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A Pedagogic Exploration of Researcher Degrees of Freedom

Abstract
In this article, I present a spreadsheet that demonstrates how researcher degrees of freedom (RDoF) increase
type 1 errors in scientific research. RDoF refer to the flexibility in analyzing and reporting data. The
overarching goal is to instill good research practices in students through awareness of the problems associated
with RDoF and the mechanisms through which specific types of RDoF increase type 1 error rates. To
accomplish this goal, the spreadsheet is organized into four modules. The first three modules use Monte Carlo
simulations to demonstrate common examples of RDoF—dichotomization, optional stopping and multiple
testing. The modules allow students to manipulate factors that control the type 1 error rate. The fourth
module demonstrates how multiple types of RDoF combine in practice to produce high type 1 error rates.
The article concludes with a set of pedagogic questions that instructors may use to teach core concepts
associated with RDoF.
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Introduction 
Due to the interdependent nature of scientific knowledge, a single false 

finding may have many downstream consequences, causing cumulative 

errors, confusion and misallocation of resources. For this reason, scientific 

progress requires accurate and complete dissemination of information. 

False findings come in two forms—non-descriptively termed type 1 and 

type 2 errors. A type 1 error occurs when a researcher concludes there is 

an effect when one does not exist. A type 2 error occurs when a researcher 

fails to find an effect that does exist. Type 1 errors are arguably more 

common, problematic, and easier to calculate. For these reasons, type 1 

errors will be the primary focus of the present article. The infiltration of 

type 1 errors into the scientific literature is inevitable in disciplines that 

rely on the use of inferential statistics to generalize from samples to their 

corresponding populations. Biology, economics, medicine, political 

science and psychology are among the disciplines that use inferential 

statistics. In an ideal world, replication and complete reporting would 

minimize the number of type 1 errors in the long run. However, in 

practice, replication and complete reporting are not adequately 

incentivized at an institutional level, resulting in systemic distortions in 

scientific knowledge [1] [2]. For example, publication bias—the selective 

publication of statistically significant effects—greatly increases the 

proportion of type 1 errors in the literature [3]. Under a wide range of 

assumptions about pre-study odds, statistical power and publication bias, 

false findings in the literature may be higher than 50% [1].  

 

Recently, there has been increased interest in the decisions made by 

individual researchers that produce type 1 errors. Simmons and 

colleagues demonstrated empirically the ease with which an impossible 

effect can be supported with statistical evidence [3]. In the experiment, 

participants reported their age before listening to one of two songs:  

“When I’m Sixty-Four” by The Beatles or “Kalimba” by Mr. Scruff. The 

results indicated that listening to “When I’m Sixty-Four” caused a 

reduction in age—an obviously impossible result. The type 1 error was 

due to what Simmons and colleagues termed researcher degrees of 

freedom (RDoF)—the flexibility with which data are analyzed and 
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selectively reported. For example, there are several reasonable procedures 

for excluding outliers from reaction time data, including nonlinear 

transformations, the elimination of the top 1% or 2% of reaction times, an 

absolute cut-off criterion or a combination of these procedures. Other 

decisions include optional stopping in data collection, the separate 

treatment or aggregation of similar dependent variables, the inclusion of 

covariates and the dichotomization of data to list only a few examples. 

Simmons and colleagues showed that RDoF quickly exert cumulative 

effects on the rate of type 1 errors. It is important to note that researchers 

are not necessarily acting fraudulently in these situations. Several 

reasonable methods of analysis may exist in a given situation and self-

serving bias may unwittingly influence the researcher’s justification to 

report a statistically significant result over one that is not. In some cases, 

researchers may be unaware of the detrimental effects of some types of 

RDoF, such as optional stopping and dichotomization. In other cases, 

journal space limitations preclude the full reporting of results.  

