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A Regression-Based Interpretation of the Inverse of the Sample
Covariance Matrix

Abstract
The usefulness of covariance and correlation matrices is well-known in various academic fields. Matrix
inversion, if required in an analytical setting, tends to mask the intuition in interpreting the corresponding
empirical or experimental results. Drawing on the finance literature in mean-variance portfolio analysis, this
paper presents pedagogically a regression-based interpretation of the inverse of the sample covariance matrix.
Microsoft ExcelTM plays an important pedagogic role in this paper. The availability of various Excel functions
and computational tools for numerical illustrations provides flexibility for instructors in the delivery of the
corresponding analytical materials.
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A Regression-Based Interpretation
of the Inverse of the Sample Covariance Matrix

1 Introduction

For a given set of real-valued random variables, the corresponding covariance matrix, which is

symmetric, contains all their variances and covariances. If the variables involved are scaled to

have unit variances, the resulting matrix is a correlation matrix. The usefulness of covariance

and correlation matrices is well-known across di¤erent academic disciplines. Very often, matrix

inversion is involved. In �nance, for example, the covariance matrix of security returns is part of

the input parameters for portfolio analysis, and e¢cient allocations of investment funds require

the inversion of such a matrix.1

By de�nition, a square matrix is invertible if there exists another square matrix of the same

order, such that their product is an identity matrix. Analytically, the inverse of a square matrix

can be expressed as its adjoint divided by its determinant. Thus, for a covariance matrix of

order higher than three, unless the matrix is characterized to have a speci�c structure, to express

explicitly each element of the matrix inverse in terms of the original matrix elements is a very

tedious task.2

From a pedagogic perspective, if the analytical solution of an optimization problem requires

the inversion of the covariance matrix, of interest is whether we can still go beyond the technical

aspect of the task involved, by also explaining the analytical solution intuitively. To explain

any analytical solutions involving matrix inversion, an explicit connection between corresponding

elements of the matrix and its inverse is required. This paper is intended to provide such a

1See, for example, Kwan (2011) for some recent references pertaining to the use of covariance and correlation
matrices, as well as their inverses, for various empirical and experimental investigations. See also Elton, Gru-
ber, Brown, and Goetzmann (2010, Chapter 6) for a basic portfolio selection model. In that model, e¢cient
allocations of investment funds are achieved by solving a set of linear equations, which contains elements of
the covariance matrix of security returns. This is analytically equivalent to using the inverse of the covariance
matrix for portfolio decisions.

2See, for example, Reiner (1971, Chapters 5 and 6) and Larson and Falvo (2009, Chapters 2 and 3) for
de�nitions of various terms in matrix algebra and for basic matrix operations. See also Elton, Gruber, Brown,
and Goetzmann (2010, Chapters 7-9) and Kwan (1984) for some characterizations of the covariance matrix of
security returns. They include constant correlation models and various index models. Such characterizations
enable the elements of each inverse matrix to be expressed explicitly, thus allowing the corresponding portfolio
allocation results to be explained intuitively.
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connection without having to specify a covariance structure.

In most empirical and experimental settings, as the true covariance matrix is unknown, it

must be estimated with available observations. A sample covariance matrix is a covariance

matrix that is estimated under the assumption of a stationary (stable) joint probability distri-

bution of the variables considered. Under such an assumption, each sample observation can

be viewed as a random draw from a given distribution. It is the stationarity assumption that

allows a direct connection to be made between the inverse of the sample covariance matrix and

multiple linear regression.

In a setting of portfolio analysis, Stevens (1998) has provided an innovative interpretation

of the inverse of the covariance matrix of security returns. The interpretation is based on

multiple linear regression models, in which the random return of each security is characterized

as depending linearly on the random returns of all remaining securities considered.3 The speci�c

regression results that are relevant for the interpretation are the ordinary least squares (OLS)

regression coe¢cients and the coe¢cient of determination, which is commonly known as R2:

Notice that such results, unlike the standard errors of the regression coe¢cients (for testing

their statistical signi�cance, for example) and various other usual regression outputs, do not

require any speci�c assumption on the underlying joint probability distribution of the variables

involved.4 Notice also that, although Stevens� interpretation pertains to a �nancial setting, the

underlying idea is general enough to accommodate other settings. Such �exibility is important

for a general interpretation of the inverse of a given sample covariance matrix.

How Stevens� interpretation can be covered e¤ectively in the classroom, however, depends on

prior mathematical and statistical knowledge of the students involved. At one extreme, students

who are already familiar with both block matrix inversion and OLS regression in matrix notation

3In portfolio analysis that uses the sample covariance matrix of security returns as part of the input parame-
ters, whether the matrix is invertible can be explained in terms of some return characteristics of the securities
considered. If one of the securities considered is risk-free, the corresponding sample covariance matrix is not
invertible. Neither is it invertible if the random returns of any two securities are perfectly correlated; nor is it
invertible if the random return of any security can be replicated exactly by a portfolio of some other securities
considered. All these analytical features can be detected in the multiple linear regression models under Stevens�
interpretation.

4In regression analysis, justi�cation for the OLS approach does require various assumptions on the probability
distributions of the variables involved. However, the issue here is not about whether better parameter estimates
can be achieved by using other estimation methods. Rather, it is about whether the OLS approach, which is the
simplest method for regression analysis, can provide results that enable us to interpret the inverse of the sample
covariance matrix.
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will likely �nd Stevens� analytical result obvious. This is because there are close similarities

between the analytical expressions of the inverse of a block matrix and some well-known OLS

regression results, when a sample covariance matrix is partitioned in a speci�c way. At the other

extreme, where students� mathematical and statistical preparedness is deemed inadequate, a less

formal approach is better for presenting Stevens� interpretation. Between the two extremes is

a range of situations, for which di¤erent pedagogic approaches are warranted. This paper

is intended to provide, in considerable detail, the analytical materials involved for individual

instructors to choose for their classroom coverage.

On the computational side, Microsoft ExcelTM plays an important pedagogic role in this

paper.5 Excel has various built-in functions for matrix operations. Functions such as TRANS-

POSE and MMULT for matrix transposition and multiplication, respectively, are particularly

useful for deducing the sample covariance matrix from a set of mean-removed observations of the

variables considered. The function MINVERSE can then be used to provide the corresponding

matrix inverse directly.

For the purpose of interpreting the inverse of the sample covariance matrix, Excel can be

utilized in di¤erent ways to deduce the required regression results. For courses where analytical

details pertaining to matrix inversion and its interpretation are covered, the corresponding

regression analysis is best performed via matrix operations in Excel. For such courses, the

Excel illustration in this paper is not intended to be a substitute for actually covering the

corresponding analytical materials. Rather, by using matrix operations in Excel to bypass

the tedious computational task, students will be able to focus on the analytical details and the

corresponding concepts. In this regard, Excel can perform a similar pedagogical role as that of

various statistical and computational software packages accompanying senior-level courses, such

as quantitative �nance, portfolio theory, and econometric methods, where analytical details of

the covered topics are emphasized.

For courses where the underlying principle of regression analysis is covered without using

matrix algebra, then Excel Solver is ideal for �nding the regression coe¢cients involved. Given

the regression coe¢cients, the corresponding R2 can easily be computed in Excel. For courses

where how regression results are generated is not a concern, the Excel function LINEST is

5For the rest of this paper, whenever the name Excel or any of its tools is mentioned, its trademark is implicitly
recognized.
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suitable for the task, as it provides the regression coe¢cients, R2; and various other standard

regression results. The regression tool, which is among Excel�s various add-in tools for data

analysis and provides more detailed regression results than LINEST does, can be used as well.

The availability of these alternatives will give instructors �exibility in the Excel illustration of

the analytical concepts involved.

The remainder of this paper is organized as follows: Standard textbook materials on matrix

inversion are brie�y covered in Section 2, in order to show the analytical challenge in connecting

directly elements of a square matrix and elements of its inverse. Also covered in Section 2 is the

end result of the derivation in Sections 3 and 4 pertaining to a regression-based interpretation

of the inverse of the sample covariance matrix. The derivation in Sections 3 and 4 is presented

pedagogically in considerable detail, except for materials that are readily accessible elsewhere

for most readers.

The derivation in Section 3 is for a two-variable case, where a regression-based interpretation

of the inverse of the sample covariance matrix is established without reliance on matrix algebra.

A multivariate extension, which requires matrix operations, is provided in Section 4. A simple

model in portfolio analysis, which focuses on the inverse of the covariance matrix of security

returns, is presented in Section 5; this �nance model illustrates the usefulness of the regression-

based interpretation in an analytical setting. An numerical example, which illustrates how

various Excel functions and computational tools can be utilized pedagogically for the topic of

this paper, is presented in Section 6. Finally, Section 7 provides some concluding remarks.

