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Abstract

We introduce a function Z(k) which measures the number of distinct ways in which a
number can be expressed as the sum of Fibonacci numbers. Using a binary table and other
devices, we explore the values that Z(k) can take and reveal a surprising relationship between
the values of Z(k) and the Fibonacci numbers from which they were derived. The article shows
the way in which standard spreadsheet functionalities makes it possible to reveal quite striking
patterns in data.

Keywords: Mathematics investigation, Fibonacci numbers, Zeckendorf

1. Introduction

This paper extends the introduction to the topic of expressing a positive number
as the sum of Fibonacci numbers that was initiated in Baker and Sugden [2]. In that
paper we introduced the notation that if

n
k= Zeif(i) forallk € Zwheree; =0o0r1
i=1

then Z(k) is defined to be the number of distinct ways in which k can be
expressed as the sum of Fibonacci numbers. In this paper, we will call an instance of
k being expressed as the sum of Fibonacci numbers a Z-expression.

In an earlier paper in this journal, Abramovich and Leonov [1] showed how
effective a spreadsheet can be in the exploration of Fibonacci numbers and reflected
on activities designed for a technology-rich mathematics education course for
prospective teachers of secondary mathematics. It is argued that an appropriate
experience with a mathematical frontier can motivate the teachers to teach through a
guided discovery mode.

Our goal is similar in that we show how certain features of the spreadsheet, in
particular conditional formatting and data table filtering, were used to explore the
values of Z (k). The process showed how results that Klarner [5] and [6] describes can
be displayed visually and led to further results about the expression of a natural
number as the sum of Fibonacci numbers.
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Figure 1: Z-expressions of k
n 1 2 3 4 5 6 7 8 9 1.1 n 1 2 3 4 5 6 7 8 9
flnk 1 1 2 3 5 8 13 21 34 k filk 1 1 2 3 5 8 13 21 34
1 1 1 0 1 1 0 1 0 3 o 0 0 1 0 O 1 o0 1
1 0 0 1 1 1 0 1 0 38 60 1 1 0 0 O 1 o0 1
0 1 0 1 1 1 0 1 O 38 1 0 1 0 O O 1 0 1
1 1 1 0 0O 0o 1 1 0 3 o 0 0 1 1 1 0 0 1
1 0 0o 1 0 O 1 1 0 38 o0 1 1 o0 1 1 0 0 1
o 1 0o 1 O O 1 1 O 38 1 0 1 0 1 1 o0 0 1
1 1 1 0 0 0O 0 o0 138 o o o 1 1 1 1 1 O
1 0 0 1 0 0O o0 O 138 o 1 1 0 1 1 1 1 O
0 1 0 1 0 O 0o o0 138 1 0 1 0 1 1 1 1 O

Figure 2: The binary tables for 38 and 50

The use of a binary table as shown in Figure 1 allowed data filtering to be
applied in order to find all possible Z-expressions of k, and an example is given in
Figure 2, where k = 38 and k = 50. The binary table was also used to demonstrate
particular instances of the following formula:

Y fmy =fa+2)-1 Equation 1
i=1

This is a well-known result (Identity 22 in [4]) and it is one that was used many
times in our investigation.

The Z (k) values that were derived from the binary table indicated that
Z(f2n) =Z(f2n+1) =n+1
A proof of this was given in [2].

The above is a précis of the results discussed in the earlier article. Here we would
like to take the reader further into our exploration of Fibonacci numbers to look at
1. maximum and minimum values of Z(k) within an interval

2. the symmetry of Z(k) within an interval
3. aformula for the maximum value of Z (k) within an interval
4. the distribution of Z-pairs, which are pairs of consecutive numbers that have

the same Z-value.

http://epublications.bond.edu.au/ejsie/vol7/iss2/2
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Plot of Z(k): 0 <= k <= 20,000
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Figure 3: A plot of Z(k) for large values of k

We will also show how the spreadsheet gave us the tools with which to
undertake the investigation.

