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Partitions of integers, Ferrers-Young diagrams, and representational
efficacy of spreadsheet modeling

Abstract
This article shows how concrete materials can be used in the context of partitions of integers to develop
recursive definitions of concepts amenable to spreadsheet modeling. It demonstrates how numerical evidence
made possible by the representational power of a spreadsheet when combined with other computational tools
such as Maple allows for the conjecturing of rather sophisticated relationships among different types of integer
partitions. A spreadsheet is then used to confirm these relations in special cases yet at a higher cognitive level
than at the beginning of partitioning experiments. Finally, concrete materials are used again to demonstrate
the correctness of computations. It is argued that whereas a spreadsheet is powerful enough to be used as a
single computational tool in various mathematical contexts, its joint use with other tools, both digital and
physical, is worth exploring in education.
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Abstract 

 

This article shows how concrete materials can be used in the 

context of partitions of integers to develop recursive 

definitions of concepts amenable to spreadsheet modeling. It 

demonstrates how numerical evidence made possible by the 

representational power of a spreadsheet when combined 

with other computational tools such as Maple allows for the 

conjecturing of rather sophisticated relationships among 

different types of integer partitions. A spreadsheet is then 

used to confirm these relations in special cases yet at a 

higher cognitive level than at the beginning of partitioning 

experiments. Finally, concrete materials are used again to 

demonstrate the correctness of computations. It is argued 

that whereas a spreadsheet is powerful enough to be used as 

a single computational tool in various mathematical 

contexts, its joint use with other tools, both digital and 

physical, is worth exploring in education. 

 

Key words: partition of integers, manipulative, experiential learning, Ferrers-

Young diagram, Pascal’s triangle, difference equation, spreadsheet modeling.  
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1 Introduction 
This article is an extended reflection on the author’s paper presented at a 

mathematics teaching conference [1] and work with prospective elementary 

teachers enrolled in master’s level elementary mathematics methods and content 

courses.  One of the didactic foci of both the paper and the courses is the use of 

manipulative materials and visualization techniques in the development of 

abstract yet grade-appropriate mathematical concepts. One such concept the 

importance of which was first recognized at the end of the 18th century by Euler 

[11], concerns partition of positive integers into like summands. In today’s 

classroom, using either physical or virtual manipulative, partitioning problems 

can be introduced even before the study of arithmetic, providing young learners 

of mathematics with understanding the multiplicity of answers in the tasks that 

involve counting numbers, informal learning to reason recursively in resolving 

quantitative queries, experience in recognizing different conditions under which 

counting problems can be formulated, and appreciating the innate complexity of 

the problems and their natural extensions already within a seemingly mundane 

context. 

 

The material presented in this article, as its title suggests, goes beyond the pre-

operational mathematics classroom with its only developmentally appropriate 

focus on hands-on explorations of quantitative situations that can be later 

evolved into abstract symbolic representations in other parts of vast K-12 

mathematics curricula. Following the viewpoint, “What students can learn at any 

particular grade level depends upon what they have learned before” [8, p5], the 

article uses an elementary context to motivate more and more advanced 

discourse made possible by the use of technology. By the same token, the top to 

bottom approach to mathematics curricula [6] enables certain elements of higher 

concepts to be introduced at a lower level, using technology as appropriate. In 

particular, this article demonstrates how an electronic spreadsheet—a 

remarkable piece of digital technology used in many areas of education [7]—can 

complement the use of non-digital technological tools and how the latter type of 

a learning environment can be put to work to inform activities using the former 

setting. More specifically, the goal of this article is to use the context of partition 

of integers to demonstrate a possible learning trajectory spanning from visual 

and hands-on (experiential) activities to symbolic to computational ones and 

then back to symbolic and/or experiential discourse yet at a higher cognitive 

level.   
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The intended readership of the teaching ideas that follow includes K-12 teachers 

of mathematics (both prospective and practicing), mathematics educators 

interested in integrating hands-on activities and computers in the teaching of 

mathematics, and mathematicians who teach prospective teachers and 

undergraduate mathematics majors by connecting K-12 and university 

mathematics. The author’s experience presenting a number of these ideas at the 

conference indicates that there are quite a few individuals teaching at the 

elementary level who are capable of not only capturing the essence of rather 

advanced mathematical concepts but better still, can use knowledge gathered 

through professional development of various kind to help their students build 

stronger foundations for further learning. By the same token, the material of this 

article can be of help to those teaching beyond the primary grades by offering 

means to appreciate how abstract mathematics structures originate in the 

physical world around us and therefore, in many cases, mathematical formalism, 

which often scares students away from learning, is just an extended reflection on 

this world. 

 

The article begins with a few problems (tasks) the (hands-on) solution of which, 

to a certain extent, does not require any mathematical knowledge but common 

sense and counting skills. Two of these solutions are then confirmed by 

spreadsheet modeling for which quite involved algebraic techniques are utilized. 

This transition from the iconic representation to the symbolic one made possible 

by the use of mathematical formalism demonstrates the power of mathematical 

concepts in computing applications. Even if those concepts are beyond one’s 

immediate mastery, the appreciation of the utility of conceptualization and the 

need for abstraction and generalization when teaching a machine to perform 

calculations greatly enhances his or her mathematical experience. Next, a 

modification of the hands-on solutions is used in developing recursive 

definitions of several classic concepts of combinatorial mathematics to be 

modeled within a spreadsheet. Observing the results of modeling leads to 

establishing connections among different concepts and developing abstract 

relations that can be verified experimentally. In that way, a hands-on experiment 

is situated both at the beginning and the end of spreadsheet-based activities. The 

concept map [14] of this approach is shown at the conclusion of the article in 

Figure 17. 
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2 Partition of integers into
A partition of a positive integer 

integers. There may be different conditions under which such representations are 

created. Consider a few tasks

out of blocks—a typical 

recommended for a junior elementary classroom

teachers enrolled in mathematics 

 

Task 1. Find all ways to build towers out of four blocks and then 

different orders. 

