
Spreadsheets in Education (eJSiE)

Volume 6 | Issue 3 Article 4

October 2013

Bubble and Selection Sorting with Excel
Jan Benacka
Department of Informatics, Faculty of Natural Sciences, Constantine the Philosopher University, Nitra, Slovakia,
jbenacka@ukf.sk

Follow this and additional works at: http://epublications.bond.edu.au/ejsie

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works
4.0 License.

This Regular Article is brought to you by the Bond Business School at ePublications@bond. It has been accepted for inclusion in Spreadsheets in
Education (eJSiE) by an authorized administrator of ePublications@bond. For more information, please contact Bond University's Repository
Coordinator.

Recommended Citation
Benacka, Jan (2013) Bubble and Selection Sorting with Excel, Spreadsheets in Education (eJSiE): Vol. 6: Iss. 3, Article 4.
Available at: http://epublications.bond.edu.au/ejsie/vol6/iss3/4

http://epublications.bond.edu.au/ejsie?utm_source=epublications.bond.edu.au%2Fejsie%2Fvol6%2Fiss3%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epublications.bond.edu.au/ejsie/vol6?utm_source=epublications.bond.edu.au%2Fejsie%2Fvol6%2Fiss3%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epublications.bond.edu.au/ejsie/vol6/iss3?utm_source=epublications.bond.edu.au%2Fejsie%2Fvol6%2Fiss3%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epublications.bond.edu.au/ejsie/vol6/iss3/4?utm_source=epublications.bond.edu.au%2Fejsie%2Fvol6%2Fiss3%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epublications.bond.edu.au/ejsie?utm_source=epublications.bond.edu.au%2Fejsie%2Fvol6%2Fiss3%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://epublications.bond.edu.au/ejsie/vol6/iss3/4?utm_source=epublications.bond.edu.au%2Fejsie%2Fvol6%2Fiss3%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epublications.bond.edu.au
mailto:acass@bond.edu.au
mailto:acass@bond.edu.au

Bubble and Selection Sorting with Excel

Abstract
The paper gives a method of learning programming the bubble and selection sorting algorithms through
developing interactive applications in Excel and coding the just acquired step of the solution in Delphi Pascal.
The method was tried in nine 90 minute lessons with 83 participants, which were gymnasium students,
undergraduate, master and PhD students of Teaching Informatics, and university Informatics teachers. The
participants were given questionnaires to find out their opinion on the method. The results are discussed.

Keywords
Bubblesort, Selectsort, spreadsheets, Pascal, Delphi, constructivism

Distribution License

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0
License.

Cover Page Footnote
The author is a member of the research team of project PRIMAS (Promoting Inquiry in Mathematics and
Science Education across Europe) funded by the EU 7th Framework Programme, grant agreement 244380.
The author thanks Ing. Mgr. Alžbeta Danielová and Mr. Milan Holota, the headmasters of Gymnázium in
Šurany and Gymnázium in Nové Zámky, for their kind permission to carry out the survey, and Mgr. Alexander
Meleg, the head of School Committee for Informatics at Gymnázium in Nové Zámky, for his helpfulness.

This regular article is available in Spreadsheets in Education (eJSiE): http://epublications.bond.edu.au/ejsie/vol6/iss3/4

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://epublications.bond.edu.au/ejsie/vol6/iss3/4?utm_source=epublications.bond.edu.au%2Fejsie%2Fvol6%2Fiss3%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages

Bubble and Selection Sorting with Excel

XXX
xxx

xxx

xxx

Abstract

The paper gives a method of learning programming the bubble and selection sorting algorithms

through developing interactive applications in Excel and coding the just acquired step of the solution in

Delphi Pascal. The method was tried in nine 90 minute lessons with 83 participants, which were

gymnasium students, undergraduate, master and PhD students of Teaching Informatics, and university

Informatics teachers. The participants were given questionnaires to find out their opinion on the

method. The results are discussed.

Keywords: Bubblesort, Selectsort, spreadsheets, Pascal, Delphi, constructivism

1. Introduction

Research in computer science education is focused on aiding and improving teaching and

learning programming especially to novices. Since the nineties, there has been significant

research into the application of constructivism in computer science education [1] – [4]. A tool

that enables easy access to ideas and concepts in computer science in a constructivist way is

the spreadsheet [5] – [9].