 

In light of these issues, I developed a pedagogic spreadsheet that 

demonstrates how RDoF increase the rate of type 1 errors. The 

spreadsheet is organized into four modules. The first three modules 

provide a detailed treatment of three common examples of RDoF: 

dichotomization, optional stopping, and multiple testing. In each of these 

three modules, students can systematically explore the factors that 

increase type 1 errors. The fourth module allows students to explore how 

RDoF combine in typical research situations to produce cumulative 

effects. The remainder of the present article is organized as follows. First, a 

brief overview of null hypothesis significance testing is provided to 

acquaint the reader with concepts necessary to understand RDoF. Readers 

who are already familiar with null hypothesis significance testing can skip 

that section without loss of understanding. In the sections that follow, the 

modules for dichotomization, optional stopping and multiple testing are 

described separately in detail. The section for the final module describes 

how multiple sources of RDoF combine to exert cumulative effects on type 

1 errors. Next, the implementation of the spreadsheet is described in a 
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separate section for clarity of presentation. Lastly, the article concludes 

with several pedagogic questions instructors may use in the classroom.  

 

Null Hypothesis Significance Testing 
Although its use is controversial, null hypothesis significance testing 

(NHST) is currently the prevailing method of statistical analysis is many 

fields of science [4,5]. In NHST, a researcher formulates two 

complementary hypotheses. The null hypothesis states there is no effect 

between two groups whereas the alternative hypothesis states there is an 

effect. Within the NHST framework, the alternative hypothesis is 

supported indirectly via contradiction. The researcher assumes the null 

hypothesis is true and if the results are sufficiently at odds with this 

assumption, the null hypothesis is rejected. When the null hypothesis is 

rejected, there is some chance that the result is due to sampling error. In 

other words, there is some chance that researcher will conclude there is an 

effect when one does not exist—a type 1 error. The rate of type 1 errors is 

controlled by a decision criterion called alpha. By convention, alpha is set 

to .05. More specifically, an observed test statistic is compared to a 

theoretical sampling distribution for the null hypothesis. A p-value is 

computed as the probability of obtaining a test statistic at least as extreme 

as the one observed (conditional on the null hypothesis being true). When 

the p-value is less than or equal to alpha, the null hypothesis is rejected, 

indicating either an extreme result was observed (i.e. a type 1 error) or the 

null hypothesis is false. Under ideal conditions, alpha sets an upper limit 

on the probability of a type 1 error. As will be discussed below, RDoF can 

cause this limit to be exceeded, sometimes by a large margin.  

 

Dichotomization 
One example of RDoF occurs when a researcher decides whether or not to 

dichotomize a continuous variable. A continuous variable, such as age, 

might be dichotomized as young and old, according to a median split. 

Although dichotomizing is rarely advisable, it remains in practice to some 

degree [6]. Some researchers reason that dichotomizing averages out noise 

inherent in the continuous scale. In actuality, dichotomizing decreases the 

effect size on average and introduces considerable variability. Although 
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the dichotomizing decreases the effect size on average, it will produce a 

larger effect size than the continuous variable in some cases. As a result, 

the chance of a type 1 error will increase when a researcher chooses 

between both analyses. The tab titled “Dichotomization” demonstrates 

how dichotomizing increases the chance of a type 1 error.  In the following 

example, the True Correlation in cell B1 was set to .50 and the macro-

enabled button was clicked to initialize a Monte Carlo simulation. On each 

iteration, 25 pairs of X and Y values were selected from a normal 

distribution. Each simulated dataset had a fixed correlation of .50. By 

fixing the sample correlation, it is possible to separate variability due to 

dichotomizing from variability due to sampling error in estimating the 

correlation. Next, the X values were dichotomized using a median split 

and the resulting correlation was recorded. This process was repeated 

10,000 times to produce a smooth histogram for demonstration. However, 

1000-2000 iterations are sufficient for most purposes.  