2. Max and Min values of Z(k) within particular intervals

The binary table enabled us to create a list of Z-values for above (1 <= k <
610) and certain trends emerged from these data. In particular, it appeared that the
Z-value were symmetric within intervals [f(n),f(n + 1) - 1]. To check that the
trends continue for larger values of k a Visual Basic program enabled us to extend
the values of k to 20,000 and the resulting chart of Z(k) values, with Fibonacci
numbers highlighted, is given in Figure 3 and shows that the trends do continue.

As well as highlighting the presence of the Z(f(n)) values at the minimum
positions, this chart also shows that within each interval there are a few points that
have a Z(k) value that is clearly greater than the rest. These extrema were then
located in each interval for which n < 21 and used to generate the table below (see

Figure 4) which shows that the value of these maximum Z(k) is a Fibonacci number
in every other row. Formally this can be stated as:

max(Z(k)) =f(n+2)when f2n)<k< f2n+1)

The values for max (Z(k)) that lie in the remaining intervals are not Fibonacci
numbers, but they do exhibit a similar pattern. Taking the difference between the
numbers in the third column for row 2n + 1 and row 2n, we find that the
differences are themselves Fibonacci numbers. Thus:

max(Z(k)) =f(n+2)+f(n—1Dwhen fRn+1)<k <f(2n+2)
The graph also shows that
min(Z(k)) =f(m)whenf(n) <k <f(n+1) -1

Published by ePublications@bond, 2014
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These are two truly surprising results, as we had no inkling that the number of
Z-expressions of a number by Fibonacci numbers would be in any way related to the
Fibonacci numbers themselves.

n fn) Z(f () Max(Z(k))
1 1 2 2

2 1 2 2

3 2 3 3

4 3 3 3

5 5 3 4

6 8 4 5

7 13 4 6

8 21 5 8
9 34 5 10
10 55 6 13
11 89 6 16
12 144 7 21
13 233 7 26
14 377 8 34
15 610 8 42
16 987 9 55
17 1597 9 68
18 2584 10 89
19 4181 10 110
20 6765 11 144
21 10946 11 178

Figure 4: Table of Max values

3. Symmetry within an Interval

The graph of Z(k) shown in Figure 3 also suggested that the Fibonacci numbers
themselves formed the starting points of intervals within which the Z(k) values are
symmetric. For example, the numbers 38 and 50 lie in the interval [34, 54] and both
have a Z-value of 9. A close examination of the two tables in Figure 2 shows that
every Z-expression of 38 has a corresponding Z-expression of 50 which is its

complement.

The binary tables give the clue to a proof that, indeed, the Z-values are
symmetrical within an interval between two Fibonacci numbers. Let k lie in the

interval [f(n), f(n + 1) - 1]. Then

n

k=) af®

i=0

Define e’; = 1 — ¢; and consider

n

K= eif@)

i=1

http://epublications.bond.edu.au/ejsie/vol7/iss2/2
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Ktk =D (e+ €Df@= ) ) =fi+D—1=Ff@)+f(n+ 1)1
i=1 i=1

Thus k and k’ are symmetrically placed within the interval [f(n), f(n + 1) - 1].

4. Lower and Upper Maxima

In the demonstration Z(k) is symmetrical between f(n) and f(n + 1) - 1, we
used a method of locating the symmetrical pairs by finding the complementary sum
formed by e'; in place of e;. This process enables us to locate pairs of numbers, let us
call them L(n) and U(n) where L(n) is the smallest value of k in the nth interval for
which Z (k) is maximal. U(n) is then found as the complement of L(n) and will be the
largest value of k for which Z (k) is maximal.

At this point we need to make the following assertion. Let k be a number in the
nth interval, whose Z-expression is
n

k=) af®

i=2
Then the Z-expression must include either f(n) or f(n - 1) but not both, because

n-2

D ef@=fm-1

=2

which is not in the nth interval. Also, f(n) and f(n - 1) cannot both be part of
the Z-expression as that would make k too large to be in the interval.

As an example of L(n) and U(n) we turn to the binary table for L(n) in the 10®
interval, which is [55, 88]. The binary table for L(10) = 64 is shown in Figure 5 and
the binary table for U(n) = 79 is shown in Figure 6.