2 Matrix Inversion

According to standard textbook materials in matrix algebra, if the inverse of a square matrix

V exists, it can be written as

V �1 =
1

detV
adjV : (1)

Here, detV is the determinant of V and adjV is the adjoint of V ; which is the transpose of

the matrix of cofactors of V : The cofactor of the (i; j)-element of V ; labeled as Cij; is (�1)
i+j

times the determinant of a square matrix of order n� 1; which is the original V with its row i

4
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and column j removed.6 Notice that the square matrix V here need not be symmetric. As

V �1 =
1

detV

2
6664

C11 C21 � � � Cn1
C12 C22 � � � Cn2
...

...
. . .

...
C1n C2n � � � Cnn

3
7775 ; (2)

each (i; j)-element of V �1 is Cji= detV :

To express explicitly each (i; j)-element of V �1 in terms of elements of V requires that the

determinant of a square matrix be de�ned. If sij is the (i; j)-element of V ; the general de�nition

of its determinant is

detV =
X
(�1)s1i1s2i2 � � � snin ; (3)

where the summation is over all n! permutations of i1; i2; : : : ; in: The n di¤erent integers that

i1; i2; : : : ; in represent can be any permutation of 1; 2; : : : ; n: If it takes an even number of

interchanges to rearrange these integers as 1; 2; : : : ; n; which involve an adjacent pair of integers

for each interchange, then we use a positive multiplicative factor (+1) for s1i1s2i2 � � � snin : If it

takes an odd number of interchanges, then we use a negative multiplicative factor (�1) instead.

For an illustration, let us consider the case of n = 3; where there are 3! (= 6) permutations of

1; 2; 3: Speci�cally, let us consider the term s13s21s32 in a summation of six terms. To rearrange

3; 1; 2 as 1; 2; 3 requires two interchanges. The �rst interchange (which is between 3 and 1)

transforms 3; 1; 2 into 1; 3; 2; and the second interchange (which is between 3 and 2) transforms

1; 3; 2 into 1; 2; 3: As the number of interchanges is even, the corresponding multiplicative factor

is +1:

There is an alternative expression of the determinant, which is also based on its de�nition

in equation (3). It is commonly known as Laplace�s expansion, and its expression is

detV =
Xn

j=1
sijCij =

Xn

i=1
sijCij: (4)

The computational convenience of this expression notwithstanding, a direct connection between

elements of V and V �1 remains elusive for n > 3:

6See, for example, Reiner (1971, Chapters 5 and 6) and Larson and Falvo (2009, Chapters 2 and 3) for
analytical details.
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2.1 A Regression-Based Version of the Inverse

To facilitate an interpretation of V �1; suppose that a symmetric matrix V is an n� n sample

covariance matrix based on a set of m observations of the variables X1;X2; : : : ;Xn: The

observations are represented by (X1k; X2k; : : : ; Xnk); for k = 1; 2; : : : ;m; where the �rst and

second subscripts are variable and observation labels, respectively. Letting

X i =
1

m

Xm

k=1
Xik; (5)

for i = 1; 2; : : : ; n; be the n sample means, we have the corresponding mean-removed variables

x1;x2; : : : ;xn; along with a set of mean-removed observations (x1k; x2k; : : : ; xnk); where

xik = Xik �X i; (6)

for i = 1; 2; : : : ; n and k = 1; 2; : : : ;m: Each (i; j)-element of V is

sij =
1

m� 1

Xm

k=1
xikxjk; (7)

for i; j = 1; 2; : : : ; n:

The inverse of the sample covariance matrix V ; as derived in Sections 3 and 4, is

V �1 =

2
6664

1=[s11(1�R
2
1)] �b�12=[s11(1�R21)] � � � �b�1n=[s11(1�R21)]

�b�21=[s22(1�R22)] 1=[s22(1�R
2
2)] � � � �b�2n=[s22(1�R22)]

...
...

. . .
...

�b�n1=[snn(1�R2n)] �b�n2=[snn(1�R2n)] � � � 1=[snn(1�R
2
n)]

3
7775 : (8)

Here, when xi as a dependent variable is regressed on the remaining variables in a multiple linear

regression, each b�ij represents the regression coe¢cient for independent variable xj; and R2i is
the corresponding coe¢cient of determination. Each diagonal (i; i)-element is 1=[sii(1 � R

2
i )];

each o¤-diagonal (i; j)-element, where i 6= j; is �b�ij=[sii(1 � R2i )]: Equation (8) is the key

analytical result in Stevens (1998); such a result is important because it allows each element of

the inverse of the sample covariance matrix to be interpreted in terms of some OLS regression

results.

3 A Two-Variable Case

For a pair of random variables, X1 andX2; suppose that m observations, labeled as (X11; X21);

(X12; X22); : : : ; (X1m; X2m); are available. With x1 and x2 being a pair of mean-removed vari-

ables, we have m observations, (x11; x21); (x12; x22); : : : ; (x1m; x2m): The sample variances of x1

6
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and x2; labeled as s11 and s22; respectively, and the sample covariance of x1 and x2; labeled as

either s12 or s21; are given by equation (7), where each of i and j can be 1 or 2:

The corresponding 2� 2 sample covariance matrix, which is symmetric, is given by

V =

�
s11 s12
s21 s22

�
; (9)

where s12 = s21: To �nd the inverse of V ; let us label it as

V �1 = U =

�
u11 u12
u21 u22

�
: (10)

As the direct multiplication of U and V must result in a 2 � 2 identity matrix, the diagonal

and o¤-diagonal elements of U are, respectively,

uii =
sjj

siisjj � s2ij
(11)

and

uij = uji = �
sij

siisjj � s2ij
; (12)

where each of i and j can be 1 or 2; but i 6= j:

3.1 Linear Regression

To facilitate an interpretation ofU ; we consider two linear regression models based on x1 and x2;

to be �tted by the m mean-removed observations, (x11; x21); (x12; x22); : : : ; (x1m; x2m): The roles

of x1 and x2 as independent and dependent variables are reversed for the two models. Given

the extensive textbook coverage of linear regression, only the part pertaining to our speci�c task

is covered below.7

Suppose that xi is the independent variable and xj is the dependent variable, where i 6= j:

That is, if i = 1; we have j = 2; if i = 2; we have j = 1 instead. Each regression model is

xj = �jxi + ej; (13)

where �j is an unknown parameter to be estimated and ej is random noise.

If b�j is an estimated value of �j; then each

ejk = xjk � b�jxik; (14)

7See, for example, DeCoursey (2003, Chapter 14), Johnston (1972, Chapter 2), and Maddala (1977, Chapter
7) for textbook coverage of linear regression.
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which represents the part of xjk that the regression model is unable to capture, for k =

1; 2; : : : ;m; can be viewed as the m realizations of ej: Given that each of xi and xj has a

zero mean, so does ej: This is because

1

m

Xm

k=1
ejk =

1

m

�Xm

k=1
xjk � b�j

Xm

k=1
xik

�
= 0; (15)

regardless of the value of b�j:
Using the OLS approach, we seek a b�j that minimizes
Xm

k=1
e2jk =

Xm

k=1
(xjk � b�jxik)2 =

Xm

i=1
x2jk � 2

b�j
Xm

k=1
xjkxik + b�

2

j

Xm

k=1
x2ik: (16)

It follows from
d

db�j

Xm

k=1
e2jk = �2

Xm

k=1
xjkxik + 2b�j

Xm

k=1
x2ik = 0 (17)

that the optimal result is

b�j =
Pm

k=1 xjkxikPm

k=1 x
2
ik

=
sij
sii
: (18)

For this value of b�j; equation (16) reduces to
Xm

k=1
e2jk =

Xm

i=1
x2jk � 2

b�j
Xm

k=1
xjkxik +

Pm

k=1 xjkxikPm

k=1 x
2
ik

b�j
Xm

k=1
x2ik

=
Xm

i=1
x2jk �

b�j
Xm

k=1
xjkxik: (19)

Notice that equation (16) is of the algebraic form h = ab�2j � 2bb�j + c; where h is to be
minimized. Here, a; b; and c are of known values. As a is always positive, we can write

a(b�j � b=a)2 + c� b2=a = h; by completing the squares. This simple algebraic approach allows
us to bypass di¤erential calculus for con�rming that b�j = b=a minimizes h: This expression of
b�j is the same as that in equation (18).