 

As shown in Figure 1, the resulting distribution is highly variable and 

shifted to the left, even though the continuous data were correlated at 

exactly .50. Although the mean is .38, approximately 26% of the 

distribution is higher than the fixed correlation of .50. This additional 

source of variability is responsible for the increase in type 1 errors. The 

effects of RDoF can be observed by setting the correlation to zero and 

comparing the percentage of p-values ≤ .05 for continuous only versus 

continuous or dichotomous (cells B5 and B6). As expected, the rate is .05 

when only the continuous variable is tested. However, the type 1 error 

rate increases to .08 when there is a choice between continuous or 

dichotomized data. It is worth noting that the percentage of p-values ≤ .05 

in each module represents statistical power when the correlation does not 

equal zero. RDoF increase power but at the expense of increasing type 1 

errors.  
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Figure 1: Variability produced by dichotomizing X values when the fixed sample correlations r = 

.50.   

 

Optional Stopping 
Another decision researchers must make is when to stop collecting data. 

Collecting data can be costly and time consuming. However, collecting 

more data will increase the power of the experiment—the ability to detect 

a true effect.  Researchers must balance these competing goals. In NHST, 

theoretical sampling distributions assume a fixed sample size [4]. For this 

reason, it is necessary to specify the sample size a priori and continue the 

experiment until the predetermined sample size is achieved. However, 

some researchers may engage in a different sampling plan called optional 

stopping. As an example, consider a researcher who plans to collect a 

maximum sample of 30 participants but peaks at the data midway 

through. If an effect is detected with only 15 participants, the researcher 

terminates data collection. However, if no effect is detected, data 

remaining data are collected. Researchers may reason that collecting 

additional data once an effect is detected is wasteful. As appealing as this 

intuition may be, the reality is that optional stopping increases the chance 

of a committing a type 1 error. When the null hypothesis is true, the p-

value will converge on .50 in the limit because it is uniformly distributed 

[4]. However, the p-value is volatile initially, fluctuating up and down 

until eventually converging on .50. Thus, optional stopping allows the 

researcher to capitalize on chance fluctuations.  
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Figure 2. An illustration of optional stopping. A test is performed after every 10 participants and 

stops once p-value ≤ .05 or a maximum of 50 participants have been collected. All testing points are 

shown to illustrate how increased opportunities increase the type 1 error rate.  

 

In the module “Optional Stopping”, the p-values from a single simulation 

are plotted at each testing point to illustrate how optional stopping 

increases type 1 errors. In the following example, the maximum sample 

size was set to 50 (cell B2) and a test was performed after every 10 

participants (cell B3). It is important to note that this number (cell B3) 

must be a factor of the maximum sample size in order for the macro to 

work properly. In Figure 2, the p-value satisfies the decision criterion of p-

value ≤ .05 once 20 data points were collected. According to the optional 

stopping rule described above, the researcher would terminate data 

collection at this point. The remaining testing points are plotted to 

illustrate an important point: had the criterion not been satisfied, there 

would have been additional opportunities to commit a type 1 error. The 

type 1 error rate is .15 for this particular example (see cell B7), well above 

the nominal type 1 error rate set by alpha.  

 

Multiple Tests 
Another source of RDoF is determining which comparisons should be 

made or whether to combine similar dependent variables. Suppose a 

researcher conducts an experiment with four groups. Which groups 
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should be compared? There are six pairwise comparisons in this example. 

Even more comparisons are possible if some groups can be combined. The 

type 1 error rate for this “family” of related tests is called family-wise type 

1 error [7]. Assuming independence, family-wise type 1 error is defined as 

the probability of at least one type 1 error within a family of tests: 

 

 

where n is the number of tests within a family. When independence does 

not apply, the formula is much more complex. For this reason, it is 

approximated through simulation in the spreadsheet. Consider a similar 

example in which a researcher must decide whether to treat two similar 

variables separately or aggregate them. Unlike the previous example, this 

provides three possible ways to test the same hypothesis rather than a 

family of related hypotheses. Although the type 1 error rate will increase 

by testing the hypothesis three ways, the inter-correlations between the 

dependent variables will mitigate the type 1 error to some degree.  

 

 
 

Figure 3. A histogram of the number of type 1 errors in a set of three inter-correlated dependent 

variables.  
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Continuing with the last example, a total of three tests entered into cell B3. 