Figure 1. Eight towers 

Solution. As shown in both an iconic (Figure 1) and symbolic 4 = 1 + 1 + 1 + 1 = 1 

+ 1 + 2 = 1 + 2 +1 = 2 + 1 + 1 = 2 + 2  = 1 + 3 = 3 + 1 = 4

build towers out of four blocks and arrange them in different orders.

 

Task 2. Find all ways to build towers out of four blocks and arrange them in a 

non-decreasing order. 

Figure 2. Five towers 

Solution. As shown in both an iconic (Figure 2) and symbolic 

of integers into summands 
on of a positive integer n is a representation of n as a sum of positive 

integers. There may be different conditions under which such representations are 

tasks formulated in the context of constructing towers 

a typical standards-based mathematical practice 

for a junior elementary classroom [8], [12] and that of their future 

enrolled in mathematics methods and content courses [9], [2]

Find all ways to build towers out of four blocks and then arrange

Figure 1. Eight towers built out of four blocks. 

As shown in both an iconic (Figure 1) and symbolic 4 = 1 + 1 + 1 + 1 = 1 

+ 1 + 2 = 1 + 2 +1 = 2 + 1 + 1 = 2 + 2  = 1 + 3 = 3 + 1 = 4 forms, there are eight ways to 

build towers out of four blocks and arrange them in different orders. 

s to build towers out of four blocks and arrange them in a 

Figure 2. Five towers built out of four blocks. 

As shown in both an iconic (Figure 2) and symbolic  

as a sum of positive 

integers. There may be different conditions under which such representations are 

formulated in the context of constructing towers 

based mathematical practice setting 

and that of their future 

[9], [2].  

arrange them in 

 

As shown in both an iconic (Figure 1) and symbolic 4 = 1 + 1 + 1 + 1 = 1 

forms, there are eight ways to 

 

s to build towers out of four blocks and arrange them in a 
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4 = 1 + 1 + 1 + 1 = 1 + 1 + 2 = 2 + 2  = 1 + 3 = 4

towers out of four blocks and arrange them in a non

 

Task 3. Find all ways to build 

in a non-decreasing order.

Figure 3. Partition of eleven into three parts 

Solution. Figure 3 shows that three towers can be constructed out of eleven 

blocks in ten ways. Note that the towers are constructed through a system which 

is reflected in the following 

11 = 1 + 1 + 9 = 1 + 2 + 8 = 1 + 3 + 7 = 1 + 4 + 6 = 1 + 5 + 5 = 2 + 2 + 7 = 2 + 3 + 6 

= 2 

where the first unit is combined with all representations of ten as a sum of two 

positive integers;  then 

representations of nine as a sum of two positive integers excluding the unit; then 

the number three, used first, 

sum of two positive integers excluding integers smaller than three. T

partitions of eleven can also 

Figure 4 (the programing of which is discussed in section 3 below) 

includes the partitioning number, 

partitions, 10; and the triple of cells (

partition, 11 = 1 + 3 + 7.

classroom as a tool for verifying the completeness of the activity with blocks 

because it may not be based on a sys

4 = 1 + 1 + 1 + 1 = 1 + 1 + 2 = 2 + 2  = 1 + 3 = 4 forms, there are five ways to build 

towers out of four blocks and arrange them in a non-decreasing order.

. Find all ways to build three towers out of eleven blocks and arrange then 

decreasing order. 

 

. Partition of eleven into three parts using a system.

shows that three towers can be constructed out of eleven 

Note that the towers are constructed through a system which 

is reflected in the following numerical description of Figure 3: 

11 = 1 + 1 + 9 = 1 + 2 + 8 = 1 + 3 + 7 = 1 + 4 + 6 = 1 + 5 + 5 = 2 + 2 + 7 = 2 + 3 + 6 

= 2 + 4 + 5 = 3 + 3 + 5 = 3 + 4 + 4 

unit is combined with all representations of ten as a sum of two 

positive integers;  then the number two, used first, is combined with all 

representations of nine as a sum of two positive integers excluding the unit; then 

first, is combined with all representations of eight as a 

sum of two positive integers excluding integers smaller than three. T

also be generated by using the spreadsheet 

(the programing of which is discussed in section 3 below) where 

includes the partitioning number, 11; cell A7 displays the total number of 

the triple of cells (D3, C6, D6) corresponds to 

11 = 1 + 3 + 7. Such a (ready-made) spreadsheet can be used in a 

classroom as a tool for verifying the completeness of the activity with blocks 

because it may not be based on a systematic reasoning. Furthermore, the use of 

are five ways to build 

decreasing order. 

blocks and arrange then 

using a system. 

shows that three towers can be constructed out of eleven 

Note that the towers are constructed through a system which 

11 = 1 + 1 + 9 = 1 + 2 + 8 = 1 + 3 + 7 = 1 + 4 + 6 = 1 + 5 + 5 = 2 + 2 + 7 = 2 + 3 + 6  

unit is combined with all representations of ten as a sum of two 

is combined with all 

representations of nine as a sum of two positive integers excluding the unit; then 

is combined with all representations of eight as a 

sum of two positive integers excluding integers smaller than three. These ten 

be generated by using the spreadsheet shown in 

where cell A1 

displays the total number of 

) corresponds to one such 

made) spreadsheet can be used in a 

classroom as a tool for verifying the completeness of the activity with blocks 

tematic reasoning. Furthermore, the use of 
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the spreadsheet fosters “the ability to contextualize ... in order to probe into the 

referents for the symbols involved” 

Figure 4. Numerical solution to Task 3. 

 

Task 4. Find all ways to build t

and then line them up in the increasing order

 

Solution. Figure 5 shows that three towers can be constructed in seven ways out 

of twelve blocks. Note that the towers are constructed through a system which is 

reflected in the following numerical description of 

12 = 1 + 2 + 9 = 1 + 3 + 8 = 1 + 4 + 7 = 1 + 5 + 6 = 2 + 3 + 7 = 2 + 4  + 6 = 3 + 4 + 5.

 

These seven partitions of twelve can be generated by using the spreadsheet of 

Figure 6 where cell A1 includ

total number of partitions, 

the partition 12 = 1 + 3 + 8. 