3.2 The Coe¢cient of Determination

Letting

bxjk = b�jxik (20)

be the �tted value of xjk according to the above linear regression model, for k = 1; 2; : : : ;m; we

can write equation (14) equivalently as

xjk = bxjk + ejk: (21)

8
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Taking the sum of squares of each side leads to

Xm

k=1
x2jk =

Xm

k=1
(bxjk + ejk)2 =

Xm

k=1
bx2jk + 2

Xm

k=1
bxjkejk +

Xm

k=1
e2jk: (22)

As

Xm

k=1
bxjkejk = b�j

Xm

k=1
xikejk = b�j

Xm

k=1
xik(xjk � b�jxik)

= b�j
�Xm

k=1
xikxjk � b�j

Xm

k=1
x2ik

�
= 0; (23)

equation (22) reduces to
Xm

k=1
x2jk =

Xm

k=1
bx2jk +

Xm

k=1
e2jk: (24)

Here, the total sum of squares (SST) of the m observed values of xj is decomposed into two

parts, with one part explained by the regression (SSR) and the remaining part unexplained by

it (SSE); that is,

SST = SSR + SSE. (25)

The coe¢cient of determination of the regression, representing the explained sum of squares

as a proportion of the total sum of squares, is a goodness-of-�t measure. De�ned as

R2j =

Pm

k=1 bx2jkPm

k=1 x
2
jk

(26)

or, equivalently,

R2j = 1�

Pm

k=1 e
2
jkPm

j=1 x
2
jk

; (27)

it is commonly known as R2: Here, a subscript j has been added to indicate that this R2

pertains to the regression model in which xj is the dependent variable.

Combining equations (18), (19), and (27) leads to

R2j =
b�j
Pm

k=1 xjkxikPm

j=1 x
2
jk

=
(
Pm

k=1 xjkxik)
2

(
Pm

k=1 x
2
ik)
�Pm

j=1 x
2
jk

� : (28)

This result indicates that the coe¢cient of determination of the regression is also the square of

the sample correlation of x1 and x2: Provided that R
2
j 6= 1; equation (28) is equivalent to

1

1�R2j
=

(
Pm

k=1 x
2
ik)
�Pm

j=1 x
2
jk

�

(
Pm

k=1 x
2
ik)
�Pm

j=1 x
2
jk

�
� (
Pm

k=1 xjkxik)
2
=

siisjj
siisjj � s2ij

: (29)

9
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3.3 A Connection between Linear Regression and the Inverse of the

Sample Covariance Matrix

Given equation (11), we can write equation (29) as

ujj =
1

sjj(1�R2j )
: (30)

Given equations (12) and (18), we can also write equation (29) as

uji = �
1

1�R2j

sij
siisjj

= �
b�j

sjj(1�R2j )
: (31)

Again, each of i and j here can be 1 or 2; but i 6= j: Thus, the inverse of V is

V �1 =

�
u11 u12
u21 u22

�
=

"
1=[s11(1�R

2
1)] �b�1=[s11(1�R21)]

�b�2=[s22(1�R22)] 1=[s22(1�R
2
2)]

#
: (32)

As interchanging i and j does not a¤ect the right hand side of equation (28), R2i and R
2
j

must be equal; both are the square of the correlation of the two variables considered. Further,

as b�1 = s21=s22 and b�2 = s12=s11 = s21=s11 according to equation (18), the two o¤-diagonal

elements of V �1 must also be equal. That is, V �1 is symmetric as expected. Equation (32)

is a special case of equation (8) for n = 2: For notational simplicity, we have omitted the

second subscript in each of b�12 and b�21 in formulating the regression models for the derivation
of equation (32). Thus, should the same notation as in equation (8) be followed, b�1 and b�2 in
equation (32) would be b�12 and b�21; respectively.

4 A Multivariate Case

To illustrate multiple linear regression based on the values of xik; for i = 1; 2; : : : ; n and k =

1; 2; : : : ;m; let us start with the case where the dependent variable is x1 and the n�1 independent

variables are x2;x3; : : : ;xn: The regression model is

x1 = �12x2 + �13x3 + � � �+ �1nxn + e1; (33)

where �12; �13; : : : ; �1n are unknown parameters to be estimated and e1 is random noise. Given

that x1;x2; : : : ;xn are mean-removed variables, e1 has a zero mean as well. Denote the esti-

mated values of �12; �13; : : : ; �1n as
b�12; b�13; : : : ; b�1n; respectively, and let

b�1 =
h
b�12 b�13 � � � b�1n

i0
; (34)
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which is an (n� 1)-element column vector. Here, the prime indicates matrix transposition.

Let also

y1 =
�
x11 x12 � � � x1m

�0
(35)

and

z1 =

2
6664

x21 x22 � � � x2m
x31 x32 � � � x3m
...

...
. . .

...
xn1 xn2 � � � xnm

3
7775

0

(36)

be an m-element column vector and an m� (n� 1) matrix, respectively. Further, let

w1 =
�
e11 e12 � � � e1m

�0
(37)

be an m-element column vector, where

e1k = x1k � b�12x2k � b�13x3k � � � � � b�1nxnk; (38)

for k = 1; 2; : : : ;m: The subscript 1 in b�1; y1; z1; and w1 is for indicating that x1 is the

dependent variable.

To capture all observations of the n mean-removed variables x1;x2; : : : ;xn; we can write the

regression model compactly as

y1 = z1b�1 +w1: (39)

Noting that

w0
1w1 =

Xm

k=1
e21k (40)

is the sum of squares of the residual noise, we can determine the vector b�1 corresponding to its
minimization. It follows from

w0
1w1 = (y1 � z1

b�1)0(y1 � z1b�1)

= y01y1 � y
0
1z1
b�1 � b�

0

1z
0
1y1 +

b�01z01z1b�1
= y01y1 � 2

b�01z01y1 + b�
0

1z
0
1z1
b�1; (41)

that
@

@b�1
w0
1w1 = �2z

0
1y1 + 2z

0
1z1
b�1 = 0; (42)

where 0 is an (n� 1)-element column vector of zeros. Thus, the best �t is achieved by setting

b�1 = (z01z1)�1z01y1: (43)
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4.1 The Coe¢cient of Determination

Given equation (39), the sum of squares of the m observations of x1 can be written as

y01y1 = (z1b�1 +w1)
0(z1b�1 +w1)

= b�01z01z1b�1 + b�
0

1z
0
1w1 +w

0
1z1
b�1 +w0

1w1

= b�01z01z1b�1 + 2b�
0

1z
0
1w1 +w

0
1w1: (44)

As

b�01z01w1 = b�01z01(y1 � z1b�1) = b�
0

1(z
0
1y1 � z

0
1z1
b�1)

= b�01[z01y1 � z01z1(z01z1)�1z01y1] = b�
0

1(z
0
1y1 � z

0
1y1) = 0; (45)

equation (44) reduces to

y01y1 =
b�01z01z1b�1 +w0

1w1 = by01by1 +w0
1w1; (46)

where

by1 = z1b�1 (47)

is an m-element column vector representing the �tted values of the dependent variable x1:

Analogous to the two-variable case considered earlier, the total sum of squares (SST) of the m

observations of the dependent variable can also be decomposed into two parts, with one part

explained by the regression (SSR) and the remaining part unexplained by it (SSE). That is,

equation (25) also holds here.

The coe¢cient of multiple determination (or simply the coe¢cient of determination), denoted

also by R2; is de�ned as

R21 = by01by1(y01y1)�1 (48)

or, equivalently,

R21 = 1�w
0
1w1(y

0
1y1)

�1: (49)

It is a goodness-of-�t measure, which provides the explained sum of squares as a proportion

of the total sum of squares. Here, again, the subscript 1 is for indicating that the dependent

variable in the regression is the variable x1: As

by01by1 = b�
0

1z
0
1z1
b�1 = b�

0

1z
0
1z1(z

0
1z1)

�1z01y1 =
b�01z01y1; (50)
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we can write

R21 =
b�01z01y1(y01y1)�1 (51)

and then

R21y
0
1y1 =

b�01z01y1: (52)

Each side being a scalar, b�01z01y1 is the same as y01z1b�1:

4.2 A Connection between Multiple Linear Regression and the In-

verse of the Sample Covariance Matrix

Let us partition the n� n sample covariance matrix V as

V =

�
V 11 V 12

V 21 V 22

�
; (53)

where V 11 and V 22 are square matrices. Let us also partition its inverse conformally as

V �1 =

�
U 11 U 12

U 21 U 22

�
: (54)

That is, U 11; U 12; U 21; and U 22 are to have the same dimensions as V 11; V 12; V 21; and V 22;

respectively. As shown in the Appendix, the inverse of V can be expressed as

V �1 =

�
U 11 �U 11V 12V

�1
22

�V �1
22 V 21U 11 V �1

22 + V
�1
22 V 21U 11V 12V

�1
22

�
; (55)

where

U 11 = (V 11 � V 12V
�1
22 V 21)

�1: (56)

For the task here, of interest is the case where V 11 has only one element, which is s11; the

sample variance of the variable x1: As V
�1 is partitioned conformally,

U 11 = (s11 � V 12V
�1
22 V 21)

�1 (57)

also has only one element. Accordingly, both

V 12 =
�
s12 s13 � � � s1n

�
(58)

and

U 12 = �U 11V 12V
�1
22 (59)
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are (n� 1)-element row vectors.