As expected, the table for 64 shows 34 or 55 in each of the Z-expressions. For
those that include 34, the residue is a sub-table for the number 30, while those whose
Z-expressions include 55 form a sub-table for 9. Thus we can show this as:

Z(L(10)) = Z(64) = Z(30) + Z(9)

The table for U(10) = 79 is somewhat different. Again, the Z-expressions
contain either 34 or 55, but there is a block of 1s in rows 1 — 5. This is because each Z-
expression of 79 that includes 34, must also include 21 and 13, since 79 - 34 - 21 =
24 which cannot be achieved without including 13. But 79 - 34 - 21 - 13 = 11 and
that can be achieved without using 8.

In a general sense, then, we can state that a formula for Z(k), where f(n) <k <
f(n+ 1) — 1 has two parts. The first part is Z-expressions that include f(n), while the
second part is a Z-expresssion that includes f(n - 2) and as many immediately prior
Fibonacci numbers as leave

k=fn=2)-f(n=3)—=fln-r)<f(n—-r)

Published by ePublications@bond, 2014
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Figure 5: Binary table for 64

~
00
w
=
o
=
-

F(n)

—
w
N
=
w
b
ul
v}
[}
©
=

79
79
79
79
79
79
79
79
79
79
79
79
79

O 00 N U WN B

P
= O

=
N
OO Fr OO0OFr OF OO0 FK OF K, -

OFr OO0ORrROFR OOFRORORN
OR RPORRLREPRLRORRERRERELNW
P OOR OORRELRELROORRFLR WAL
OO0 O0OO0OO0OKrEOOORRE VWUV
OCO0OORrRPEFPROORRERELOO®O®
COoOORRRRLREERLRRLRR
P PP OOOOOREREREER R
OO0 000000 Rr R, REL R KL
P PR RPRRRLRBRPLEPEROOOOO
OO0 0O O0OO0OO0OO0OOOoOOoO O O

=
w

Figure 6: Binary table for 79

The general expression for Z(k) is:
n-2

200 =2(k - f) +Z(k= > f@)

i=n-r
where r is chosen so that the residue after f(n- 2),..,f(n- r) have been
subtracted from k is less than f(n - r).

Using this formula,
zZ(U(10)) = 2(79) = Z(24) + Z(11)

Figure 7 gives a table of the values of L(n) and U(n) which shows a remarkable
pattern. Based on the data in the table, we have the following recurrences that
generate the Z-values for L(n) and U(n).

Z(Ln+4))=Z(U(n+2))+Z(L(n))
Z(Um+4)=Z(L(n+2))+Z({UMN))

From their definitions, we know that Z(L(n)) = Z(U(n)) for all n, and that the
form of these recurrences leads to Fibonacci numbers in the even-numbered intervals
and to the sum of two Fibonacci numbers in the odd-numbered intervals.

http://epublications.bond.edu.au/ejsie/vol7/iss2/2



Baker and Sugden: Counting Zeckenberg representations in Excel

Interval Range L(n) U(n) Calculation of Z(k)
) -1 1 1 2(1) =2
: 2-2 2 2 2(2) =2
4 3-4 : 4 ;Ez; : :
s s S o sy
6 B-12 ’ 11 23123:;:2
A T F MR I
+ =5+
s om0 M eses
9 34-54 * 48 221;3(21(2; : g I 2
0 ssees O Aeza0-ses
11 89-143 o 129 5&3; : igg; _ 615(; +12
n =8+
12 144 - 232 168 208 222; + ;ggi = 33 +12
I O NG e
14 377-610 . 545 ;E?gé;f (Zz(;)g; _ ;i : i:«lz

Figure 7: Calculation of Z(L(n)) and Z(U(n))

The following steps suggest a line of argument that furnishes a proof that the
above formulae are correct. We have seen that every Z-expression of L(n) must
include either f(n) or f(n-1). We also note that the length of the interval
[f(n),f(n+1)—=1]is f(n- 1) = f(n- 3) + f(n- 2). Figure 8 shows what is left of
L(n) once f(n) has been subtracted.