 

the spreadsheet fosters “the ability to contextualize ... in order to probe into the 

referents for the symbols involved” [8, p6]. 

 

Figure 4. Numerical solution to Task 3.  

. Find all ways to build three different size towers out of twelve

in the increasing order. 

shows that three towers can be constructed in seven ways out 

Note that the towers are constructed through a system which is 

lected in the following numerical description of Figure 5: 

12 = 1 + 2 + 9 = 1 + 3 + 8 = 1 + 4 + 7 = 1 + 5 + 6 = 2 + 3 + 7 = 2 + 4  + 6 = 3 + 4 + 5.

These seven partitions of twelve can be generated by using the spreadsheet of 

includes the partitioning number, 12, cell A7 

total number of partitions, 7, and the triple of cells (D3, C6, D6) corresponds to 

partition 12 = 1 + 3 + 8.  

the spreadsheet fosters “the ability to contextualize ... in order to probe into the 

twelve blocks 

shows that three towers can be constructed in seven ways out 

Note that the towers are constructed through a system which is 

12 = 1 + 2 + 9 = 1 + 3 + 8 = 1 + 4 + 7 = 1 + 5 + 6 = 2 + 3 + 7 = 2 + 4  + 6 = 3 + 4 + 5. 

These seven partitions of twelve can be generated by using the spreadsheet of 

displays the 

) corresponds to 
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Figure 5. Partition of twelve into three unequal parts using a system.

 

Figure 6. 

3 Spreadsheet programming informed by algebraic reasoning

The programming of the spreadsheet of Figure 4

demonstrate how algebraic

should be noted that while these skills may 

level elementary teacher candidate, they can be taught within a course such as 

Figure 5. Partition of twelve into three unequal parts using a system.

 

Figure 6. Numerical solution to Task 4. 

Spreadsheet programming informed by algebraic reasoning 

the spreadsheet of Figure 4 is worth noting in detail to 

how algebraic skills contribute to the efficacy of computing

that while these skills may indeed be beyond a typical 

elementary teacher candidate, they can be taught within a course such as 

 

Figure 5. Partition of twelve into three unequal parts using a system. 

is worth noting in detail to 

contribute to the efficacy of computing. It 

be beyond a typical master’s 

elementary teacher candidate, they can be taught within a course such as 
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Using Spreadsheets in Teaching School Mathematics [4] developed by the author for 

students enrolled in different teacher education programs at SUNY Potsdam 

with a special interest in both technology and mathematics. However, all teacher 

candidates enrolled in elementary mathematics methods and content courses 

that the author teaches on a regular basis are expected to master operating a 

spreadsheet like the one shown in Figure 4, introduced to them as an 

environment to use, and learn how to interpret information it generates in terms 

of the corresponding hands-on tasks. 

 

On the other hand, one of the recommendations of the Conference Board of the 

Mathematical Sciences for the mathematical preparation of prospective high 

school teachers includes the need to “examine the crucial role of algebra in use of 

computer tools like spreadsheets” [9, p41]. Such a recommendation shifts the 

focus of mathematical activities from using a spreadsheet for solving algebraic 

problems to utilizing algebraic ideas for improving the tool’s computational 

efficiency. Thus, the material of this section demonstrates how a spreadsheet can 

be used as a medium for revisiting algebra through computing applications in a 

capstone course for the teachers.  More specifically, algebra will be used below 

as a means for developing a spreadsheet capable to provide a visual 

representation of all partitions of an integer into three like parts without regard 

to their order. Towards this end, it is important to distinguish between using a 

spreadsheet that generates data for an efficient representation of a concept and 

data for developing a new concept. Algebraically speaking, one has to display all 

solutions to the Diophantine equation  

 

    x + y + z = n       (1) 

where  x ≤ y ≤ z . That is why not displaying the values of x and y in row 3 and 

column C, respectively, that are not solutions to equation (1) is important from 

the point of view of efficiency of computing. Furthermore, this efficiency 

enhances mathematical visualization (the values of z are displayed within the 

range D4:H10), a pedagogical construct introduced in education in the early 

1990s [17]. Toward this end,1 given n, one has to find the largest value of y first. 

The largest y requires x = 1 (the smallest value) and 
  
z = y

max
(as z ≥ y) whence

  
2y

max
= n−1. Two cases need to be considered: n is odd and n is even. The former 

                                                        

1 More information on using inequalities as tools in spreadsheet modeling can be found 

elsewhere [5]. 
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case yields 
  
y

max
= int(

n

2
) ; the latter case yields 

  
y

max
= int(

n−1

2
)  where   int(x)  is the 

largest integer not greater than x. Indeed, for both n = 11 (as in Figure 4) and n = 

12 one has 
  
y

max
= 5  (11 = 1+ 5+ 5, 12 = 1 + 5 + 6) and 

 
int(

11

2
) = int(

12−1

2
) = 5. The 

largest value of x requires 
  
y = z = x

max
whence 

  
3x

max
= n  or 

  
x

max
= int(

n

3
) . Indeed, 11 

= 3 + 4 + 4, where 
 
3= int(

11

3
) and 

 
4 = int(

12

3
). The above reasoning explains the 

formulas:  

cell A1 is given the name n; ranges to the right of cell D3 and down cell C4 are 

given the names x and y, respectively; (C4): =1, (C5): 

=IF(MOD(n,2)=0,IF(C4<INT((n-1)/2),1+C4," "), IF(C4<INT(n/2),1+C4," ")) which is 

replicated down column C.  (D3): = 1; (E3): =IF(D3<INT(n/3),1+D3," ") which is 

replicated across row 3. Finally, (D4): =IF(OR(x=" ",y=" ")," ",IF(AND(y>=x, n-x-

y>=y),n-x-y," ")) which is replicated across rows and down columns. 

 

Note that the spreadsheet displays all ten partitions in a way they were 

presented above in Figure 3 as well as in the form of the chain of equalities: in 

column D one can see the combination of all representations of ten as a sum of 

two integers combined with the unit; in column E—all representations of nine as 

a sum of two integers combined with the two, and, finally, in column F—all 

representations of eight as a sum of two integers combined with the three. This 

suggests the method of solving a three-dimensional problem by reducing it to 

several two-dimensional problems. So, although this reduction was not 

specifically included in the above spreadsheet formulas, it manifested itself in the 

final representation. 