It follows from equations (35) and (36) that

V 12 =
1

m� 1
y01z1 = V

0
21 (60)

and

V 22 =
1

m� 1
z01z1: (61)

We can then write equation (57) as

U 11 =

�
s11 �

1

m� 1
y01z1(z

0
1z1)

�1z01y1

��1
: (62)

Further substitutions by using equations (43) and (52) lead to

U 11 =

�
s11 �

1

m� 1
y01z1

b�1
��1

=

�
s11 �

R2

m� 1
y01y1

��1
=

1

s11(1�R2)
: (63)

To connect U 12 to regression results, we �rst write

V 12V
�1
22 = y

0
1z1(z

0
1z1)

�1 = b�01: (64)

This requires equations (60) and (61) and, subsequently, equation (43). As

U 12 = �U 11V 12V
�1
22 = �

1

s11(1�R21)
b�01; (65)

the �rst row of V �1 is

�
U 11 U 12

�
=
h
1=[s11(1�R

2
1)] �

b�12=[s11(1�R21)] � � � �b�1n=[s11(1�R21)]
i
: (66)

The inverse of an invertible sample covariance matrix is unique, and thus the above connec-

tion can easily be extended, for the purpose of interpreting each remaining row of the inverse

of the sample covariance matrix. All that is required is to relabel the n variables, so that the

variable corresponding to the row in question is treated as variable x1: Once the multiple linear

regression as described above has been performed, with the corresponding R21 and
b�1 obtained,

the original variable label is restored. This procedure, which requires corresponding rearrange-

ments of the a¤ected rows and columns of the sample covariance matrix and its inverse, leads

to equation (8).
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4.3 Mean Removal

For analytical convenience, mean-removed observations have been used above for �tting linear

regression models. However, the same models can be stated equivalently without requiring

mean removal. To illustrate with the multivariate linear regression model where X1 is the

dependent variable and X2;X3; : : : ;Xn are the independent variables, let us �t equation (33)

with mean-removed observations, by writing

x1k = b�12x2k + b�13x3k + � � �+ b�1nxnk + e1k (67)

as

X1k �X1 = b�12(X2k �X2) + b�13(X3k �X3) + � � �+ b�1n(Xnk �Xn) + e1k; (68)

for k = 1; 2; : : : ;m:

Equation (68) is equivalent to

X1k = b�1 + b�12X2k + b�13X3k + � � �+ b�1nXnk + e1k; (69)

for k = 1; 2; : : : ;m; where

b�1 = X1 � b�12X2 � b�13X3 � � � � � b�1nXn: (70)

Thus, regardless of whether mean removal has been performed on the raw observations, the

regression coe¢cients b�12; b�13; : : : ; b�1n and the goodness-of-�t measure as provided by the coef-
�cient of determination R21 are una¤ected. The only di¤erence is that, without mean removal,

there is an intercept term b�1 in the regression model, which can be deduced from equation (70).
The equivalence of the two versions of each regression model allows us to �t it without always

having to use mean-removed observations, as the raw observations are already adequate for the

task.

4.4 Matrix Inversion

An inspection of equation (8) reveals the conditions for V not to be invertible. Speci�cally, if

any of s11; s22; : : : ; snn is zero or if any of R
2
1; R

2
2; : : : ; R

2
n is one, V

�1 does not exist. As sii is the

sample variance of variable X i; for i = 1; 2; : : : ; n; a zero sii indicates that the m observations

of the variable are identical. With the entire row i (column i) of the n � n matrix V being
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zeros, the determinant of V is inevitably zero. Accordingly, V �1 does not exist. The case

where R2i = 1 pertains to the situation where there is an exact linear relationship between X i

and any of the remaining variables considered. This is the situation where row i (column i)

of V can be replicated by a linear combination of some other rows (columns); it includes the

special case where variable xi is perfectly correlated with any of the remaining variables. In

such a situation, as the determinant of the matrix is zero, the inverse of the matrix does not

exist.

5 An Analytical Example

We now illustrate that equation (8) can improve the interpretation of a well-known analytical

result of risk minimization in portfolio analysis. This illustration is much simpler than that

in Stevens (1998), where risk minimization is also subject to a requirement on the portfolio�s

expected return. For the task here, let us consider a set of n risky securities, for which the

sample covariance matrix of returns is an n� n invertible matrix V : The (i; j)-element of V is

sij; for i; j = 1; 2; : : : ; n: Suppose that a portfolio o is formed, with proportions of investment

funds a1; a2; : : : ; an assigned to the n securities. These proportions of investment funds are

known as portfolio weights.

For analytical convenience, let us assume frictionless short sales; this is the case where the

short seller provides no margin deposit for each shorted security and has immediate access to the

short-sale proceeds. Under this simplifying assumption, the only constraint for the construction

of a portfolio to achieve the lowest possible risk based on the set of n securities is

Xn

i=1
ai = 1: (71)

That is, the investment funds are intended to be fully allocated among the n securities consid-

ered.

Security i is said to be held long in portfolio o if ai is strictly positive; it is said to be held

short there if ai is strictly negative. The portfolio risk, labeled as s2o and represented by the

sample variance of returns of the portfolio, is8

s2o =
Xn

i=1

Xn

j=1
aiajsij: (72)

8See Kwan (2007, Footnote 4) for a simple way to compute the variance of portfolio returns.
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In matrix notation, we can write

s2o = a
0V a; (73)

where a is an n-element column vector with elements being a1; a2; : : : ; an:

5.1 The Sum of Elements in Each Row of the Inverse of the Covari-

ance Matrix

As shown pedagogically in Kwan (2010), an invertible sample covariance matrix is positive de�-

nite and, given a positive de�nite covariance matrix V ; the portfolio weight vector corresponding

to the lowest portfolio risk, is

a = V �1�
�
�0V �1�

��1
; (74)

where � is an n-element column vector with each element being one. Here, V �1� is an n-

element column vector with its i-th element being the sum of the n elements in row i of V �1;
�
�0V �1�

��1
; which is a positive scalar, is the reciprocal of the sum of all elements of V �1:9

Thus, the portfolio weight vector a corresponding to portfolio risk minimization is proportional

to V �1�:

For ease of exposition below, let us label the i-th element of the vector V �1� as gi; for

i = 1; 2; : : : ; n: The sign of gi is the same as the sign of ai: The magnitude of gi is proportional

to the investment funds for security i in the portfolio.

Although the portfolio weight vector in equation (74) is easy to compute, it is not as easy to

extract any intuition that underlies such a solution. In view of equation (2) and the symmetry

of the covariance matrix, the i-th element of the vector V �1� is

gi =
1

detV

Xn

j=1
Cij; (75)

for i = 1; 2; : : : ; n: Therefore, it is di¢cult to interpret intuitively the least risky portfolio

weights by using standard textbook materials in matrix algebra.

9For an n�n covariance matrix V to be positive de�nite, we must have b0V b > 0 for any n-element nonzero
column vector b: As we can write 0 < b0V b = b0V V �1V b = (V b)0V �1(V b); where V b is an arbitrary n-
element column vector, the positive de�niteness of V �1 is con�rmed. Thus, if V is a positive de�nite covariance
matrix, then �0V �1� is a positive scalar.
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5.2 A Regression-Based Interpretation

Suppose that the estimation of the n�n covariance matrix V is based on m return observations

of the n securities considered. Equation (8) allows us to write the i-th element of the vector

V �1� as

gi =
1

sii(1�R2i )

�
1�

Xn

j=1; j 6=i

b�ij
�
; (76)

for i = 1; 2; : : : ; n; where, more explicitly,

Xn

j=1; j 6=i

b�ij = b�i1 + b�i2 + � � �+ b�i;i�1 + b�i;i+1 + � � �+ b�in: (77)

The right hand side of equation (76) is una¤ected by the sample means of the n security returns,

and thus we can use zero sample means for expositional convenience.

As equation (76) indicates, the sign and the magnitude of each portfolio weight depend on

the set of regression coe¢cients, and the magnitude depends also on the corresponding security�s

variance of returns and the coe¢cient of determination of the linear regression model involved.