Educators discovered the educational potential of spreadsheets in mathematics and sciences

in the early 1980s. Spreadsheets allow using problem-solving and heuristic methods. Only

applications developed in special programming environments offer such ability of analyzing

scientific problems. Students are familiar with using spreadsheets so the educators can focus

on tutoring and scaffolding the learning process. Baker and Sugden [10] gave a detailed

account on spreadsheets in education from 1979 till 2003. They prove on a wide range of

research papers about spreadsheets in teaching mathematics, physics and computer science

that "… there is no longer a need to question the potential for spreadsheets to enhance the quality and

experience of learning that is offered to students. Traditional barriers (…) need to be removed, either

by ensuring that access to computers is improved or by changing assessment methods. Further

expansion is needed of the types of topics that can be effectively covered by spreadsheet examples ...“

However, “Despite the relevance of spreadsheets to today's workplace, research in computer science

education has neglected these versatile modelling tools” [11].

This article gives a method of learning programming the Bubblesort and Selectsort sorting

algorithms through developing interactive applications in Excel and rewriting the just

acquired step of the solution in Pascal in Delphi, which is a standard environment for

teaching programming at upper secondary schools in Slovakia [12]. The algorithms are an

important part of learning programming. As Taherkhani, Korhonen and Malmi’s research

showed, 49% of freshmen students would write one of these programs to sort an array of

integers before given instruction on sorting (22% for Bubblesort and 27% for Selectsort) [13].

The method was tried in nine 90 minute lessons with 83 participants, which were

gymnasium students of age 18-19, undergraduate, master and PhD students of Teaching

1

Benacka: Bubble and Selection Sorting with Excel

Published by ePublications@bond, 2013

Informatics, and university teachers of Informatics. Questionnaires were given to the

participants in order to find out whether they found the method interesting, understood

everything and gained new knowledge and skills. The Excel and Delphi applications are in

sections 2 and 3. The questionnaires and results are in section 4. Conclusions are in section 5.

2. Bubblesort

2.1. Excel and Delphi implementations

In Bubblesort, the maximum (or minimum) of the unsorted section of the array "bubbles" to

the end (or beginning) of the section. This is executed through comparing the adjacent terms

and swapping them if necessary [14]. The Excel application is in Fig. 1.

Figure 1. Bubblesort; the simple version (left, middle) and the improved version (right)

The array is in range B3:I3. The indices of the terms are in range B2:I2. Cells B3:I3 contain the

function =RANDBETWEEN(1,20) that generates random numbers from 1 to 20. The first

round of bubbling is in range B4:I10. The formula =B3 is written in cell B4 and filled right as

far as column I. Range B4:I4 is filled down as far as row 10, which produces 7 copies of the

generated array. The formulas =IF(B3>C3,C3,B3) and =IF(B3>C3,B3,C3) are written in cells B4

and C4 (yellow ones). The formulas swap the two terms if the former is bigger than the

latter. Range B4:C4 is copied and pasted in cells C5, D6, E7, F8, G9 and H10, which makes the

biggest term to “bubble” into cell I10. The first round is copied and pasted six times in cells

B11, B18, B25, B32, B39, B46, which gives seven rounds of bubbling altogether. The sorted

array is in range B52:I52. The first, second, third and seventh round are shown in Fig. 1 left.

In Fig. 1 middle, the cells with the sorted terms are coloured in grey, and the redundant rows

are labelled with “x”. In Fig. 1 right, the redundant rows are filtered away.

The Pascal code that corresponds to the application in Fig. 1 left is in Fig. 2. The lines are

numbered in the succession as they were coded (see section 2.2). The interface is in Fig. 3 left.

2

Spreadsheets in Education (eJSiE), Vol. 6, Iss. 3 [2013], Art. 4

http://epublications.bond.edu.au/ejsie/vol6/iss3/4

Figure 2. Delphi Pascal code for generating and bubblesorting 8 term arrays

Figure 3. Delphi application for generating and sorting 8 term arrays (left) and N term arrays (right)

The code that corresponds to the Excel application in Fig. 1 right is in Fig. 4.

Figure 4. Improved Delphi Pascal code for generating and bubblesorting 8 term arrays

The interface of the general version is in Fig. 3 right. The code is in Fig. 5. Number N of the

terms is inputted through a SpinEdit component. Its properties Max, Min and Value are set

to 2, 100 and 8.