  

The spreadsheet of Figure 6 is programmed similar to that of Figure 4, yet there 

are some differences due to the strict inequalities  x < y < z . The largest x requires 

the smallest possible y and z, implying that the numbers 
  
x

max
, y

min
, and 

  
z

min  are as 

close to each other as possible. In the case of three consecutive counting numbers, 

their sums, known as trapezoidal numbers,2 are always divisible by three. The 

smallest such sum is 6 = 1 + 2 + 3 where the numbers 1 and 6 are related through 

the equality 
 
1= int(

6

3
)−1. Replacing 6 either by 7 or by 8 does not change 

  
x

max
. 

                                                        

2 For using a spreadsheet in modeling trapezoidal numbers see [3]. 
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Therefore, given n, one can define 
  
x

max
= int(

n

3
)−1. The largest y requires x = 1 

(the smallest value) and 
  
z = y

max
+1 (as z > y) whence 

  
2y

max
= n− 2 . This time, 

regardless whether n is odd or even 
  
y

max
= int(

n− 2

2
).For example, when n = 12 

one has 12 = 1 + 5 + 6, i.e., 
  
y

max
= int(

10

2
) = 5 ; when n = 11 one has either 11 = 1 + 4 + 

6 or 11 = 2 + 4 + 5, i.e., 
  
y

max
= int(

9

2
) = 4 . This explains the following change in the 

three main spreadsheet formulas used in programming the spreadsheet of Figure 

6 (in comparison with Figure 4):  

 (E3): =IF(D3<INT(n/3-1),1+D3," "); (C5): =IF(C4<INT((n-2)/2),1+C4," "); and  

(D4): =IF(OR(x=" ",y=" ")," ",IF(AND(y>x, n-x-y>y),n-x-y," ")). 

4  Notation and the next steps 

Below, the following notation will be used: P(n) and p(n)—the number of 

partitions introduced in the context of Task 1 and Task 2, respectively, where the 

number 4 is replaced by n; P(n, m) and Q(n, m)—the number of partitions 

introduced in the context of Task 3 and Task 4, respectively, where the number 4 

is replaced by n and the number 2 is replaced by m. We will refer to P(n) and p(n) 

as partition of n with and without regard to the order of parts, respectively; P(n, 

m) as partition of n into m parts and Q(n, m) as partition of n into m non-equal 

parts. 
  

It will be shown how one can use concrete materials to develop mathematical 

definitions for the partitions P(n, m) and Q(n, m) to enable their numerical 

modeling for different n and m within a spreadsheet. In turn, a spreadsheet 

environment can then be used to develop grade-appropriate activities for 

“mathematically proficient students” [8] and their future teachers that enable the 

discovery of interesting relationships among different kinds of partitions 

mentioned above and other mathematical concepts, including Pascal’s triangle 

and the binomial coefficients, triangular numbers, difference equations and 

quadratic sequences as their solutions, and systems of linear equations.  
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5   Ferrers-Young diagrams 

A representation of a positive integer as a sum of like numbers through an array 

of dots in which each addend is represented by a row or a column of dots is 

called Ferrers diagram [15], named after a 19th century British mathematician 

Norman M. Ferrers. To reflect possible activities which, in the context of Tasks 

1—4, are appropriate for young children and their future teachers alike, the 

diagrams will be represented below using squared shapes (often, in a classroom 

practice, called square tiles). Such diagrams (i.e., when squares are used instead 

of dots) are also called Young diagrams [16], named after a 20th century British 

mathematician Alfred Young. So, Figures 1, 2, 3 and 5 may be called Ferrers-

Young diagrams representing, respectively, partition of four into all parts, 

partition of four into ordered parts, partition of eleven into three parts, and 

partition of twelve into three non-equal parts. Whereas the use of the 

spreadsheets pictured in Figures 4 and 6 is limited to describing Ferrers-Young 

diagrams with three parts, the corresponding diagrams can be helpful in 

developing recursive definitions of partitions   P(n,m)  and   Q(n,m)  for all 

(appropriate) values of m. 

6  Recursive definition of P(n, m) informed by a hands-on experiment 

Figure 7 shows how eleven can be partitioned into three parts through the 

following (recursive) definition. First partition ten blocks into two parts and then 

make three parts by adding a single block (shown at the far-left); then partition 

eight blocks into three parts and increase each part by one block.  That is, 

  P(11,3) = P(10,2)+ P(8,3)  where  10 = 11−1,  2 = 3−1, and  8 = 11− 3.  
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Figure 7. Representing equation (2) in the case 

 

Likewise, in general, all partitions of 

groups. The first group includes all partitions with the 

group includes all other partitions. Then the number of partitions in the first 

group is equal to P(n – 1, m

is possible to add one to each of the partitions

the first group. Likewise, the number of partitions in the second group is equal to 

P(n – m, m) because after partitioning 

each part by one thereby creating all the partitions 

here, the following recursive definition of the number of partitions of 

parts follows 

P(n, m) = P(n –

In order to numerically model equation 

(obvious) initial conditions for

  P(n, n) = P(n, 1) = 1 and 

The spreadsheet shown in 

P(n, m). In particular, P(11, 3) = 10, the result 

 

Figure 7. Representing equation (2) in the case n = 11 and m = 3. 

ll partitions of n into m parts, P(n, m), can be put in two 

groups. The first group includes all partitions with the unit present; the second 

group includes all other partitions. Then the number of partitions in the first 

m – 1) because after partitioning n – 1 into m

is possible to add one to each of the partitions, thus creating all the partitions 

the number of partitions in the second group is equal to 

because after partitioning n – m into m parts, it is possible to increase 

each part by one thereby creating all the partitions in the second group

the following recursive definition of the number of partitions of 

– 1, m – 1) + P(n – m, m)   (2) 

In order to numerically model equation (2) within a spreadsheet, the following 

initial conditions for P(n, m) should be taken into consideration: 

, 1) = 1 and P(1, m) = 0 for m > 1           (3)

The spreadsheet shown in Figure 8 represents a triangular array of the number

(11, 3) = 10, the result having been confirmed through the 

 

= 3.  

can be put in two 

present; the second 

group includes all other partitions. Then the number of partitions in the first 

m – 1 parts it 

thus creating all the partitions in 

the number of partitions in the second group is equal to 

parts, it is possible to increase 

the second group. From 

the following recursive definition of the number of partitions of n into m 

 

, the following 

) should be taken into consideration:  

(3)   

the numbers 

confirmed through the 
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Ferrers-Young diagrams of 

Figure 4. Note that  

  

P(n,m)
m=1

n

∑ = p(n)

Therefore, the values of p(

the columns of the spreadsheet in 

15, 22—will be discovered below within 

partitions of integers into unequal parts.