Let us examine the sign of each portfolio weight �rst. For the case where

Xn

j=1; j 6=i

b�ij = 1; (78)

security i can be viewed as an inexact replication by a portfolio of securities 1; 2; : : : ; i � 1; i +

1; : : : ; n; with the portfolio weights being the corresponding regression coe¢cients. The replica-

tion is inexact because of the presence of the residual noise ei in the regression model. Without

the noise term, however, the n � n covariance matrix V would not be invertible, and security

i and the replicating portfolio would have the same variance of returns. It is the noise term

that makes security i riskier (as compared to the replicating portfolio) and less attractive for

investing, given that the objective here is to achieve the lowest possible variance of portfolio

returns. Thus, if equation (78) holds, then no investment funds ought to be assigned to security

i; this decision is consistent with gi = 0 according to equation (76).
10

For the case where
Xn

j=1; j 6=i

b�ij < 1; (79)

10The idea here is based on the concept of mean-variance spanning in �nance, under the assumption of
frictionless short sales. As shown in Cheung, Kwan, and Mountain (2009), if each security in one set of
securities can be replicated, though not exactly, by a portfolio of securities from another set of securities, it is
the residual noise that makes each replicated security unattractive for portfolio holding. In such a case, the
replicated securities are said to be spanned, and they are assigned zero weights in all mean-variance e¢cient
portfolios based on these two sets of securities.
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let us add a positive parameter b�i0 to the left hand side, so that
Xn

j=0; j 6=i

b�ij = 1: (80)

Given equation (80), we can treat b�i0 and the n� 1 regression coe¢cients as portfolio weights,
for the purpose of replicating security i: The replicating portfolio, which is also inexact, consists

of a risk-free security with a zero mean (which is the same as idle cash) and securities 1; 2; : : : ; i�

1; i+ 1; : : : ; n:

It is well-known in portfolio theory that, if investment funds are allocated positively between

a risk-free security and a risky portfolio, the result is portfolio risk reduction. As the objective

here is to achieve the lowest possible variance of portfolio returns, the replicating portfolio for

security i based on equation (80) clearly has an attractive feature. Given equation (80), the

term 1 �
Pn

j=1; j 6=i
b�ij on the right hand side of equation (76) is positive; it is the same as b�i0;

which is a positive parameter representing the risk-free component of the replicating portfolio.

This explains why, for the case pertaining to inequality (79), security i ought to be held long.

For the remaining case where
Xn

j=1; j 6=i

b�ij > 1; (81)

the parameter b�i0 to be added to the left hand side, for equation (80) to hold, is negative
instead. With b�i0 and the n � 1 regression coe¢cients treated as portfolio weights, security i
can be viewed as an inexact replication, by a portfolio with a risk-free component and a risky

component based on securities 1; 2; : : : ; i � 1; i + 1; : : : ; n: As b�i0 < 0; risk-free borrowing at a
zero interest rate is involved.

Holding security i in a long position is like using borrowed funds to invest more in a portfolio

based on securities 1; 2; : : : ; i�1; i+1; : : : ; n: Even if such risk-free borrowing is deemed feasible,

it has an undesirable e¤ect of increasing the portfolio risk. However, if security i is held short

instead, the replicating portfolio (which replicates the short sale of security i) will have a positive

weight on its risk-free component. If so, short selling security i will contribute to portfolio risk

reduction. Thus, for the case pertaining to inequality (81), a negative portfolio weight for

security i is appropriate.

Now, let us turn our attention to the magnitude of each portfolio weight. According to

equation (76), gi varies directly with 1 �
Pn

j=1; j 6=i
b�ij and inversely with sii and 1 � R2i : It is

intuitively appealing that, with everything else held constant, the greater the risk of a security,
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the lower is the magnitude of the portfolio weight for it. With 1 � R2i being the proportion

of the total sum of squares that the regression model cannot explain, it re�ects the severity

of the residual noise in the regression model, which undermines the substitution e¤ect of the

replicating portfolio for security i: The higher the coe¢cient of determination, the less severe

is the residual noise and thus the more exact is the replication. Then, with sii held constant,

the more attractive is security i for portfolio holding (long or short, as the case may be) if
Pn

j=1; j 6=i
b�ij departs more from 1:

6 An Excel Illustration

The illustration in the current section is on a given set of 25 observations of four variables, for

which a 4�4 sample covariance matrix and its inverse are computed in Excel. The three �gures

below, which cover di¤erent aspects of the illustration, are based on an Excel �le accompanying

this paper.11 The �le contains a single worksheet covering A1:AV58, and thus cell references are

common across the three �gures. For ease of exposition, essential cell formulas are displayed at

the bottom of each �gure.

As shown in B2:E26 of Figure 1, the given observations under the headings of X1, X2, X3,

and X4 are shaded. The individual sample means are displayed in B28:E28. The corresponding

mean-removed observations, under the headings of x1, x2, x3, and x4, are provided in H2:K26.

The sample variances of the four variables are displayed in H28:K28. The sample covariance

matrix and its inverse are displayed in H32:K35 and H38:K41, respectively.12 As expected,

both matrices are symmetric. The 4� 4 block containing the inverse of the sample covariance

matrix is shaded.

Figure 2 shows the part of the Excel �le where the inverse of the sample covariance matrix

is obtained via four Solver runs. As intended, the search procedure does not require the use

of matrix algebra. Nor does it involve any Excel functions for matrix operations, although the

11Although Excel 2007 is used for the illustration, the Excel �le accompanying this paper is still a 1997-2003
version (with extension .xls), for potentially wider access by readers.
12An approach involving matrix operations has been used to deduce the sample covariance matrix in H32:K35.

Once the corresponding cell formula has been provided for this selected 4�4 block, the keys �Shift+Ctrl+Enter�
must be pressed together. An alternative approach (which is not shown in Figure 1) is to compute the individual
diagonal and o¤-diagonal elements of the sample covariance matrix by using the Excel functions VAR and
COVAR, respectively. Such an approach requires the use of a multiplicative correction factor m=(m� 1); where
m = 25; for each COVAR result.
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1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

A B C D E F G H I J K L

Obs X1 X2 X3 X4 x1 x2 x3 x4
1 2.2 1.9 2.4 1.4 2.284 1.812 1.984 1.072
2 3.0 0.1 0.4 2.6 2.916 0.012 0.816 2.928
3 0.1 1.4 0.2 2.9 0.016 1.312 0.216 2.572
4 4.2 2.6 0.6 3.9 4.284 2.512 0.184 3.572
5 0.2 1.2 0.6 2.0 0.116 1.112 0.184 1.672
6 0.9 2.3 1.3 0.4 0.816 2.388 0.884 0.728
7 1.8 4.0 2.5 3.2 1.716 4.088 2.916 3.528
8 0.9 2.0 0.8 2.8 0.816 2.088 1.216 3.128
9 0.5 1.4 0.6 0.1 0.416 1.312 0.184 0.228
10 0.6 1.1 0.8 0.6 0.516 1.012 1.216 0.928
11 0.5 0.5 1.1 0.5 0.416 0.588 0.684 0.172
12 1.8 3.0 0.3 4.0 1.716 3.088 0.116 4.328
13 1.5 0.3 1.0 2.4 1.584 0.388 0.584 2.072
14 0.7 0.6 0.6 1.4 0.784 0.512 0.184 1.072
15 1.3 2.4 0.9 0.9 1.216 2.488 1.316 1.228
16 0.1 1.5 0.2 0.5 0.184 1.412 0.616 0.828
17 2.1 0.7 2.1 2.4 2.184 0.612 1.684 2.072
18 3.2 2.9 2.9 4.0 3.284 2.812 2.484 3.672
19 3.8 0.6 0.9 1.5 3.716 0.512 0.484 1.828
20 2.8 4.7 1.8 2.2 2.716 4.788 2.216 2.528
21 0.2 2.0 0.4 0.2 0.116 1.912 0.016 0.128
22 1.9 0.8 1.2 1.4 1.816 0.888 1.616 1.728
23 0.3 1.8 3.2 1.4 0.384 1.712 2.784 1.072
24 1.1 0.2 1.0 2.6 1.184 0.112 0.584 2.272
25 2.8 2.2 0.2 3.1 2.884 2.112 0.616 2.772

Mean 0.084 0.088 0.416 0.328 Var 3.9364 4.32777 1.88307 5.2696

Sample Cov Mat
3.9364 2.61978 1.4564 3.88078
2.61978 4.32777 1.72353 3.5191
1.4564 1.72353 1.88307 1.93078
3.88078 3.5191 1.93078 5.2696

Inv of Sample Cov Mat
0.92828 0.0079 0.0243 0.6695
0.0079 0.55032 0.203 0.2873
0.0243 0.203 0.92628 0.1859
0.6695 0.2873 0.1859 0.94279