In cell B1, the correlation was set to 0 and the correlation between the 

dependent variables is set to .70 in cell B3. A high correlation of .70 is 

reasonable in this example because similar DVs will be partially 

redundant.  Because the covariance matrix increases quickly as more 

dependent variables are added, the correlations are assumed to be equal 

for simplicity. Thus, the correlation in B3 can be treated as an average 

inter-correlation. Clicking the macro-enabled button will initialize the 

simulation and record the results in a column graph. Figure 3 plots the 

probability of obtaining a specific number of statistically significant tests 

(p-value ≤ .05). The probability of committing a type 1 error is displayed in 

cell B8 as .11. This value can be inferred from the graph two ways. First, 

the probabilities for 1 through 3 can be summed: P(x ≥1) = .07 + .03 + .01 = 

.11. Alternatively, it can be calculated as 1-P(x = 0) = 1-.89 = .11. The 

column graph makes it clear that increasing the number of tests increases 

the chance of a type 1 error in most cases because there are more 

opportunities for a type 1 error to arise.  

 

Combined Effects 
The preceding modules focused on specific types of RDoF. The modules 

were designed to provide a conceptual understanding of the mechanisms 

through which type 1 errors are produced. In the fourth module, RDoF 

are combined so that their cumulative effects can be observed under 

various conditions. By combining the effects of multiple RDoF, it is 

possible to simulate typical research situations. As shown in Figure 4, cell 

B3 controls the number of tested dependent variables in the simulation. B2 

specifies the inter-correlation among the dependent variables. As before, 

the inter-correlations can be thought of as an average correlation between 

the dependent variables.  
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Figure 4.  A screenshot of the Combined Effects module without any RDoF. As expected, the type 1 

error rate is 5%.  

 

A covariate may be entered into cell B3. As its name implies, a covariate is 

a variable that co-varies with the dependent variable but cannot be 

controlled experimentally for practical reasons. A researcher may use 

regression or a partial correlation to statistically control for the effects of 

the covariate. The mechanism through which the covariate can produce 

type 1 errors is not easy to illustrate in a spreadsheet and thus did not 

receive a separate module. However, because it is a common RDoF, it is 

included in the Combined Effects module. To understand how a covariate 

can increase type 1 errors, it is important to note that a correlation can be 

conceptualized as the covariance between the independent variable and 

dependent variable with respect to the product of their standard 

deviations: 

 

 

The effect of the covariate is partialled out of X and Y using the following 

equation [8]: 

 

 

r �
cov�X, Y�

σ�σ�
 

 

(2) 
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� � 
�"
 "

#�1 � 
�"
$ ��1 � 
 "

$ �
 

 

(3) 

9

Fisher: Researcher Degrees of Freedom

Published by ePublications@bond, 2014



 

where the subscript c denotes the covariate. When 
�" or  
 " is negative, 

the numerator will increase and the denominator will decrease, thereby 

amplifying the correlation. Under these conditions, the covariate can 

produce a type 1 error. When B3 is blank, the covariate will not be used in 

the simulation. When a value is entered into B3, the effects of the covariate 

are removed from each of the dependent variables. For simplicity, the 

simulations assume the covariate is not correlated with the independent 

variable (i.e. the X variable). It is important to note that the macro requires 
a positive definite matrix in order to sample from a multivariate normal 
distribution. Certain configurations involving negative correlations may 
not satisfy this requirement and will result in a runtime 5 error. However, 
the correlations between dependent measures are generally positive. 
Thus, the restriction of a positive definite matrix will have minimal impact 
on the generalizability of the simulations to practical situations. 

 

The correlation between the independent and dependent variables can be 

specified in cell B4. Again, when B4 is zero the simulation computes the 

type 1 error rate. For optional stopping, the maximum sample size is 

specified in cell B5 and the test increment (which must be a factor of B5) is 

specified in cell B6. To exclude optional stopping, simply set B5 = B6. 