3

Benacka: Bubble and Selection Sorting with Excel

Published by ePublications@bond, 2013

Figure 5. Delphi Pascal code for generating and bubblesorting N term arrays, N � 100

If counter j is taken for the number of the unsorted terms, then it drops from N to 2, and the

latest term to be compared with the next one is the last but one unsorted term (see Fig. 1

right). The code is

Figure 6. Other Delphi Pascal code for generating and bubblesorting N term arrays

The program can be improved by checking whether a swap was executed in the “for i” loop.

If there was no swap then the array has been sorted and the “for j” loop can be ended by the

Break command, which implies that “repeat” loop should be used instead of the “for” one.

2.2. The teaching method

The students were supposed to be able to work with Excel and, in Delphi, to create the

interface, generate an array, output it in component Memo, and swap the values of two

variables. The applications in Fig. 1 left and Fig. 3 left were shown and demonstrated. The

students downloaded the Excel template shown in Fig. 7 and the empty application shown

in Fig. 3 left (no written code, just the automatically generated one) from the author’s web

site, and the two applications were developed step by step as follows:

Figure 7. Excel template

4

Spreadsheets in Education (eJSiE), Vol. 6, Iss. 3 [2013], Art. 4

http://epublications.bond.edu.au/ejsie/vol6/iss3/4

Excel: Ranges A2:I2 (indices) and A3:I3 (array) were created; formula =B3 was written in cell

B4 and filled right as far as column I; range B4:I4 was filled down as far as row 10 (7 copies of

the array).

Delphi: Lines 0 – 9 were generated or written (unsorted array was obtained in Memo 1 and

Memo 2).

Excel: Range B4:C4 was created (swapping A[1] and A[2]); the range was coloured in yellow,

copied and pasted in cells C5, D6, E7, F8, G9, H10 (first round was accomplished, the

maximum bubbled into cell I10).

Delphi: The command
 if A[1]>A[2] then begin Help:=A[1]; A[1]:=A[2]; A[2]:=Help; end;

was written between lines 6c and 9, copied and passed 6 times; the indices were rewritten as

shown in Fig. 8 (first round was accomplished, the maximum bubbled to the end of the

array).

Figure 8. Delphi Pascal commands that correspond to Excel formulas in the first round yellow cells

Excel: The first round was copied and pasted six times in cells B11, B18, B25, B32, B39 and

B46 (the application was accomplished, a sorted array was obtained in range B52:I52).

Delphi: The sequence of the seven “if” commands was copied and pasted six times to get the

code that corresponds to the seven rounds in Excel (the application was accomplished, a

sorted array was obtained in Memo 2; the students were warned of the “greenhorn’s

construction”).

Delphi: The students were invited to think about how to simplify the code. It was found that

just the first round would be enough if executed in a “for” loop the counter of which would

be the ordinal number of the round; six rounds were erased; lines 10 were coded (Fig. 9).

Figure 9. Delphi Pascal commands that correspond to Excel formulas in all yellow cells

5

Benacka: Bubble and Selection Sorting with Excel

Published by ePublications@bond, 2013

Delphi: The students were invited to think about how to further simplify the code. It was

found that just one “if” commands out of the 7 ones would be enough if executed in another

“for” loop the counter of which would be the ordinal number of the term that was to be

compared with the next term; lines 11 and 12 were coded (Fig. 2).

Excel: The cells with the sorted terms were coloured in grey; the redundant rows were

revealed, labelled with “x” (Fig. 1 middle) and filtered away (Fig. 1 right) (an improved

version of the application was obtained with significantly reduced number of rows).

Delphi: Looking at the coloured pattern in Fig. 1 right, the fact was revealed that the index of

the last term to be compared with the next term depended on the ordinal number j of the

round; if 1=j , then it was 7=i ; if 2=j , then it was 6=i , and so on; the sum was always 8,

which gave the formula ji −= 8 ; line 11 was rewritten (a much quicker version of the

application was obtained; Fig. 4).

Delphi: The application was generalised. Component SpinEdit was added, properties Min,

Max and Value were set to 2, 100 and 8. Variable N was introduced for the number of terms

(Fig. 5).