B28 =AVERAGE(B2:B26) Copied to B28:E28
H2 =B2 B$28 Copied to H2:K26
H28 =VAR(H2:H26) Copied to H28:K28
H32:K35 {=MMULT(TRANSPOSE(H2:K26),H2:K26)/(COUNT(H2:H26) 1)}
H38:K41 {=MINVERSE(H32:K35)}

Figure 1    The Part of an Excel Example Illustrating the Computations of the Sample 

Covariance Matrix and its Inverse.
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1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

M N O P Q R S T U V W X

x1^2 x2^2 x3^2 x4^2 e1^2 e2^2 e3^2 e4^2
5.21666 3.28334 3.93626 1.14918 2.08382 0.23793 1.72076 2.22997
8.50306 0.00014 0.66586 8.57318 0.61325 3.54755 0.02383 0.49021
0.00026 1.72134 0.04666 6.61518 3.52072 0.0024 1.03907 4.95553
18.3527 6.31014 0.03386 12.7592 2.82845 0.26812 1.43024 0.07389
0.01346 1.23654 0.03386 2.79558 1.78509 0.02986 0.15386 1.90214
0.66586 5.70254 0.78146 0.52998 0.08636 5.39302 2.48019 0.16393
2.94466 16.7117 8.50306 12.4468 0.88248 1.31286 1.60516 0.2387
0.66586 4.35974 1.47866 9.78438 2.2184 2.9E 05 0.01191 2.79699
0.17306 1.72134 0.03386 0.05198 0.07157 1.87451 0.00219 0.13597
0.26626 1.02414 1.47866 0.86118 0.03116 3.81205 1.53254 0.39718
0.17306 0.34574 0.46786 0.02958 0.30578 0.85406 0.62292 0.26184
2.94466 9.53574 0.01346 18.7316 2.05785 0.57898 2.1741 4.60321
2.50906 0.15054 0.34106 4.29318 0.00604 2.91699 0.04475 0.90311
0.61466 0.26214 0.03386 1.14918 3E 06 0.01608 0.02688 0.10431
1.47866 6.19014 1.73186 1.50798 0.07552 1.80637 0.24242 0.42672
0.03386 1.99374 0.37946 0.68558 0.61669 4.28035 0.5838 1.60657
4.76986 0.37454 2.83586 4.29318 0.41011 1.25945 1.15919 6.7E 06
10.7847 7.90734 6.17026 13.4836 0.29909 0.00469 1.091 4.6E 05
13.8087 0.26214 0.23426 3.34158 5.83077 1.79853 0.69934 0.31266
7.37666 22.9249 4.91066 6.39078 0.63072 6.82158 0.34576 1.6817
0.01346 3.65574 0.00026 0.01638 0.00156 3.94576 0.16505 0.39086
3.29786 0.78854 2.61146 2.98598 0.27033 0.40487 1.05449 0.02275
0.14746 2.93094 7.75066 1.14918 0.22711 0.01437 4.76799 0.07368
1.40186 0.01254 0.34106 5.16198 0.22163 1.70725 0.00523 1.64344
8.31746 4.46054 0.37946 7.68398 0.77986 0.72356 2.92731 0.04078

SST 94.4736 103.866 45.1936 126.47 SSE 25.8544 43.6112 25.91 25.4562
R^2 0.72633 0.58012 0.42669 0.79872

Initial Reg Coefficients Reg Coefficients (Solver Results)
1 1 1 1 1 0.01431 0.02625 0.71008
1 1 1 1 0.00848 1 0.21914 0.30477
1 1 1 1 0.0262 0.36886 1 0.1972
1 1 1 1 0.72118 0.52212 0.20072 1

Transpose of Inv of Sample Cov Mat
0.92828 0.0079 0.0243 0.6695
0.0079 0.55032 0.203 0.2873
0.0243 0.203 0.92628 0.1859
0.6695 0.2873 0.1859 0.94279

N2 =H2^2 Copied to N2:Q26
N28 =SUM(N2:N26) Copied to N28:Q28
T2 =(H2 T$33*I2 T$34*J2 T$35*K2)^2

Copied to T2:T26
U2 =(I2 U$32*H2 U$34*J2 U$35*K2)^2

Copied to U2:U26
V2 =(J2 V$32*H2 V$33*I2 V$35*K2)^2 Four Solver Runs

Copied to V2:V26
W2 =(K2 W$32*H2 W$33*I2 W$34*J2)^2 Min Target T28 Change T32:T35

Copied to W2:W26 Min Target U28 Change U32:U35
T28 =SUM(T2:T26) Copied to T28:W28 Min Target V28 Change V32:V35
T29 =1 T28/N28 Copied to T29:W29 Min Target W28 Change W32:W35
T38 = T32/H$28/(1 T$29)

Copied to T38:W41

Figure 2    The Part of an Excel Example Illustrating the Solver Approach to Implement a 

Regression-Based Interpretation of the Inverse of the Sample Covariance Matrix.
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use of such functions will make the displayed materials more succinct. The squared deviations

from individual sample means, under the headings of x1^2, x2^2, x3^2, and x4^2, are shown

in N2:Q26. Each column sum in N28:Q28 represents the total sum of squares (SST) of the

corresponding variable. Notice that N28 can also be reached by using directly the formula

=MMULT(TRANSPOSE(H2:H26),H2:H26), where H2:H26 contains the column vector of mean-

removed observations of the �rst variable. With N28 copied to O28:Q28, the computations of

the total sums of squares as displayed there, which are based on matrix operations, do not

require the data in N2:Q26.

For a Solver search of the regression coe¢cients, some arbitrary initial values are required.

They are stored in N32:Q35 and copied to T32:W35. The three regression coe¢cients for each

of the four regression model are placed in o¤-diagonal positions of the corresponding column

in T32:W35. The diagonal elements in T32:W35 have no impact on the Solver search and

thus do not vary during the search process. However, as having the value of �1 for each

diagonal element allows the formula in T38 to be copied directly to T38:W41, for computing

the inverse of the sample covariance matrix, each initial value in N32:Q35 has been set to be

�1 for convenience.

Column T in Figure 2, under the heading of e1^2, pertains to the case where x1 is the

dependent variable in regression analysis. The formula for T2, which computes the squared

deviation of the �rst observation of the dependent variable from its �tted value given the re-

gression coe¢cients, is copied to T2:T26. The sum of T2:T26, as displayed in T28 and labeled

as SSE, is the sum of squares that is unexplained by the regression model involved. Given SST

and SSE, the R2 of the regression, as shown in T29, is computed in accordance with equation

(49). The Solver results, as displayed in T32:T35, are from minimization of the target cell T28

by varying T32:T35. The formula for T38 is copied to T38:T41. As expected, the four numbers

in T38:T41 match the corresponding numbers in H38:K38 (in Figure 1), which are in row 1 of

the inverse of the sample covariance matrix.

The same idea also applies to each case where any remaining variable is the dependent

variable in regression analysis. Cases pertaining to x2; x3; and x4 are under the headings of

e2^2, e3^2, and e4^2, respectively. The formulas for T2, U2, V2, and W2 di¤er from each

other, as each case pertains to a speci�c dependent variable. The formulas for U2:W2 are

copied to U2:W26, and the formulas for T28:T41 are copied to U28:W41. The Solver search
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as described earlier is repeated for each of the remaining cases. For x2; the target cell U28 is

minimized by changing U32:U35; for the remaining two cases, the target cells to be minimized

are V28 and W28 instead, and the corresponding cells to change are V32:V35 and W32:W35.

The 4� 4 block in T38:W41, which is shaded, is the transpose of the inverse of the covariance

matrix. The matrix is symmetric, it is the same as that in H38:K41 of Figure 1.

Figure 3 illustrates two further Excel-based methods to reach the required regression re-

sults for interpreting the inverse of the sample covariance matrix. They are grouped together

for expositional convenience, although they di¤er in analytical requirements. To facilitate the

regression-based computations, by using either matrix operations or the Excel function LINEST

directly, the mean-removed observations are displayed in four di¤erent ways, where the depen-

dent variable is always shown in the leading column.

Let us start with the case in Z2:AC26, under the headings of x1, x2, x3, and x4. This

is the case where x1 is the dependent variable. The regression coe¢cients, as displayed in

AA28:AC28, are based on matrix operations according to equation (43). Here, the various

matrix operations have been nested, to eliminate the need for some intermediate steps during

the computations. The corresponding R2; as displayed in Z29, is based on equation (51). The

variance of the dependent variable is shown in Z30. The four cells in Z33:AC33, which are

shaded, are computed in accordance with the �rst row of the matrix in equation (8), for the case

of n = 4: As expected, they match exactly the corresponding elements in row 1 of the inverse

of the sample covariance matrix in H38:K41 (in Figure 1).