Finally, the independent variable can be dichotomized when computing 

the correlation between the independent variable and each of the 

dependent variables. To dichotomize, simply type “yes” into cell B7. As 

expected, the type 1 error rate in Figure 4 is 5% because only one test was 

performed. What happens in a typical research situation in which there 

are several RDoF? A typical situation is exemplified in Figure 5. For this 

example, assume the researcher has two dependent measures of the same 

variable. These variables can be treated separately or aggregated, resulting 

in a total of 3 dependent variables. Due to their similarity, the inter-

correlations will be high. In Figure 5, the inter-correlations are set to .75. A 

covariate is included and assumed not to correlate with the dependent 

variables. Performing analyses can be costly in terms of time for some 

research. Bearing this in mind, the optional stopping rule allows the 

researcher to peak at the data once midway through the experiment, with 

the option to proceed to a maximum sample size of 30. Thus, cell B5 is set 
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to 30 and B6 is set to 15. At each of the two possible testing points, the 

researcher will perform the test with the independent as a continuous and 

dichotomous variable. Collectively, there are 18 possible tests. There are 

three dependent variables. For each dependent variable, the independent 

variable is treated as continuous or dichotomous. For each dependent 

variable, separate tests are performed with the inclusion of a covariate. 

Each of these 3+3+3 = 9 tests are performed once with 15 subjects and 

again with 30 subjects, for a total of 18 tests. The cumulative effect of 

RDoF for this example produces a type 1 error rate of 33%.  

 

 
 
Figure 5.  The cumulative effects of RDoF in a typical research situation. The type 1 error rate is 

much higher than .05 set by the criterion alpha.    

 

Implementation 

Dichotomization 
In this section, the macros for each module are described in detail for the 

interested reader. The simulation in the tab “Dichotomization” produces 

three outputs: (1) the type 1 error rate for continuous correlations in cell 

B5, (2), the type 1 error rate for continuous and dichotomous correlations 

in cell B6 and (3) the fixed dichotomized correlations displayed in the 

histogram. Each of the correlations and respective p-values are computed 

within a for loop that repeats until it reaches a maximum iteration 

specified in cell B3. Upon each iteration, X and Y values are generated 

from a bivariate normal distribution using code for Cholesky 

decomposition described in [9]. First, WorksheetFunction.NormSInv(Rnd) 
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is used to generate independent X and Y values. Second, a new variable Y’ 

is created using a special bivariate case of Cholesky decomposition.  In 

particular Y’ is computed as X*r + Y(1-r2).50, where r is the desired 

correlation from cell B1. The resulting X and Y’ values represent data 

sample from a bivariate normal distribution with a correlation specified in 

cell B1. The correlation between continuous variables X and Y’ is 

computed using WorksheetFunction.Correl. The corresponding p-value is 

computed in two steps. The first step takes advantage of the fact that a t 

test (for which excel can compute a p-value) is a special case of the 

correlation, r. r is transformed to a t-statistic according to the following 

formula: t �  &√()$
√*)&+ , with df = N-2 [7]. The p-value is computed with 

WorksheetFunction.TDist and finally recorded to column AH. The 

correlation in which X is dichotomized is computed in a similar manner, 

except for the inclusion of an additional step. X is dichotomized according 

to a median split with WorksheetFunction.Median. X values greater then 

or equal to the median are assigned a value of 1 whereas X values less 

than the median are assigned a value of 0. The correlation and p-value is 

computed as previously described. To find the type 1 error rate when the 

researcher chooses between continuous and dichotomous X values, the 

minimum p-value is selected with WorksheetFunction.Min and recorded 

to column AI. Fixed correlations are generated with one additional step. 

To remove any incidental correlation between X and Y, Y is regressed on 

X, using WorksheetFunction.Slope and WorksheetFunction.Intercept. 

Second, the residual of Y is computed as the difference between the 

predicted and observed Y values, denoted Yresidual = Ypredicted - Y The 

resulting Yresidual is uncorrelated with X. Third, a new variable Yfixed’ is 

computed using the simple bivariate case of Cholesky decomposition to 

produce an exact correlation between X and Yresidual (free of sampling 

error): Yfixed’ = X*r + Yresidual(1-r2).50. Finally, the X variable is dichotomized 

according to a median split and the correlation between the dichotomized 

X variable and Yfixed’ is recorded in column AJ. The Frequency function is 

then used to produce a histogram to show the effect of dichotomization 

without sampling error in r.  