If L(n) is close enough to f(n) then the residue is less than f(n — 3) and so we
will be looking in interval n - 4. In that interval, L(n — 4) and U(n — 4) have the

greatest Z-value.
€f(n—3)pe— f(n—2) —>

| | [
fm L fn+1)

Figure 8: Residue when f(n) is subtracted

«— fn-1) >

«— f(n—2) ——3</(n—3)»

| [ [ I
f(n —-1) fm) L fln+1)

A 4

Figure 9: Residue when f(n — 1) is subtracted
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For those Z-expressions that include f(n - 1), a different diagram is needed to
show what is left of L(n) after f(n - 1) has been subtracted (see Figure 9).

This time the residue is less than f(n - 1) and so we will be looking in interval
n - 2. In that interval L(n - 2) and U(n — 2) have the greatest value.

Thus the recurrences:
Z(Ln+4))=2Z(UMn+2))+Z(L()
Z(Un+4)=Z(L(n+2))+Z({UN))

use the optimal choice of Z-values from the intervals in which the residues lie
after f(n) and f(n - 1) have been subtracted from L(n).

The diagrams show L(n) lying closer to f(n) than f(n) + f(n- 3). If L(n) were
further from f(n) then it can be shown that the residues after f(n) and f(n - 1) have
been subtracted are both less than f(n - 2) with the result that the residues will both
lie in interval n - 3. Any choice of two values in interval n - 3 will have a combined
Z-value of less than that of L(n) as the data that has been generated confirms.

Therefore, the iterative formulas above are optimal for general values of n and
do match the initial data that has been generated.

4.1. Values of L(n) and U(n)

The previous section suggests a Z(K) for 55 <=k < 88
recurrence relation that can be used to " . e
find the maximum values that Z(k) can - Lin) =64 .’."'".
take in the intervals between two v LA
Fibonacci numbers. In this section we ) ‘. o “ i

focus on what those values of k might be.
In the 10% interval that starts at 55, the ,
graph of Z(k) shows that L(10) = 64 .

and U(10) = 79 (see Figure 10). ‘ 2o ® I
Figure 10: Plot of Z (k)

A table of values was constructed for the first 20 intervals and the values of L(n)
recorded. As a check, the values of U(n) were read off the charts and found to be
exactly those expected, as derived from

LM +Um=fmM)+ f(n+1)-1
However, it did not appear that the values of L(n) followed a discernible pattern.
An extra column was added to the table in which the distance of L(n) from the

starting point of the interval, L(n) — f(n), was recorded. The resulting table is
shown in Figure 11:

http://epublications.bond.edu.au/ejsie/vol7/iss2/2
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n fm L(n) L(n) = f(n)
2 1 1

3 2 1

4 3 3 0

5 5 6 1

6 8 9 1

7 13 14 1

8 21 24 3

9 34 40 6
10 55 64 9
11 89 103 14
12 144 168 24
13 233 273 40
14 377 441 64
15 610 713 103
16 987 1155 168
17 1597 1870 273
18 2584 3025 441
19 4181 4894 713
20 6765 7920 1155

Figure 11: Table of L(n) values

The fact that this difference column is an offset of the L(n) column can be seen
from the table and leads to the following recurrence for L(n), while the recurrence for
U(n) follows from the symmetry argument.

L(n)=fm)+L(n—4) Equation 4
Umy=fm+fn+1)-1- L) Equation 5
A proof of this conjecture can be built on our previous result:
Z(Ln+4))=2(Un+2)+Z(L()

But before describing the method of proof, let us first examine in detail a binary
table that gives the Z-expressions of 168, which is the L(n) value for the 12% interval
[144, 232].

In Figure 12, the rows have been numbered for easy identification. In the last 8
rows, i.e. rows 14 — 21 where f(n) is part of each Z-expression of L(n), the remaining
Fibonacci numbers in each of those Z-expressions add to 24, which is the value of
L(n) in the 8" interval (21, 33), i.e., L(n - 4).