Delphi: The students were invited to take counter j for the number of the unsorted terms,

and read the white-yellow pattern in Fig. 1 right in other way. The “for j” loop was rewritten

as “N downto 2”. It was found that the ordinal number of the last unsorted term was j, so the

latest term to be compared with the next one was the last but one unsorted term the index of

which was 1−= ji . Lines 10 and 11 were rewritten as in Fig. 6.

Delphi: The fact was pointed out that it may happen that the array would be sorted as early

as in the first round, e.g.; the students were invited to think at home how to find out that the

array has been sorted and how to adjust the program to stop.

3. Selectsort

3.1. Excel and Delphi implementations

In Selectsort, the maximum (or minimum) of the unsorted section of the array is found and

swapped with the latest (or first) unsorted term [14]. The knowledge of finding the

maximum (or minimum) of an array is essential. The application is in Fig. 10. The array is in

range B3:I3. The indices are in range B2:I2. The formula =B3 is written in cell B4 and filled

right as far as column I. Range B4:I4 is filled down as far as row 10, which produces 7 copies

of the generated array.

Figure 10. Selectsort in Excel

The first round is in ranges L3:S3 (development of the current maximum Max), U3:AB3

(development of the index MaxI of the current maximum Max) and B4:I4. Cells L3 and U3

contain =B3 and =B2. Cells M3 and V3 contain =IF(C3>L3,C3,L3) and =IF(C3>L3,C$2,U3). The

formulas are filled right. The formula =IF(B$2=$AB3,$I3,B3) is written in cell B4. The formula

is copied right as far as cell H4. The formula =S3 is written in cell I4.

6

Spreadsheets in Education (eJSiE), Vol. 6, Iss. 3 [2013], Art. 4

http://epublications.bond.edu.au/ejsie/vol6/iss3/4

The second round is in ranges L4:R4, U4:AA4 and B5:H5. Ranges L4:R4 and U4:AA4 are

copies of ranges L3:R3 and U3:AA3. The formula from cell B4 is copied into cell B5, modified

to =IF(B$2=$AA4,$H4,B4) and filled right as far as G5. Cell H5 contains the formula =R4.

The next rounds are implemented in the same way. The sorted array is in cells B10:I10.

Remark: A version with functions Max and Match is added into the attached Excel file.

The Pascal code that corresponds to the application in Fig. 10 is in Fig. 11. The lines are

numbered in the succession as they were coded (see section 3.2). The interface is in Fig. 3 left.

Figure 11. Delphi Pascal commands for generating and selectsorting 8 term arrays

The code for the general version (Fig. 3 right) is

Figure 12. Delphi Pascal commands for generating and selectsorting N term arrays

7

Benacka: Bubble and Selection Sorting with Excel

Published by ePublications@bond, 2013

If j is taken for the number of unsorted terms in the array, then it drops from N to 2, and the

position i of the latest unsorted term is ji = . The code is

Figure 13. Other Delphi Pascal code for selectsorting N term arrays

3.2 The teaching method

The students were supposed to be familiar with Bubblesort (section 2) and to be able to find

the maximum of an array. The applications in Fig. 10 and Fig. 3 left were shown and

demonstrated. The template shown in Fig. 14 and the application shown in Fig. 3 left with

lines 0 – 9 completed were downloaded by the students from the author’s web site, and the

applications were developed step by step as follows:

Figure 14. Excel template for Selectsort

Excel: The formula =B3 was written in cell B4 and filled right as far as column I; range B4:I4

was filled down as far as row 10 (7 copies of the array were obtained).

Excel: Range L3:S3 was created (the maximum was found); range U3:AB3 was created (the

index of the maximum was found)

Delphi: The following commands were written between lines 6c and 9 (maximum and its

index were found; Fig. 15):
 Max:=A[1]; MaxI:=1;

 for i:=2 to 8 do if A[i]>Max then begin Max:=A[i]; MaxI:=i; end;

Excel: Range B4:I4 was created (the maximum was swapped with the last term); range I4:I10

was coloured (the sorted part was marked in grey).

Delphi: The following commands were written below the previous ones (the maximum was

swapped with the last term; Fig. 15)
 A[MaxI]:=A[8]; A[8]:=Max;

Excel: Ranges L4:R4, U4:AA4 and B5:I5 were created (the second maximum and its index

were found and swapped with the last but one term).