 

Optional Stopping 
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The macro for Optional Stopping follows the same basic procedure 

described in the subsection Dichotomization.  Two outputs are generated: 

the estimated type 1 error rate based on multiple iterations and an 

illustrative line graph based on a single iteration. Both are based on a very 

similar simulation process. Beginning with the estimation of the type 1 

error rate, data of maximum size Nmax (cell B2) are sampled from a 

bivariate normal distribution using Cholesky decomposition. The data are 

checked in increments, I, specified in cell B3. For example, if the maximum 

sample size, Nmax = 50, and the increment is I = 10, the correlation and p-

value will be calculated when N = 10, N = 20 and so on until all Nmax data 

points are included. For each test, a counter variable counts whether the 

current p-value ≤ .05 or not. A type 1 error is recorded if the counter 

variable is greater than 0. To accomplish this in the macro, a for loop 

repeats Nmax /I iterations. For example, on the first iteration, the data 

points 1-10 are referenced in a nested for loop and the correlation and p-

value are computed. On the second iteration, data points 1-20 are 

referenced in a nested for loop as before. A type 1 error is recorded. if at 

least one of the optional stopping points (N = 10, N = 20 etc.) yields a p-

value ≤ .05 This process continues until all 50 (Nmax) data points are 

included in the calculation of the correlation and p-value. This process is 

repeated as specified in cell B4. The results are recorded in column AJ as 

1’s (type 1 errors) and 0’s and averaged in cell B7 to approximate the type 

1 error rate associated with optional stopping. This process is repeated 

once to produce the illustrative line graph. The p-values and 

corresponding sample sizes are recorded to column AG and AH, 

respectively. A line graph is displayed based on these data.  

 

Multiple Tests 

As before, the macro for Multiple Tests follows a similar procedure. A 

multivariate normal distribution is generated with one independent 

variable and D dependent variables defined in B3. The correlation 

between the independent variable and dependent variable(s) is defined in 

B1 and the inter-correlations between the dependent variables are defined 

in B4. A covariance matrix based on these inputs is submitted to Cholesky 

decomposition to sample from the multivariate normal distribution, with 
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a sample size specified in cell B2. Next, the correlation and p-values are 

computed for each independent and dependent variable. The number of 

type 1 errors is recorded during each iteration. The proportions of 0-D 

type 1 errors are recorded in columns AG and AH and displayed in a bar 

graph.  The type 1 error rate is recorded in C8 as 1 – the probability that 

no type 1 errors occur.  

 

Combined Effects 

The Combined Effects macro combines the other modules in a 

straightforward manner. Because the modules are duplicated in the 

Combined Effects module, some of the details are omitted and the reader 

is deferred to the subsections above. The basic structure of the macro is 

organized as follows. Upon each iteration, multivariate normally 

distributed data are generated and processed by up to 3 nested for loops, 

depending on user inputs: (1) a for loop for computing correlations 

between continuous variables, (2) a for loop for computing correlations 

using a dichotomized independent variable and (3) a for loop for 

computing a partial correlation, which removes the effect of the covariate. 

As described in the previous modules, each of the three for loops is 

capable of computing correlations for multiple dependent variables and 

implementing optional stopping. This structure allows the macro to 

enumerate the appropriate number of tests. The number of tests 

performed can be formulated as follows:  

 

 

where T is the number of dependent variables; O is the number of 

optional stopping points, C is an indicator that equals 1 if a covariate is 

included and 0 otherwise; and D is an indicator variable that equals 1 if 

the independent variable is dichotomized and 0 otherwise.  