In rows 6 — 13, we see that the numbers f(n - 1) and f(n - 2), i.e. 89 and 55, are
both used, but we can also see that the residues for these rows are exactly the same as
the residues for rows 14 — 21. The above formula can be seen to match with the Z-
expressions in rows 6 — 13.

Published by ePublications@bond, 2014
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1 1 2 3 5 8 13 21 34 55 89 144 233 377 k
1 1 o] 1 1 1 0] 1 1 1 6] 1 6] 0] 0 168
2 [0] 1 1 1 1 [0] 1 1 1 o] 1 ] 0] 0 168
3 1 (0] 1 (0] o] 1 1 1 1 6] 1 ] 0 0 168
4 o 1 1 (0] 6] 1 1 1 1 6] 1 o] o 0 168
5 0 (o] 6] 1 6] 1 1 1 1 6] 1 6] 0 0 168
6 1 (0] 1 1 1 (] 1 0 [¢] 1 1 6] 0 0 168
7 (] 1 1 1 1 0 1 0 (] 1 1 6] 0 0 168
8 1 (0] 1 0] 6] 1 1 0 (o] 1 1 6] o 0 168
9 0 1 1 o] 6] 1 1 0 ] 1 1 6] 0o 0 168
10 0 o] 6] 1 6] 1 1 0 [¢] 1 1 ] 0 0 168
11 1 (0] 1 (0] 6] 0 (0] 1 (0] 1 1 6] 0 0 168
12 (o] 1 1 (0] ] o (o] 1 (] 1 1 ] o 0 168
13 0 o] 6] 1 6] 0 [¢] 1 [¢] 1 1 6] 0] 0 168
14 1 (0] 1 1 1 (0] 1 (0] [¢] 6] 0] 1 0] 0 168
15 [0] 1 1 1 1 (0] 1 (0] (] o] (0] 1 (0] 0 168
16 1 (0] 1 o] o 1 1 0o ] 6] 0] 1 [0] 0 168
17 0 1 1 (o] 6] 1 1 0] ] 6] o] 1 (0] 0 168
18 0 o] 6] 1 6] 1 1 0 [¢] 6] (0] 1 0] 0 168
19 1 (0] 1 (0] ] 0 (] 1 (] 6] (0] 1 [0] 0 168
20 o 1 1 (0] 6] 0o ] 1 o] 6] 0] 1 o 0 168
21 0 o] 6] 1 6] 0 [¢] 1 [¢] 6] (0] 1 0 0 168

Figure 12: Binary table for 168

In rows 1 - 5, the Z-expressions all include f(n- 1), f(n- 3) and f(n - 4), given
that

fh=H)+f(n—-3)=f(n—-2)
and that
f(n=2)+f(n—-1)=f(n)

We see that in rows 1 — 5, the subtraction of f(n- 1), f(n- 3) and f(n- 4) is
equivalent to subtracting f(n ) and that the residue is again L(n — 4) in each case.

We have shown above that, in the case of a particular example, every Z-
expression of L(n) can be expressed as f(n) and a residue that is equal to L(n).

From Equation 4, we know that each of the Z-expressions of L(n) that include
f(n) do have L(n — 4) as the residue. If the Z-expression is of the form:

n-3

L = ) ef )+ fn=2) + f(n—1)

=1
then we know that the residue is L(n —4) If, however, the f(n- 2) term is
missing, we need to show that the Z-expression must be of the form:
n-4

L = ) ef @ +f(r=3)+f(n—1)

i=1
and that e,_, # 0.If e,_, = 0, the residue cannot be greater than
n->5
Do =fn-3-1
i=1

Inthat case, L(n) < f(n—3) — 1+ f(n—3) + f(n — 1) < f(n), implying that
L(n) does not belong to [f(n), f(n + 1) — 1]

which is false. Thus e, _, =1 and the required outcome is proven.
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5. Zeckendorf Pairs

In the context of prime numbers, one of the outstanding unproved mathematical
conjectures is that there are infinitely many twin primes, such as 41 and 43 which are
two primes that differ by 2. We can borrow this concept and relate it to our
investigation of Z-values by making the definition:

{k,k + 1} is called a Zeckendorf pair or Z-pairif Z(k) = Z(k + 1)
We have seen that for Fibonacci numbers,
Z(f(2n)) =n+1
Z(f2n+1)=n+1

Also, within the interval [f(2n), f(2n + 1) - 1] we have shown that the Z-values
have symmetry. In particular, we know that Z ( f (Zn)) = Z(f(2n + 1) - 1). Thusitis
immediately clear that f(2n + 1) — 1and f(2n + 1) form a Z-pair, because their Z-
values are bothn + 1.

This shows that there are infinitely many Z-pairs, but the question remains as to
how they are distributed. We looked at the data that spreadsheet generates for Z-
pairs that do not include a Fibonacci numbers. The first few of these are shown in
Figure 14, where the values of Z (k) are given for each pair. In Column 4, we have
included size of the interval between the values of k, which is consistently either 13
or 21.

Another feature of the table is that the Z-values for k, Z(k), are all multiples of
three. A possible reason for this is that binary tables for each value appear to end in 3
for k and 4 for k + 1. The tables for 3 and 4 are shown in Figure 13 below and we
find that those patterns are repeated whenever two consecutive numbers form a Z-

pair.

i il 2 3 k
1 i 0 i 0 3
2 0 1 1 0 3
3 0 0 0 1 3

1 1 2 3 k
1 1 1 1 0 4
2| i 0 0 i 4
3 0 1 0 i 4

Figure 13: Binary tables for 3 and 4
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k k+ 1 Z(k) Ky — kny
3 4 3

16 17 6 13
37 38 9 21
50 51 9 13
71 72 12 21
92 93 12 21
105 106 15 13
126 127 15 21
139 140 12 13
160 161 18 21
181 182 18 21
194 195 18 13
215 216 18 21
236 237 15 21
249 250 21 13
270 271 24 21
283 284 21 13
304 305 24 21
325 326 21 21
338 339 24 13
359 360 21 21
372 373 15 13
393 394 24 21
414 415 27 21
427 428 27 13
448 449 30 21
469 470 24 21
482 483 30 13
503 504 30 21

Figure 14. Table of Z-pairs up to k =503

For the values of k given in Figure 14, the binary tables for k and k + 1 were
explored as were the binary tables for k - 3. The tables suggested that k can be
expressed as

n
k= 3+ (Z el-f(i)> wheree; = 0or 1 forall i.
i=5
n

k+1=4+ (Zej(i)) wheree; = 0or 1 foralli.

i=5
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That is, the numbers that form Z-pairs have a Zeckendorf representation that
starts with the fifth Fibonacci number, 5, or greater and each representation begins
with one of the three representations of 3 or 4.

Using the binary table, but this time starting at f(5), we searched for numbers, p,
that could be expressed as

n
p= (Z eif(i)> wheree; = 0or 1 forall i.
i=5

For p = 47 and p = 68 we find that k = p + 3 and k + 1 = p + 4 are
indeed a Z-pair because Z(k) = Z(k + 1) = 9. However, there are other values of p
for whichZ(p + 3) # Z(p + 4). For example, the binary tables for p = 29, 42 and 55

are shown in Figure 15.

Note that none of the above include a 5, a feature that distinguishes them from
tables for which {p + 3,p + 4} is a Z-pair. For example, the binary tables for 47 and
68 are shown in Figure 16.

Let us now look at the full binary tables for the numbers p + 3 and p + 4 when p =
42. Figures 17 shows how rows A and B of the representation of 42 generate rows 1 —
3 and 4 - 6 of each of tables for 45 and 46. But when f(6) is changed to f(4) + f(5)
there are two ways in which the remaining 3 can be made while there is only 1 way
in which the remaining 4 can be made. Rows 7 and 8 of the table for 45 begin with
f(1) + f(3) = 3and f(2) + f(3) = 3, while there is only row 7 of the table for 46
which beings with f(1) + f(2) + f(3) = 4. The same is true for rows 9 and 10 of
45 and row 8 of 46. As a result, Z(45) # Z(46) and {45, 46} is not a Z-pair.