 

Furthermore, the diagram of Figure 7 makes it possible to be interpreted as the 

partition of eleven into parts with three being the largest p

number of partitions of n 

with the largest part m. In particular, eleven can be partitioned into parts with 

the largest part three in ten ways.

Figure 8. An array of the numbers 

row. 

 

Unlike the spreadsheets of Figures 

display all possible partitions for an individual number but rather,

diagrams of Figures 3 and 7 as well as through the spreadsheet 

)       (4) 

(n) can be found by adding all integers within each of

the columns of the spreadsheet in Figure 8 (row 25). These sums—1, 2, 3, 5, 7, 11, 

ill be discovered below within a spreadsheet designed to the number of 

into unequal parts. 

Furthermore, the diagram of Figure 7 makes it possible to be interpreted as the 

partition of eleven into parts with three being the largest part. In general, the 

 into m parts is equal to the number of partitions of 

. In particular, eleven can be partitioned into parts with 

the largest part three in ten ways. 

array of the numbers P(n, m) with the numbers p(n) in

Unlike the spreadsheets of Figures 4 and 6, the spreadsheet of Figure 8 

itions for an individual number but rather, it displays the 

through the spreadsheet of 

  

adding all integers within each of 

1, 2, 3, 5, 7, 11, 

the number of 

Furthermore, the diagram of Figure 7 makes it possible to be interpreted as the 

art. In general, the 

parts is equal to the number of partitions of n 

. In particular, eleven can be partitioned into parts with 

 

in the bottom 

of Figure 8 does not 

it displays the 
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total number of partitions. That is, there is a difference between solving equation 

(1) and finding its number of solutions

 

Here are the programming details for the spreadsheet of 

initial conditions (3), the r

(C4:C23) is filled with (hidden) zeros

INDEX($C4:C4,1, D$2-$B4))) which is replicated across rows and down columns; 

(C25): =SUM(C3:C23)—replicated across row 25.

7  Connecting different con

One can note that the array of the numbers 

triangular array filled with 

triangle is the sum of elements immediately to its left in the same row and in the 

row above it. It is interesting to explore if Pascal’s triangle can be connected to 

partitioning problem. With this in mind, one can use a spread

Pascal’s triangle shown in 

their simplicity). Compare the numbers in the ranges 

of Figures 8 and 9. In 

  
C

3

0 +C
3

1 +C
3

2 +C
3

3 = 1+ 3+ 3+

triangle in term of partitions? 

summands in order to generalize Task 1 to any positive integer 

Figure 9. Pascal’s triangle

total number of partitions. That is, there is a difference between solving equation 

er of solutions. 

Here are the programming details for the spreadsheet of Figure 8

initial conditions (3), the range (C3:W3) is filled with units and the

(hidden) zeros; (D4): =IF(D$2-$B4<0,0,IF($B4-D$2=0,1,

$B4))) which is replicated across rows and down columns; 

replicated across row 25. 

concepts as a problem-solving method 

One can note that the array of the numbers P(n, m) resembles Pascal’s triangle

triangular array filled with the binomial coefficients so that any element of the 

triangle is the sum of elements immediately to its left in the same row and in the 

. It is interesting to explore if Pascal’s triangle can be connected to 

partitioning problem. With this in mind, one can use a spreadsheet to generate 

Pascal’s triangle shown in Figure 9 (programming details are omitted because of 

Compare the numbers in the ranges (F3:F6) of the spreadsheets

. In Figure 8,   p(4) = 1+ 2+1+1= 5 ; in 

+1= 8 . How can one interpret the entries of Pascal’s 

in term of partitions? For example, how can one partition four into two 

in order to generalize Task 1 to any positive integer n? 

 

. Pascal’s triangle with the powers of two at the bottom (row 25).

total number of partitions. That is, there is a difference between solving equation 

Figure 8. To reflect 

and the range 

D$2=0,1, C3+ 

$B4))) which is replicated across rows and down columns; 

 

) resembles Pascal’s triangle—a 

so that any element of the 

triangle is the sum of elements immediately to its left in the same row and in the 

. It is interesting to explore if Pascal’s triangle can be connected to 

sheet to generate 

(programming details are omitted because of 

spreadsheets 

; in Figure 9,

he entries of Pascal’s 

ow can one partition four into two 

 

at the bottom (row 25). 
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To answer this question, consider the following diagram 

 

1 1 1{ } + 1{ } → 4 = 3+1

1 1{ }+ 1 1{ } → 4 = 2+ 2

1{ }+ 1 1 1{ } → 4 = 1+ 3

 

in the right-hand side of which the partitioning of four into two summands is 

carried out by placing the plus sign between two groups of units. The question to 

be answered is: How many ways a single plus sign can be put in three spaces 

that separate four units? The answer is   
C

3

1

, that is, the number of ways to choose 

one object out of three objects. We have one plus sign because of two summands. 

We have three spaces because four units require three spaces to be separated. 