Delphi: The three commands were copied, pasted below and number 8 was rewritten by 7 as

follows (the second maximum and its index were found; the second maximum was swapped

with the last but one term; Fig. 15).
 Max:=A[1]; MaxI:=1;

 for i:=2 to 7 do if A[i]>Max then begin Max:=A[i]; MaxI:=i; end;

 A[MaxI]:=A[7]; A[7]:=Max;

8

Spreadsheets in Education (eJSiE), Vol. 6, Iss. 3 [2013], Art. 4

http://epublications.bond.edu.au/ejsie/vol6/iss3/4

The development went on by repeated pasting and rewriting (Fig.10: a sorted array was

obtained in range B10:I10; Fig. 15: a sorted array was obtained in Memo 2; the Delphi code

was called “a greenhorn’s construction”, again).

Figure 15. A simple version of Selectsort for sorting 8 term arrays

Delphi: The students were invited to simplify the code. It was found that the upper bound

for counter i in the “for” loop depends on the ordinal number of the round. Variable j was

introduced for the ordinal number of the round. It was found that if 1=j , then the bound

was 8=i . If 2=j , then it was 7=i , and so on. The sum of i and j was always 9, which

implied the formula ji −= 9 . It was found that just one sequence out of the seven ones

would be enough if executed in an outer “for j” loop; lines 10 – 14 were written.

Delphi: The application was generalised. Component SpinEdit was added. Properties Min,

Max and Value were set to 2, 100 and 8. Variable N was introduced for the number of terms.

The array range in line 2 was adjusted to 1..100 (Fig. 12).

Delphi: The students were invited to take variable j for the number of the unsorted terms,

and read the white-grey pattern in Fig. 10 in another way. The “for j” loop was rewritten as

“N downto 2”. It was found that the index of the latest unsorted term, which was to be

replaced by Max, was ji = . Lines 10a, 12 and 14 were rewritten as in Fig. 13.

9

Benacka: Bubble and Selection Sorting with Excel

Published by ePublications@bond, 2013

4. Survey and results

Nine 90 minute lessons were taught to 83 participants. The groups are listed in Tab. 1. The

Bubblesort applications were developed with 15 fourth year (age 18-19) gymnasium

(grammar school) students of Gymnazium in Surany in Informatics lesson (group SU), 3

fourth year gymnasium students of Gymnazium in Nove Zamky within Computer

modelling club that the author runs at the school (group NZ), 27 first year undergraduates of

Teaching Informatics in Programming lesson (group PR), 6 first year master students of

Teaching Informatics in Informatics Didactics lesson (group DI), and a group of 2 PhD

students and 3 university teachers of Informatics and Teaching Informatics at a workshop

within conference ISSEP 2013 (group CO). The Selectsort applications were developed with

17 fourth year gymnasium students of Gymnazium in Surany in Informatics lesson, 3 fourth

year gymnasium students of Gymnazium in Nove Zamky, members of the Computer

modelling club (group NZ), and 7 first year undergraduates of Teaching Informatics in

Programming Seminar (group PS). At the end of the lesson, the participants were given

questions with a list of answers to be chosen from. The questionnaire for groups SU, NZ, PR

and SP comprised the following questions:

A) The lesson was (1:very; 2:quite; 3: little; 4:not) interesting;

B) I understood (1:everything; 2:majority; 3:minority; 4:nothing);

C) I learned (1:very much; 2:quite much; 3: little; 4:nothing) new in programming;

D) Developing the Excel application was (1:very; 2:quite; 3: little; 4:not) helpful;

E) I am a man (1:Yes; 2:No).

F) I had written a Bubblesort program before this one (1:Yes; 2:No).

The word Bubblesort in question F was replaced with Selectsort when the algorithm was

taught. The average of the answers to questions A, B, C and D are in Tab. 1 in columns A, B,

C and D. The number of answer “Yes” to questions E and F is in columns E and F.

The questionnaire for groups DI and CO comprised the following questions:

A) The lesson was (1:very; 2:quite; 3: little; 4:not) interesting;

D) The Excel application was (1:very; 2:quite; 3: little; 4:not) helpful;

E) I am a man (1:Yes; 2:No).

G) I would like to see teaching Selectsort through Excel 1) yes; 2) no;

The average of the answers to questions A and D are in Tab. 1 in columns A and D. The

number of answer “Yes” to questions E and G is in columns E and G.