5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 k
0 1 0 1 0 0 0 0 0 0 0 0 0 0 29

5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 k
1 1 0 0 0 0 0 0 0 0 0 0 4
1 0 0 0 0 0 0 0 0 0 4

o
(S
o

13 21 34 55 89 144 233 377 610 987 1597 2584 k

1 0 1 0 0 0 0 0 0 0 0 0 55
1 0 0 0 0 0 0 0 0 0 55
0 0 0 1 0 0 0 0 0 0 0 0 55

o oo uwun
o o r ®
=

Figure 15: Representations of p as the sum of Fibonacci numbers from f(5) onwards

5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 k
1 1 1 1 0 0 0 0 0 0 0 0 0 0 47
1 1 0 1 0 0 0 0 0 0 0 0 0 47
0 0 1 0 1 0 0 0 0 0 0 0 0 0 47
5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 k
1 1 0 1 1 0 0 0 0 0 0 0 0 0 68
0 0 1 1 1 0 0 0 0 0 0 0 0 0 68
1 1 0 0 0 1 0 0 0 0 0 0 0 0 68
0 0 1 0 0 1 0 0 0 0 0 0 0 0 68

Figure 16: Representations of p as the sum of Fibonacci numbers from f(5) onwards
for which {p + 3,p + 4} is a Z-pair.
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k
42

144 233 377

21 34 55 &9

13

42

k

89 144 233 377

21 34 55

13

45

45

45

45

45

45

45

45

45

45

10

k
46

144 233 377

21 34 55 &9

13

46

46

46

46

46

46

46

Figure 17: Representations of p + 3 and p + 4 as the sum of Fibonacci numbers

from f (1) onwards for which {p + 3,p + 4} is not a Z-pair.

k
47

89 144 233 377

21 34 55

13

47

47

144 233 377 k

21 34 55 &9

13

50
50
50
50
50
50
50
50
50

144 233 377 k

21 34 55 &9

13

51

51

51

51

51

51

51

51

51

Figure 18: Representations of p + 3 and p + 4 as the sum of Fibonacci numbers

from f(1) onwards for which {p + 3,p + 4}is a Z-pair.
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This process will happen for every situation in which none of representations of
p as

n
p= (Z eif(i)> wheree; = 0or 1 forall i.

i=5
contain f(5).

The situation for p = 47 is different (see Figure 18). Here, either the first two
numbers in the representation of p are f(5) + f(6) or the first non-zero number is

f-
In this case, rows A, B and C of the representation of 47 each generate three rows
of 50 and 51 and as a result, {50, 51} is a Z-pair.

The examples given above can be generalised to the following conjecture about
the existence of Z-pairs.

5.1. Conjecture

Let p be a number that can be expressed as

n

p=5+8+ (Z eif(i)> wheree; =0o0r 1 foralli

i=7
then Z(p + 3) = Z(p + 4) and the pair {p + 3,p + 4} is a Z-pair. If p cannot
be expressed in that format, then {p + 3,p + 4} is not a Z-pair.

6. Conclusion

The aim of this investigation was not to discover new features of the Fibonacci
numbers. The fact that we chose what proved to be a very fertile source for
mathematical exploration can only be described as a serendipity. Our hope was that
we would be able to show that there are certain features of spreadsheet that provide
powerful tools for the investigation of a mathematical topic. Of these, the two most
important would be:

¢ Conditional Formatting

e Charting the Data

But there are other features that can be of great value. For example, the
COUNTIF function can reveal trends in a way that would be most difficult to see
otherwise as does the ability to filter a data set enable you to single out certain data
for inspection. We also introduced the concept of a binary table as a mechanism for
making sure that every possible outcome was catered for.

So often, a mathematical investigation requires that data be generated from
which generalisations can be formed, or limits such as maxima and minima can be
found. In this case it has been these types of activity that the spreadsheet has made
possible and accessible.
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