When four is partitioned into three summands, we have three spaces where two 

plus signs have to be placed and this can be done in   
C

3

2

ways. In general, a 

number n can be partitioned into m summands (counting partitions into the 

same but differently ordered parts) in   
C

n−1

m−1

ways. Therefore, with regard to the 

order of summands,  
C

3

0

 is the number of ways to partition four in one summand, 

  
C

3

1

— to partition four in two summands,   
C

3

2

 — to partition four in three 

summands, and   
C

3

3

— to partition four in four summands. Now one can see that 

the situation introduced in Task 1 could be resolved by connecting the array of 

numbers P(n, m) to Pascal’s triangle. It follows from the well-known identity 

(e.g., [10]) 

  

C
n

m

m=0

n−1

∑ = 2n−1 

and the fact that the largest number of plus signs that can be put between n units 

is equal to n – 1, that n can be partitioned in all differently ordered positive 

integer summands in   2
n−1

 ways. In other words, the equality   P(n) = 2n−1

 hold 

true. An alternative way of arriving at the same result by using two-color 

counters and tree diagrams is discussed elsewhere [2]. 

8  Recursive definition of Q(n, m) informed by a hands-on experiment 

Figure 10 shows how twelve can be partitioned into three unequal (distinct) parts 

through the following (recursive) definition. First partition nine blocks into two 

parts (four ways) and then make three parts by placing each of the four partitions 
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on the top of three blocks (shown at the top of Figure 10); then partition nine 

blocks into three parts (three ways) and increase each part by three blocks 

(shown at the bottom of Figure 10). That is, 

 9 = 12− 3 and  2 = 3−1. 

In general, similar to the case of 

Q(n, m), can be put in two groups. The first group includes all partitions with 

unit present; the second group includes all other partitions. Then the number of 

partitions in the first group is 

n – m into m – 1 parts it is possible to add 

increase each part of any partition by one thus creating all the partitions 

first group. Likewise, the number of partitions in the second group is equal to 

Q(n – m, m) because after partitioning 

increase each part by one th

This explains the following recursive definition of the number of partitions of 

into m parts: 

  Q(n,m) = Q(n−

In order to numerically model equation 

should be taken into consideration

  Q(n, 1) = 1 and 

Figure 10. Representing

on the top of three blocks (shown at the top of Figure 10); then partition nine 

three parts (three ways) and increase each part by three blocks 

(shown at the bottom of Figure 10). That is,   Q(12,3) = Q(9,2) +Q

imilar to the case of P(n, m), all partitions of n into m distinct parts, 

can be put in two groups. The first group includes all partitions with 

present; the second group includes all other partitions. Then the number of 

artitions in the first group is equal to Q(n – m, m – 1) because after partitioning 

1 parts it is possible to add a unit to each of the partitions and 

h part of any partition by one thus creating all the partitions 

first group. Likewise, the number of partitions in the second group is equal to 

) because after partitioning n – m into m parts, it is possible to 

increase each part by one thereby creating all the partitions in the second group. 

This explains the following recursive definition of the number of partitions of 

−m,m−1)+Q(n− m,m)    (4) 

In order to numerically model equation (4), the following properties of 

should be taken into consideration to serve as initial conditions  

, 1) = 1 and Q(1, m) = 0 for m > 1.       (5)

 

Representing equation (4) in the case n = 12 and m 

on the top of three blocks (shown at the top of Figure 10); then partition nine 

three parts (three ways) and increase each part by three blocks 

Q(9,3)  where 

distinct parts, 

can be put in two groups. The first group includes all partitions with the 

present; the second group includes all other partitions. Then the number of 

1) because after partitioning 

to each of the partitions and 

h part of any partition by one thus creating all the partitions in the 

first group. Likewise, the number of partitions in the second group is equal to 

parts, it is possible to 

the second group. 

This explains the following recursive definition of the number of partitions of n 

 

, the following properties of Q(n, m) 

(5)   

 = 3. 
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Figure 11(a). A spreadsheet

Figure 11(b). A spreadsheet

Figure 11(c). A spreadsheet

 

A spreadsheet-generated array of the numbers Q(n, m)

A spreadsheet-generated array of the numbers Q(n, m): 23

A spreadsheet-generated array of the numbers Q(n, m): 45

 

): 1≤ n ≤ 22. 

 

): 23≤ n ≤ 44. 

 

): 45≤ n ≤ 66. 
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Here are the details of spreadsheets programming for Figures 11(a—c). To reflect 

initial conditions (5), row 3 is filled with units; column C from cell C4 is filled 

with zeros (which are not displayed); (D4): =IF(OR($B4-D$2>=0,$B3-

C$2>=0),0,IF(AND($B4-D$2=0,$B3-C$2=0),1, INDEX($C3:C3,1,C$2-

$B3)+INDEX($C4:C4,1,D$2-$B4))). 

8  Connection to triangular numbers 

Recall that the sum of the first n counting numbers is called a triangular number 

of rank n, a concept introduced already at the elementary level [13, p14], for 

which the notation  
t

n  is typically used. Numerical data generated by the 

spreadsheets introduced above makes it possible to be used as a tool in making 

mathematical connections between different concepts. For example, the array of 

the spreadsheet pictured in Figure 11(a) has a quasi-triangular form with each 

step in the ladder being one longer than the previous step. How can this 

phenomenon be explained? Note that the smallest integer that can be 

represented as the sum of two different positive numbers is 3, thus Q(n, 2) = 0 for 

n < 3; the smallest integer that can be represented as the sum of three different 

positive numbers is 6, thus Q(n, 3) = 0 for n < 6; the smallest integer that can be 

represented as the sum of four different positive numbers is 10, thus Q(n, 4) = 0 

for n < 10. What is special about the numbers 3, 6, and 10? These are triangular 

numbers of rank 2, 3, and 4, respectively. Generalizing from this observation 

yields the relation  

Q(n, m) = 0 for all n < t
m

 

where t
m

is the triangular number of rank m.  

10 Quadratic sequences as solutions to difference equations 

Difference equations as modeling tools to be studied both by high school 

students and their future teachers are included in the number of standards and 

recommendations for teaching mathematics across the board [9], [12]. For some 

sequences (e.g., natural numbers), the form of the corresponding difference 

equation immediately follows from the rule according to which a sequence 

develops. Other sequences don’t reveal their nature without an effort on the part 

of the learner. Numerical evidence provided by a spreadsheet can motivate one 

to “see trends in data by noticing change in the form of differences” [12, p305]. 