The results of the Excel function LINEST are displayed in Z37:AB41. In the case here, the

dependent variable is x1 and the independent variables are x2; x3; and x4: The OLS regression

coe¢cients b�14; b�13; and b�12 are displayed in Z37:AB37. The corresponding R2; which is R21;

is shown in Z39. The explained and unexplained sums of squares (SSR and SSE) are shown in

Z41:AA41. These six speci�c cells are shaded.

Among the LINEST results in Z37:AB41, the three cells in Z38:AB38 are the corresponding

standard errors of the OLS regression coe¢cients in Z37:AB37. The standard error of the

regression is shown in AA39. The F statistic and the degrees of freedom are shown in Z40:AA40.

The three cells in AB39:AB41, with �#N/A� displayed in each case, are not utilized to show

any regression results.

As the sum of SSR and SSE is SST, which is s11(m� 1) where m = 25; the sample variance
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1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

Y Z AA AB AC AD AE AF AG AH AI AJ

x1 x2 x3 x4 x2 x1 x3 x4
2.284 1.812 1.984 1.072 1.812 2.284 1.984 1.072
2.916 0.012 0.816 2.928 0.012 2.916 0.816 2.928
0.016 1.312 0.216 2.572 1.312 0.016 0.216 2.572
4.284 2.512 0.184 3.572 2.512 4.284 0.184 3.572
0.116 1.112 0.184 1.672 1.112 0.116 0.184 1.672
0.816 2.388 0.884 0.728 2.388 0.816 0.884 0.728
1.716 4.088 2.916 3.528 4.088 1.716 2.916 3.528
0.816 2.088 1.216 3.128 2.088 0.816 1.216 3.128
0.416 1.312 0.184 0.228 1.312 0.416 0.184 0.228
0.516 1.012 1.216 0.928 1.012 0.516 1.216 0.928
0.416 0.588 0.684 0.172 0.588 0.416 0.684 0.172
1.716 3.088 0.116 4.328 3.088 1.716 0.116 4.328
1.584 0.388 0.584 2.072 0.388 1.584 0.584 2.072
0.784 0.512 0.184 1.072 0.512 0.784 0.184 1.072
1.216 2.488 1.316 1.228 2.488 1.216 1.316 1.228
0.184 1.412 0.616 0.828 1.412 0.184 0.616 0.828
2.184 0.612 1.684 2.072 0.612 2.184 1.684 2.072
3.284 2.812 2.484 3.672 2.812 3.284 2.484 3.672
3.716 0.512 0.484 1.828 0.512 3.716 0.484 1.828
2.716 4.788 2.216 2.528 4.788 2.716 2.216 2.528
0.116 1.912 0.016 0.128 1.912 0.116 0.016 0.128
1.816 0.888 1.616 1.728 0.888 1.816 1.616 1.728
0.384 1.712 2.784 1.072 1.712 0.384 2.784 1.072
1.184 0.112 0.584 2.272 0.112 1.184 0.584 2.272
2.884 2.112 0.616 2.772 2.112 2.884 0.616 2.772

Reg Coeff 0.00848 0.0262 0.72118 Reg Coeff 0.01431 0.36886 0.52212
R^2 0.72633 R^2 0.58012
Var 3.9364 Var 4.32777

Inv of Sample Cov Mat, Row 1 Inv of Sample Cov Mat, Row 2
0.92828 0.00788 0.0243 0.6695 0.55032 0.0079 0.203 0.2873

0.0079 0.55032 0.203 0.2873

LINEST Results LINEST Results
0.72118 0.0262 0.00848 0.52212 0.36886 0.01431
0.15008 0.2129 0.16415 0.25589 0.26519 0.27688
0.72633 1.08407 #N/A 0.58012 1.40795 #N/A
19.4632 22 #N/A 10.1321 22 #N/A
68.6192 25.8544 #N/A 60.2552 43.6112 #N/A

Inv of Sample Cov Mat, Row 1 Inv of Sample Cov Mat, Row 2
0.92828 0.00788 0.0243 0.6695 0.55032 0.0079 0.203 0.2873

0.0079 0.55032 0.203 0.2873

AA28:AC28 {=TRANSPOSE(MMULT(MINVERSE(MMULT(TRANSPOSE(AA2:AC26),AA2:AC26)),
MMULT(TRANSPOSE(AA2:AC26),Z2:Z26)))}

Copied to AG28:AI28, AL28:AO28, and AR28:AU28
Z29 {=MMULT(AA28:AC28,MMULT(TRANSPOSE(AA2:AC26),Z2:Z26))/

MMULT(TRANSPOSE(Z2:Z26),Z2:Z26)}
Copied to AF29, AL29, and AR29

Z30 =VAR(Z2:Z26) Copied to AF30, AL30, and AR30
Z33 =1/Z30/(1 Z29) Copied to AF33, AL33, and AR33
AA33 = $Z33*AA28 Copied to AA33:AC33, AG33:AI33, AM33:AO33, and AS33:AU33

Figure 3    The Part of an Excel Example Illustrating Additional Approaches to Implement a 

Regression-Based Interpretation of the Inverse of the Sample Covariance Matrix.
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1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
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18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

AK AL AM AN AO AP AQ AR AS AT AU AV

x3 x1 x2 x4 x4 x1 x2 x3
1.984 2.284 1.812 1.072 1.072 2.284 1.812 1.984
0.816 2.916 0.012 2.928 2.928 2.916 0.012 0.816
0.216 0.016 1.312 2.572 2.572 0.016 1.312 0.216
0.184 4.284 2.512 3.572 3.572 4.284 2.512 0.184
0.184 0.116 1.112 1.672 1.672 0.116 1.112 0.184
0.884 0.816 2.388 0.728 0.728 0.816 2.388 0.884
2.916 1.716 4.088 3.528 3.528 1.716 4.088 2.916
1.216 0.816 2.088 3.128 3.128 0.816 2.088 1.216
0.184 0.416 1.312 0.228 0.228 0.416 1.312 0.184
1.216 0.516 1.012 0.928 0.928 0.516 1.012 1.216
0.684 0.416 0.588 0.172 0.172 0.416 0.588 0.684
0.116 1.716 3.088 4.328 4.328 1.716 3.088 0.116
0.584 1.584 0.388 2.072 2.072 1.584 0.388 0.584
0.184 0.784 0.512 1.072 1.072 0.784 0.512 0.184
1.316 1.216 2.488 1.228 1.228 1.216 2.488 1.316
0.616 0.184 1.412 0.828 0.828 0.184 1.412 0.616
1.684 2.184 0.612 2.072 2.072 2.184 0.612 1.684
2.484 3.284 2.812 3.672 3.672 3.284 2.812 2.484
0.484 3.716 0.512 1.828 1.828 3.716 0.512 0.484
2.216 2.716 4.788 2.528 2.528 2.716 4.788 2.216
0.016 0.116 1.912 0.128 0.128 0.116 1.912 0.016
1.616 1.816 0.888 1.728 1.728 1.816 0.888 1.616
2.784 0.384 1.712 1.072 1.072 0.384 1.712 2.784
0.584 1.184 0.112 2.272 2.272 1.184 0.112 0.584
0.616 2.884 2.112 2.772 2.772 2.884 2.112 0.616

Reg Coeff 0.02625 0.21914 0.20072 Reg Coeff 0.71008 0.30477 0.1972
R^2 0.42669 R^2 0.79872
Var 1.88307 Var 5.2696

Inv of Sample Cov Mat, Row 3 Inv of Sample Cov Mat, Row 4
0.92628 0.0243 0.203 0.1859 0.94279 0.6695 0.2873 0.1859
0.0243 0.203 0.92628 0.1859 0.6695 0.2873 0.1859 0.94279

LINEST Results LINEST Results
0.20072 0.21914 0.02625 0.1972 0.30477 0.71008
0.21079 0.15755 0.21336 0.2071 0.14937 0.14777
0.42669 1.08523 #N/A 0.79872 1.07569 #N/A
5.45785 22 #N/A 29.0998 22 #N/A
19.2836 25.91 #N/A 101.014 25.4562 #N/A

Inv of Sample Cov Mat, Row 3 Inv of Sample Cov Mat, Row 4
0.92628 0.0243 0.203 0.1859 0.94279 0.6695 0.2873 0.1859
0.0243 0.203 0.92628 0.1859 0.6695 0.2873 0.1859 0.94279

AF34 =AG33 AG34 =AF33 AH34 =AH33 AI34 =AI33
AL34 =AM33 AM34 =AN33 AN34 =AL33 AO34 =AO33
AR34 =AS33 AS34 =AT33 AT34 =AU33 AU34 =AR33
AF34:AI34 AL34:AO34 AR34:AU34