Group Number Topic A B C D E F G

SU 15 Bubble 1.5 1.5 2.1 1.8 13 4 -

NZ 3 Bubble 2.0 1.3 2.0 1.3 3 1 -

PR 27 Bubble 1.6 1.6 2.0 1.6 15 6 -

DI 6 Bubble 1.7 - - 1.2 6 - 4

CO 5 Bubble 2.0 - - 1.0 4 - 3

SU 17 Select 2.6 2.0 2.2 2.1 13 0 -

NZ 3 Select 2.0 1.3 1.3 1.3 3 0 -

PS 7 Select 1.4 2.0 2.0 1.9 5 0 -

Total 83 1.7 1.7 2.0 1.7 62 11 7

Table 1: Result of the questionnaires; A – D: average answer; E – G: number of “yes”

The average of the answers of the gymnasium students (groups SU and NZ, twice each) is

1.8 (A), 1.7 (B), 2.1 (C) and 1.9 (D) at the standard deviation of 0.49, 0.68, 0.56 and 0.61,

respectively. The relative frequencies are graphed in Fig. 16.

10

Spreadsheets in Education (eJSiE), Vol. 6, Iss. 3 [2013], Art. 4

http://epublications.bond.edu.au/ejsie/vol6/iss3/4

Figure 16: Relative frequency of the answers of the gymnasium students in % for

Bubblesort (left) and Selectsort (right).

There was no answer of 4. The result is that: (A) 100% found the Bubblesort lessons very or

quite interesting; it was 90% for Selectsort; (B) 100% understood everything or the majority

for Bubblesort; it was 75% for Selectsort; (C) 83% learned very or quite much new in Delphi

programming for Bubblesort; it was 80% for Selectsort. (D) 94% found developing the Excel

application very or quite helpful for Bubblesort; it was 80% for Selectsort; (E) 89% were men

and 11% were women for Bubblesort, and 80% were men and 20% for Selectsort; (F) 28%

had written a Bubblesort program before and it was 0% for Selectsort.

The average of the answers of the undergraduates (group PR twice and PS) is 1.6 (A), 1.6 (B),

2.0 (C) and 1.6 (D) at the standard deviation of 0.54, 0.59, 0.62, 0.69. The relative frequencies

are graphed in Fig. 17. There was no answer of 4.

Figure 17: Relative frequency of the answers of the undergraduates in % for

Bubblesort (left) and Selectsort (right)

The result is that: (A) 100% found the Bubblesort lessons very or quite interesting and it was

85% for Selectsort; (B) 100% understood everything or the majority for Bubblesort and it was

71% for Selectsort; (C) 81% learned very or quite much new in programming for Bubblesort

and it was 86% for Selectsort; (D) 93% found developing the Excel application very or quite

helpful for Bubblesort and it was 71% for Selectsort; (E) 56% were man and 44% were

women for Bubblesort and it was 71% and 29% for Selectsort; (F) 22% had written a

Bubblesort program before the lesson and it was 0% for Selectsort.

The average of the answers of the master students, PhD students and university teachers is

1.8 (A) and 1.1 (D) at the standard deviation of 0.39 and 0.48. There was no answer of 3 or 4

in questions A and D. The relative frequencies are graphed in Fig. 18.

11

Benacka: Bubble and Selection Sorting with Excel

Published by ePublications@bond, 2013

Figure 18: Relative frequency of the answers of the master students (left), and PhD students

and university teachers (right) in % for Bubblesort

The result is that: (A) 100% found the lesson very or quite interesting; (D) 100% found

developing the Excel application very or quite helpful; (E) 91% were men and 9% were

women; (G) 64% would like to see teaching Selectsort through Excel.

The relative frequencies of the answers to questions A, D and E of all participants are

graphed in Fig. 19. The result is that: (A) 29% found the lessons very interesting, 67% found

them quite interesting and 4% little interesting; (D) 45% found developing the Excel

applications very helpful, 45% quite helpful and 10% little helpful; (E) 75% were men.

Figure 19: Relative frequency of the answers of all participants in %

5. Conclusions

A method of learning programming the bubble and selection sorting algorithms was

presented in the paper. The method is based on the idea of simultaneous developing

interactive applications in Excel and rewriting the just acquired step of the solution in Delphi

Pascal. Nine 90 minute lessons were taught to 83 participants from whom 25% were women.