From such an observation, a difference equation may result.  
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For example, the data presented in the spreadsheets of Figures 11 (a—c) allows 

one to recognize the following repeated equalities 

Q(9, 3) = Q(13, 4) = Q(18, 5) = Q(24, 6) = Q(31, 7) = Q(39, 8) = ... = 3      (6) 

Can this observation be generalized? To answer this question, consider the 

sequence 
  
x

n
={9,  13,  18,  24, 31,  39, ...} representing the numbers each of which 

can be partitioned in three, four, five, and so on unequal integer parts in three 

ways. One can check to see that the second difference of this number sequence, 

  
∆

2
x

n
= x

n+2
− 2x

n+1
+ x

n , is equal to one. From this observation, one can develop a 

closed formula for the sequence  
x

n  by solving the difference equation   

  
x

n+2
− 2x

n+1
+ x

n
=1     (7) 

subject to the initial conditions  

  
x

1
= 9, x

2
= 13       (8) 

To this end, 
 
x

n
can be found as the sum  

 
x

n
= x

n

h + x
n

p       (9) 

where  
x

n

h

 and  
x

n

p

 are, respectively, the general solution to the homogeneous 

difference equation 

  
x

n+2
− 2x

n+1
+ x

n
= 0      (10) 

and a partial solution to a non-homogeneous equation (7). Because the 

characteristic equation,  λ
2 − 2λ +1= 0 , for equation (10) has double root,  λ = 1, 

the general solution to equation (10) has the form  
x

n

h = C
1
+C

2
n . Furthermore, one 

can check to see that   
x

n

p =
n(n+1)

2  satisfies equation (7). Therefore,  
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x

n
= C

1
+C

2
n+

n(n+1)

2
    (11) 

In order to find 
  
C

1
 and 

  
C

2
, initial conditions (8) should be used as follows: 

  
9 = C

1
+C

2
+1  and 

  
13= C

1
+ 2C

2
+ 3  whence 

  
C

1
+C

2
= 8  and 

  
C

1
+ 2C

2
= 10 . Solving 

the last two equations yields 
  
C

1
= 6, C

2
= 2. From formula (11) it follows that  

  
x

n
= 6+ 2n+

n(n+1)

2
=

n
2 +5n+12

2
. 

Thus, the following closed formula has been found 

  
x

n
=

n
2 + 5n+12

2
      (12)  

Noting that 
  

n
2 +5n+12

2
=

(n+ 2)(n+ 3)

2
+ 3 ,

 
makes it possible to generalize 

equalities (6) to the form  

  
Q(

(n+ 2)(n+ 3)

2
+ 3, n+ 2) = 3               (13) 

11  Using technology in developing formula (12) 

 

Alternatively, formula (12) can be developed by defining 
  
x

n
= an

2 + bn+ c  and, 

using initial conditions (8), solving the following system of three linear equations 

         a + b+ c = 9, 4a + 2b+ c = 13, 9a + 3b+ c = 18                                    (14) 

Toward this end, one can use a spreadsheet function MINVERSE to find the 

values of the unknowns a, b, and c satisfying equations (14). In the spreadsheet of 
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Figure 12 the matrix of coefficients of system 

the range (A5:C7) computes the inverse matrix; 

equations of system (14) are entered in the range 

 

Figure 12. Solving a system of three linear equation

It should be noted that using a spreadsheet 

equations can only be justified in the absence of other (mathematical) software. 

For example, in the context of 

straightforward way (Figure 13).

Figure 13. Using 

coefficients of system (14) is entered in the range 

computes the inverse matrix; and the right-hand sides of the 

are entered in the range (E1:E3).  

 

. Solving a system of three linear equations within a spreadsheet.

It should be noted that using a spreadsheet for solving systems of linear 

only be justified in the absence of other (mathematical) software. 

For example, in the context of Maple, one can use the operator fsolve 

(Figure 13).  

Figure 13. Using Maple in solving systems of linear equations.

entered in the range (A1: C3); 

hand sides of the 

 

within a spreadsheet. 

solving systems of linear 

only be justified in the absence of other (mathematical) software. 

fsolve in a rather 

 

in solving systems of linear equations. 
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Finally, difference equation (7) subject to initial conditions (8) can also be solved 

in the context of Maple using the operator 

Figure 14. Using 

It should be noted that t

spreadsheet instead of Maple

demonstrating the former tool’

technological consistency. 

Pascal’s triangle as well as the numbers 

advantage over other computational tools for the outcome of modeling is not the 

numbers per se, but rather their array

enabling subsequent search for patterns, conjecturing, and 

generalizing/symbolizing from numerical evidence. The 

spreadsheet as a learning tool is both in its mathematically rich tool kit of 

computing devices and didactically unparalleled representational efficacy of 

mathematical concepts. The next section wil

the last characterization of the software.

other educational tools, both digital and tactile is worth exploring as appropriate. 

This, in turn, points to the usefulness of using i

education the so-called integrated spreadsheets.

12  A spreadsheet-motivated generalization c

The modeling data generated by the spreadsheets of 

c) allow one to observe that 

  

Q(14

Q(20

Q(27

Finally, difference equation (7) subject to initial conditions (8) can also be solved 

using the operator rsolve as shown in Figure 14.

. Using Maple in solving a difference equation. 

 

It should be noted that there is no pedagogically justified reason for using a 

Maple in developing quadratic sequences other than 

the former tool’s various features, thereby preserving 

 At the same time, the use of a spreadsheet in modeling 

Pascal’s triangle as well as the numbers P(n, m) and Q(n, m) has clear pedagogic 

advantage over other computational tools for the outcome of modeling is not the 

numbers per se, but rather their array-like, visually powerful representations 

enabling subsequent search for patterns, conjecturing, and 

bolizing from numerical evidence. The didactic value

spreadsheet as a learning tool is both in its mathematically rich tool kit of 

computing devices and didactically unparalleled representational efficacy of 

mathematical concepts. The next section will further demonstrate the validity of 

the last characterization of the software. Yet the joint use of a spreadsheet with 

other educational tools, both digital and tactile is worth exploring as appropriate. 