Copied to AF45:AI45 Copied to AL45:AO45 Copied to AR45:AU45
Z37:AB41 {=LINEST(Z2:Z26,AA2:AC26,FALSE,TRUE)}

Copied to AF37:AH41, AL37:AN41, and AR37:AT41
Z44 =(COUNT(Z2:Z26) 1)/((Z41+AA41)*(1 Z39)) Copied to AF44, AL44, and AR44
AA44 = $Z44*AB37 AB44 = $Z44*AA37 AC44 = $Z44*Z37
AG44 = $AF44*AH37 AH44 = $AF44*AG37 AI44 = $AF44*AF37
AM44 = $AL44*AN37 AN44 = $AL44*AM37 AO44 = $AL44*AL37
AS44 = $AR44*AT37 AT44 = $AR44*AS37 AU44 = $AR44*AR37

Figure 3    The Part of an Excel Example Illustrating Additional Approaches to Implement a 

Regression-Based Interpretation of the Inverse of the Sample Covariance Matrix (Continued).
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s11 can easily be deduced. Also shaded are the four cells in Z44:AC44, which are computed

according to the four elements in the �rst row of the matrix in equation (8) for n = 4: As

expected, the displayed values in Z44:AC44 match exactly those in Z33:AC33.

The computations in Z28:AC44 are repeated for AF28:AI44, AL28:AO44, and AR28:AU44,

but with a di¤erent dependent variable in each case. This requires rearrangements of the mean-

removed observations for AF2:AI26, AL2:AO26, and AR2:AU26, along with the corresponding

headings, before repeating the computations. Subsequent to such repeated computations,

rearrangements of the end results are required, so that each set of the displayed results pertains

to the original order of the four variables. They are shown as shaded cells in AF34:AU34 and

in AF45:AU45; they correspond to rows 2 to 4 of the inverse of the sample covariance matrix.

As expected, the results here (including those in Z33:AC33 and Z44:AC44, which have already

been mentioned earlier) match exactly those in H38:K41 of Figure 1.

Notice that the observations for use in the Excel function LINEST need not be mean-

removed. Without mean removal, a constant term must be present in each regression model.

The third argument of the function, which is �false� (to indicate the absence of the constant

term) in Figure 3, becomes �true� instead. Further, each 5�3 block for displaying the LINEST

result for each regression model will have to be expanded to be a 5 � 4 block because of the

presence of an extra regression coe¢cient. However, there are no changes in the three regression

coe¢cients; nor is there any change in the corresponding R2:

Notice also that, instead of using the function LINEST, each OLS regression run can be

performed equally well by selecting �Regression� in Excel�s add-in tools for �Data Analysis.�

All that is required is to respond to the dialog box, for input ranges of the variables involved

and various regression and output options. However, even for basic options, the corresponding

display of the regression results contains more information than what is required to interpret the

inverse of the sample covariance matrix. Thus, to avoid unnecessary digressions, no illustration

based on such an add-in tool in Excel is provided here.

7 Concluding Remarks

Given the relevance of the covariance matrix and its inverse across di¤erent academic disciplines,

this paper has illustrated pedagogically a regression-based interpretation of the inverse of the
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sample covariance matrix. The approach here draws on a �nance article in mean-variance

portfolio analysis by Stevens (1998). The Stevens article is innovative in connecting elements of

the sample covariance matrix and its inverse, by exploiting analytical similarities between some

expressions of block matrix operations and ordinary least squares (OLS) regression analysis.

The covariance matrix of security returns is part of the input parameters for mean-variance

portfolio analysis. As the true values of its elements are unknown, the use of the sample covari-

ance matrix of security returns for it, when implementing a portfolio selection model, is justi�ed

under the stationarity assumption of the return distributions. Thus, Stevens� interpretation of

inverse of the sample covariance matrix of returns allows the results of mean-variance portfolio

analysis to be understood much better. As indicated in this paper, Stevens� interpretation

need not be con�ned to �nancial settings. In fact, the same idea holds for any empirical or

experimental settings, where sample covariance matrices and their inverses are involved.

Although matrix inversion is required in many analytical settings, the corresponding text-

book materials in matrix algebra do not provide any guidance to interpret the result intuitively

when a square matrix is inverted. As standard textbook coverage on matrix inversion is pri-

marily on the technical aspect of the task, it is not immediately obvious how textbook materials

can improve our understanding of analytical models involving matrix inversion. In view of

di¢culties in interpreting intuitively the inverse of a general square matrix, the scope of this

paper has been con�ned to the sample covariance matrix only. The objective of this paper is to

make the inversion of sample covariance matrices less mysterious, from a pedagogic perspective.

Excel has played an important pedagogic role in this paper. The availability of various Excel

tools for numerical illustrations will give instructors �exibility in how the analytical materials

in this paper are covered in their classes. An analytical coverage, where details of the matrix

operations involved are provided, can be illustrated numerically by using various Excel func-

tions for matrix operations. A less rigorous coverage of the same materials can bypass matrix

operations in the corresponding Excel illustration; Excel Solver is suitable for the task involved.

For classes where analytical details are de-emphasized, the regression-based interpretation can

be illustrated directly by using Excel�s linear regression tools.

Notice that the expression of the inverse of the sample covariance matrix, as derived by

Stevens and presented pedagogically in this paper, is not intended to be an alternative to

the standard expression in terms of the determinant and cofactors of the matrix. Rather,
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it is intended to provide a regression-based interpretation of such a matrix inverse. Without

the individual observations, the sample covariance matrix itself does not allow the regression

coe¢cients and the goodness-of-�t measure of each regression model to be computed.
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Appendix: Block Matrix Inversion

The product of the two matrices in equations (53) and (54) of the main text is

V V �1 = I =

�
I11 012

021 I22

�
; (A1)

where I; I11; and I22 are identity matrices with the same dimensions as V ; V 11; and V 22;

respectively. The matrices 012 and 021; which are of the same dimensions as V 12 and V 21;

respectively, have all zero elements. We are interested in expressing U 11; U 12; U 21; and U 22 in

terms of V 11; V 12; V 21; and V 22:
13

For a given invertible V ; its inverse is unique. However, the expression of V �1 in terms of

block matrices is not unique; it depends on whether V �1
11 or V

�1
22 is explicitly displayed. The

version where V �1
11 is explicitly displayed is derived below.

Based on �
V 11 V 12

V 21 V 22

� �
U 11 U 12

U 21 U 22

�
=

�
I11 012

021 I22

�
; (A2)

we can write

V 11U 11 + V 12U 21 = I11; (A3)

V 11U 12 + V 12U 22 = 012; (A4)

V 21U 11 + V 22U 21 = 021; (A5)

and

V 21U 12 + V 22U 22 = I22: (A6)

13Notice that, for the purpose of deriving the expressions of U11 and U12 that are immediately ready to be
connected to the corresponding results of multiple linear regression, we could have partitioned V in such a way
that V 11 and V 12 would become 1� 1 and 1� (n� 1) matrices, respectively. However, a general partitioning
of V is presented here instead, in order to make the corresponding materials in block matrix inversion more
versatile.
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These four matrix equations allow us to solve U 11; U 12; U 21; and U 22 in terms of V 11; V 12;

V 21; and V 22: Speci�cally, equation (A5) gives us

U 21 = �V
�1
22 V 21U 11; (A7)

which, when combined with equation (A3), leads to

V 11U 11 � V 12V
�1
22 V 21U 11 = I11 (A8)

and then

(V 11 � V 12V
�1
22 V 21)U 11 = I11: (A9)

As

U�1
11U 11 = I11; (A10)

it follows that

U 11 = (V 11 � V 12V
�1
22 V 21)

�1: (A11)

With U 11 known, equation (A7) can be used to determine U 21: Next, according to equation

(A6), we have

U 22 = V
�1
22 (I22 � V 21U 12) = V

�1
22 � V

�1
22 V 21U 12; (A12)

which, when combined with equation (A4), leads to

V 11U 12 + V 12(V
�1
22 � V

�1
22 V 21U 12) = 012: (A13)

Equation (A13) can be written as

(V 11 � V 12V
�1
22 V 21)U 12 = �V 12V

�1
22 ; (A14)

which leads to

U 12 = �U 11V 12V
�1
22 ; (A15)

where U 11 is given by equation (A11). Finally, returning to equation (A12) with U 12 deter-

mined, we can write

U 22 = V
�1
22 + V

�1
22 V 21U 11V 12V

�1
22 : (A16)

The combined results of U 11; U 12; U 21; and U 22 are as displayed in equations (55) and (56) of

the main text.
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