The participants were fourth year gymnasium (grammar school) students (age 18-19), first

year undergraduates and first year master students of Teaching Informatics, and PhD

students and university teachers of Informatics and Teaching Informatics. Questionnaires

were given to the participants after the lessons to find out their opinion of the method. The

main outcome was that 96% of the participants found the lessons interesting (29%very and

67% quite) and 90% of the participants found developing the Excel applications helpful (45%

very and 45% quite). Relying on the result, it can be concluded that the simultaneous

developing interactive spreadsheets and writing the code in a programming language is an

interesting and lucid way of programming the two algorithms. Other algorithm that is

suitable for the teaching approach is insertion sorting.

12

Spreadsheets in Education (eJSiE), Vol. 6, Iss. 3 [2013], Art. 4

http://epublications.bond.edu.au/ejsie/vol6/iss3/4

References

[1] Ben-Ari, M. (1998). Constructivism in computer science education. ACM SIGCSE Bulletin,
30(1), 257–261.

[2] Hadjerrouit, S. (1999). A constructivist approach to object-oriented design and
programming. ACM SIGCSE Bulletin, 31(3), 171–174.

[3] Van Gorp, M.J., Grissom, S. (2001). An empirical evaluation of using constructive classroom
activities to teach introductory programming. Computer Science Education, 11, 247–260.

[4] Ma, L., Ferguson, J., Roper M., Wood, M. (2011). Investigating and improving the models of
programming concepts held by novice programmers. Computer Science Education, 21(1),
57 – 80.

[5] Dybdahl, A., Sutinen, E., Tarhio, J. (1998). On animation features of Excel. ITiCSE '98
Proceedings of the 6th annual conference on the teaching of computing and the 3rd annual
conference on Integrating technology into computer science education: Changing the
delivery of computer science education. ACM SIGCSE Bulletin, 30(3), 77-80.

[6] Fone, W. (2001). Using a familiar package to demonstrate a difficult concept: Using an Excel
spreadsheet to explain concepts of neural networks to undergraduates. ITiCSE '01
Proceedings of the 6th annual conference on Innovation and technology in computer
science education, ACM SIGCSE Bulletin, 33(3), 165-168.

[7] Lovászová, G., Hvorecký, J. (2003). On programming and spreadsheet calculations.
Spreadsheets in Education, 1(1), article 3.
http://epublications.bond.edu.au/ejsie/vol1/iss1/3

[8] Benacka, J. (2008). 3D Graphics with spreadsheets. Spreadsheets in Education, 3(1).
http://epublications.bond.edu.au/ejsie/vol3/iss1/7.

[9] Benacka, J. (2012). Central projection in Excel – an introduction to virtual reality.
Spreadsheets in Education, 6(1). http://epublications.bond.edu.au/ejsie/vol6/iss1/3.

[10] Baker, J.; Sugden, S. (2003). Spreadsheets in education – the first 25 years. In: Spreadsheets
in Education, 1 (1), article 2. http://epublications.bond.edu.au/ejsie/vol1/iss1/2

[11] Kadijevich, D. (2013). Learning about spreadsheets. In: Kadijevich, D.M., Angeli, C., Schulte,
C. (Eds.), Improving Computer Science Education. Routledge, New York, 19–33.

[12] Blaho, A. (2006). Informatika pre stredné školy. Programovanie v Delphi (Eng.: Informatics
for secondary schools. Programming in Delphi). SPN - Mladé letá, Bratislava.

[13] Taherkhani, A., Korhonen, A., Malmi, L. (2012). Categorizing variations of student-
implemented sorting algorithms, Computer Science Education, 22(2), 109-138.

[14] Knuth, D. (1998). The Art of Computer Programming, Volume 3: Sorting and Searching,

2nd ed. Addison-Wesley, p. 107, 139.

13

Benacka: Bubble and Selection Sorting with Excel

Published by ePublications@bond, 2013

	Spreadsheets in Education (eJSiE)
	October 2013

	Bubble and Selection Sorting with Excel
	Jan Benacka
	Recommended Citation

	Bubble and Selection Sorting with Excel
	Abstract
	Keywords
	Distribution License
	Cover Page Footnote

	Microsoft Word - 360171-text.native.1382945024.docx