This, in turn, points to the usefulness of using in mathematics and other areas of 

called integrated spreadsheets. 

motivated generalization connecting Tasks 2 and 4

The modeling data generated by the spreadsheets of Figure 8 and Figures 11

observe that  
14,4) = Q(19,5) = Q(25,6) = ...= 5

20,5) = Q(26,6) = Q(33,7) = ...= 7

27,6) = Q(34,7) = Q(42,8) = ...= 11

 

Finally, difference equation (7) subject to initial conditions (8) can also be solved 

gure 14. 

 

 

reason for using a 

other than for 

ing this paper’s 

At the same time, the use of a spreadsheet in modeling 

) has clear pedagogic 

advantage over other computational tools for the outcome of modeling is not the 

like, visually powerful representations 

enabling subsequent search for patterns, conjecturing, and 

didactic value of a 

spreadsheet as a learning tool is both in its mathematically rich tool kit of 

computing devices and didactically unparalleled representational efficacy of 

l further demonstrate the validity of 

Yet the joint use of a spreadsheet with 

other educational tools, both digital and tactile is worth exploring as appropriate. 

n mathematics and other areas of 

Tasks 2 and 4 

Figures 11(a—
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and recognize that p(4) = 5, p(5) = 7, p(6) = 11. As this observation is consistent 

with equalities (6), one can first rewrite identity (13) in the form 

  
Q(

(n+ 2)(n+ 3)

2
+ 3, n+ 2) = p(3), n∈Ζ               (15) 

and then use techniques described in the previous section to develop new 

identities 

  
Q(

(n+ 3)(n+ 4)

2
+ 4, n+ 3) = p(4), n∈Ζ               (16) 

  
Q(

(n+ 4)(n+5)

2
+5, n+ 4) = p(5), n∈Ζ               (17) 

  
Q(

(n+5)(n+ 6)

2
+ 6, n+ 5) = p(7), n∈Ζ               (18) 

where Ζ  is the set of positive integers. 

Finally, identities (15)—(18) can be (inductively) generalized to the form 

  
Q(

(n+ k −1)(n+ k)

2
+ k, n+ k −1) = p(k), n,k ∈Ζ    (19) 

Identity (19), motivated by the use of a spreadsheet, can be formulated in the 

following form: 

The number of partitions of k into integer parts without regard to order is equal to the 

number of partitions of the number 
  

(n+ k −1)(n+ k)

2
+ k  into   n+ k −1  unequal parts 

arranged from the least to the greatest for any positive integer value of n. 

 

In particular, substituting k = 3 and n = 1, 2, 3 in identity (19) yields  

  
Q(

3⋅4

2
+ 3,3) = Q(

4 ⋅5

2
+ 3,4) = Q(

5 ⋅6

2
+ 3,5) = 3 and

 
p(3) = 3. As shown in Figure 15, 

the number of partitions of the number 3 into three parts without regard to order 

is equal to the number of partitions of the number 9 into three unequal parts. The 

latter partition situation is reflected in the spreadsheet of Figure 16 showing the 

following three partitions:  9 = 1+ 2+ 6 = 1+ 3+ 5= 2+ 3+ 4 . Similarly, the Ferrers-
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Young diagrams for Q(13, 4) and 

be constructed to experimentally confirm the above abstract statement. 

Figure 15. Confirming theory through 

Figure 16. Three partitions of nine into three unequal parts

 

 

 

(13, 4) and Q(18, 5) and their spreadsheet equivalents can 

be constructed to experimentally confirm the above abstract statement. 

 

Confirming theory through constructing Ferrers-Young diagrams

 

Three partitions of nine into three unequal parts

(18, 5) and their spreadsheet equivalents can 

be constructed to experimentally confirm the above abstract statement.  

Young diagrams. 

Three partitions of nine into three unequal parts. 
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13  Conclusion 

This article demonstrated how 

incorporates concrete materials 

representations of problematic situations 

sophisticated mathematical models associated with the theory of partitions. 

spreadsheet environment, t

spreadsheet function INDEX enabling their numerical representation

powerful enough to enable one’s

numbers with different 

evidence so obtained allow

which abstract and apparently not s

discovered. In turn, special cases of these relationships 

experimentally by using concrete materials and 

cognitive level. In that way,

experiments designed to develop a theory and the follow

used to confirm the theory. Figure 1

Although the author’s current teaching responsibilities do not include work for a 

mathematics department, it appears that this approach to teaching topics in 

discrete mathematics would be useful in the undergraduate preparation of 

mathematicians who could use the material of this article as a source for research 

projects. 

Figure 17. From experiment to theory to experiment: a concept map.

Finally, the article suggested that spreadsheets can be effectively integrated with 

other technological tools, just like technology, in general, has been integrated 

with paper-and-pencil mathematics f

representational efficacy of a spreadsheet as a mathematical m

This article demonstrated how an experiential approach to mathematics that 

incorporates concrete materials as means of creating diagrammatic 

representations of problematic situations can be put to work to develop rather 

sophisticated mathematical models associated with the theory of partitions. 

spreadsheet environment, these models were described in terms of the 

spreadsheet function INDEX enabling their numerical representation

enable one’s search for patterns and regularities among 

different combinatorial meaning. Furthermore, 

evidence so obtained allowed for making mathematical connections through 

and apparently not self-evident symbolic relationships 

discovered. In turn, special cases of these relationships were 

experimentally by using concrete materials and a spreadsheet yet 

In that way, a spreadsheet mediated between the or

experiments designed to develop a theory and the follow-up set of experiment
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athematics department, it appears that this approach to teaching topics in 

discrete mathematics would be useful in the undergraduate preparation of 
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debated but rather, it is suggested that one can be augment the software by (easy 

to learn and use) auxiliary computational tools. By the same token, mathematical 

models amenable to spreadsheet modeling may not only emerge from learners’ 

experimentation with concrete materials but these very materials can 

subsequently be employed for the tactile verification of spreadsheet-motivated 

mathematical propositions.  
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