 

The new addition to the Combined Effects macro is the computation of a 

partial correlation. The partial correlation removes the effect of a covariate 

according to Equation 3. Aside from computing the partial correlation, the 

 

N- � TO�1 0 C 0 D� 
 

(4) 

14

Spreadsheets in Education (eJSiE), Vol. 7, Iss. 1 [2014], Art. 1

http://epublications.bond.edu.au/ejsie/vol7/iss1/1



for loop for the covariate proceeds in the same manner as the previous 

procedures.  

 

Upon each iteration, a counter variable sums the number of type 1 errors 

across all the relevant for loops. A 1 is recorded in column AG if the 

counter variable is greater than 0. Otherwise, a 0 is recorded. The type 1 

error rate is computed as the average of column AG and recorded in cell 

B11.  

 

Problems 
In this section, 4 problems are provided for instructors to use in the 

classroom. Suggested answers are included to verify comprehension.  
 

Problem 1 

In the tab “Dichotomization”, set the True Correlation to 0 and initialize 

the simulation. In the simulation, data were sampled from a bivariate 

normal distribution with a correlation of exactly 0. One variable in each 

data set was dichotomized and the resulting correlations were recorded in 

the histogram. Explain how the variability due to dichotomization 

produces increased type 1 errors in cell B8.  
 

Suggested answer: The histogram illustrates that dichotomizing produces 

additional variability in the correlation. This additional source of 

variability allows the correlation to sometimes exceed the correlation 

based on the continuous data. The type 1 error rate increases from 5% to 

8% when the results of both tests are selectively reported.  

 

Problem 2 

Some researchers reason that optional stopping is an efficient research 

strategy because a large effect can be detected with fewer data points than 

a small effect. Thus, if an effect is detected with fewer data points, it is 

wasteful to continue data collection. Repeat the simulation in the tab 

“Optional Stopping” to find patterns in the p-value line that explain how 

optional stopping can increase type 1 errors.  
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Suggested answer: The p-value fluctuates up and down on each 

simulation. If it the p-value is greater than .05, it may fall below .05 on 

subsequent tests. Thus, optional stopping provides more opportunities to 

capitalize on chance. 

 

Problem 3 

In the multiple tests tab, set the True Correlation to 0, the number of DVs 

to 1 and the correlation between DVs to 0. What is the type 1 error rate 

and how does it compare to alpha (i.e.  .05)? What happens when more 

DVs are added? What happens when the DVs have a high correlation? 

Why?   

  

Suggested answer: When the True Correlation is 0 and only one test is 

performed, the type 1 error rate is .05, which is equal to alpha. As more 

tests are performed, the type 1 error rate increases because each test 

provides another opportunity for an error. When the correlation between 

the DVs is high, the type 1 error is partially mitigated because the 

outcomes tend to produce similar results. In other words, the DVs are 

redundant and reduce the opportunities for increased type 1 errors.  

 

Problem 4 

The tab titled “Combined” allows you to combine the multiple RDoF. 

Construct a few scenarios that you think are typical in research by varying 

the RDoF. How much greater are the type 1 error rates in those situations 

compared to alpha? Try to construct a scenario in which the type 1 error 

rate is high, e.g. greater than 50%. Do you think the scenario is realistic or 

typical?  

 

Suggestion answer: Answers will vary.  

 

Conclusions 
The interactive spreadsheet demonstrates how RDoF increase type 1 

errors in scientific research. Common research decisions—when combined 

with flexibility in reporting—increase the chance of a type 1 error. Some of 

these decisions include the aggregation or separate treatment of similar 
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dependent variables, multiple testing, optional stopping in data collection, 

the use of covariates and whether to dichotomize a continuous variable. 

Under reasonable assumptions, just a few RDoF can increase the type 1 

error rate to .15 - .30, well above the nominal rate of .05 set by the alpha 

criterion. Collectively, the pedagogic simulations give credence to the 

adage “If you torture your data enough, it will confess to anything”. In 

conjunction with the pedagogic problems, the interactive spreadsheet may 

be a valuable tool for increasing awareness of RDoF and how they 

increase type 1 errors. In addition, the spreadsheet may help instill good 

research habits in aspiring researchers.  
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