt+

�
1

S

�
bdz =

�
�� �

2

2

�
dt+ �dz: (A6)

We can write equation (A6) more explicitly as equation (2) in the main text.

Let us attach a time subscript to each variable in equation (2) and consider time 0 and time

T > 0: From Z T

t=0
d lnSt =

Z T

t=0

�
�� �

2

2

�
dt+

Z T

t=0
�dzt; (A7)

we have

lnST � lnS0 =
�
�� �

2

2

�
T + �(zT � z0): (A8)

With z following a Wiener process, we can write

zT � z0 = �
p
T ; (A9)

Further, as lnST � lnS0 = ln(ST =S0); equation (A8) becomes equation (3) in the main text.
Given the standardized normal distribution of �; we have

1p
2�

Z 1

�=�1
exp

�
��

2

2

�
d� = 1 (A10)

and

E
h
exp

�
��
p
T
�i

=
1p
2�

Z 1

�=�1
exp

�
��
p
T
�
exp

�
��

2

2

�
d�

= exp

�
�2T

2

�
� 1p
2�

Z 1

�=�1
exp

264�
�
�� �

p
T
�2

2

375 d�: (A11)
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The entire term that is multiplied to exp
�
�2T=2

�
in equation (A11) is 1; as it represents the area

under a normal distribution curve with mean being �
p
T and variance being 1: With

E
h
exp

�
��
p
T
�i
= exp

�
�2T

2

�
(A12)

and

E(ST ) = S0 exp

��
�� �

2

2

�
T

�
E
h
exp

�
��
p
T
�i
; (A13)

equation (4) in the main text follows directly.

The derivation of V ar(ST ) is analogous. Likewise, we start with

E
h
exp

�
2��

p
T
�i

=
1p
2�

Z 1

�=�1
exp

�
2��

p
T
�
exp

�
��

2

2

�
d�

= exp
�
2�2T

�
� 1p
2�

Z 1

�=�1
exp

264�
�
�� 2�

p
T
�2

2

375 d�; (A14)

which leads to

E
h
exp

�
2��

p
T
�i
= exp

�
2�2T

�
: (A15)

As

V ar(ST ) = E(S
2
T )� [E(ST )]2; (A16)

E(S2T ) = S
2
0 exp

��
2�� �2

�
T
�
E
h
exp

�
2��

p
T
�i
= S20 exp

��
2�+ �2

�
T
�
; (A17)

and

[E(ST )]
2 = S20 exp(2�T ); (A18)

equation (5) in the main text follows directly.

Equations (4) and (5) can also be deduced directly via the de�nition of a lognormal distribution

and its basic properties. Speci�cally, if a random variable Y is normally distributed with expected

value �� and variance (��)2; the distribution of exp(Y ) is lognormal by de�nition. The expected

value and the variance of exp(Y ) are exp
�
�� + (��)2=2

�
and exp

�
2�� + (��)2

� �
exp

�
(��)2

�
� 1

	
;

respectively. With lnST being normally distributed according to equations (A8) and (A9), the

expected value and the variance of the distribution are �� = lnS0 + (�� �2=2)T and (��)2 = �2T;
respectively. Letting Y = lnST ; we have exp(Y ) = ST : Once �� and �� are expressed in terms of

�; �; and T; equations (4) and (5) will follow directly.23

23These two equations can also be found on the Wikipedia website <http://en.wikipedia.org/wiki/Geometric_Brownian
_motion>.
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