
Spreadsheets in Education (eJSiE)

Volume 7 | Issue 2 Article 5

3-18-2014

Multivariate Monte-Carlo Simulation and
Economic Valuation of Complex Financial
Contracts: An Excel Based Implementation.
Timothy J. Kyng
Macquarie University, timothy.kyng@mq.edu.au

Otto Konstandatos
University of Technology, Sydney, otto.konstandatos@uts.edu.au

Follow this and additional works at: http://epublications.bond.edu.au/ejsie

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works
4.0 License.

This Regular Article is brought to you by the Bond Business School at ePublications@bond. It has been accepted for inclusion in Spreadsheets in
Education (eJSiE) by an authorized administrator of ePublications@bond. For more information, please contact Bond University's Repository
Coordinator.

Recommended Citation
Kyng, Timothy J. and Konstandatos, Otto (2014) Multivariate Monte-Carlo Simulation and Economic Valuation of Complex
Financial Contracts: An Excel Based Implementation., Spreadsheets in Education (eJSiE): Vol. 7: Iss. 2, Article 5.
Available at: http://epublications.bond.edu.au/ejsie/vol7/iss2/5

http://epublications.bond.edu.au/ejsie?utm_source=epublications.bond.edu.au%2Fejsie%2Fvol7%2Fiss2%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epublications.bond.edu.au/ejsie/vol7?utm_source=epublications.bond.edu.au%2Fejsie%2Fvol7%2Fiss2%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epublications.bond.edu.au/ejsie/vol7/iss2?utm_source=epublications.bond.edu.au%2Fejsie%2Fvol7%2Fiss2%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epublications.bond.edu.au/ejsie/vol7/iss2/5?utm_source=epublications.bond.edu.au%2Fejsie%2Fvol7%2Fiss2%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epublications.bond.edu.au/ejsie?utm_source=epublications.bond.edu.au%2Fejsie%2Fvol7%2Fiss2%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://epublications.bond.edu.au/ejsie/vol7/iss2/5?utm_source=epublications.bond.edu.au%2Fejsie%2Fvol7%2Fiss2%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epublications.bond.edu.au
mailto:acass@bond.edu.au
mailto:acass@bond.edu.au


Multivariate Monte-Carlo Simulation and Economic Valuation of
Complex Financial Contracts: An Excel Based Implementation.

Abstract
The economic valuation of complex financial contracts is often done using Monte-Carlo simulation. We show
how to implement this approach using Excel. We discuss Monte-Carlo evaluation for standard single asset
European options and then demonstrate how the basic ideas may be extended to evaluate options with exotic
multi-asset multi-period features. Single asset option evaluation becomes a special case. We use a typical
Executive Stock Option to motivate the discussion, which we analyse using novel theory developed in our
previous works. We demonstrate the simulation of the multivariate normal distribution and the multivariate
Log-Normal distribution using the Cholesky Square Root of a covariance matrix for replicating the
correlation structure in the multi-asset, multi period simulation required for estimating the economic value of
the contract. We do this in the standard Black Scholes framework with constant parameters. Excel
implementation provides many pedagogical merits due to its relative transparency and simplicity for students.
This approach also has relevance to industry due to the widespread use of Excel by practitioners and for
graduates who may desire to work in the finance industry. This allows students to be able to price complex
financial contracts for which an analytic approach is intractable.
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Finance, Options, Simulation, Executive Compensation, Multivariate Normal Distribution, Cholesky
Decomposition.
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Abstract 

The economic valuation of complex financial contracts is often done using Monte-Carlo 

simulation. We show how to implement this approach using Excel. We discuss Monte-Carlo 

evaluation for standard single asset European options and then demonstrate how the basic 

ideas may be extended to evaluate options with exotic multi-asset multi-period features. Single 

asset option evaluation becomes a special case. We use a typical Executive Stock Option to 

motivate the discussion, which we analyse using novel theory developed in our previous 

works. We demonstrate the simulation of the multivariate normal distribution and the 

multivariate Log-Normal distribution using the Cholesky Square Root of a covariance matrix 

for replicating the correlation structure in the multi-asset, multi period simulation required for 

estimating the economic value of the contract. We do this in the standard Black Scholes 

framework with constant parameters.  Excel implementation provides many pedagogical merits 

due to its relative transparency and simplicity for students. This approach also has relevance to 

industry due to the widespread use of Excel by practitioners and for graduates who may desire 

to work in the finance industry. This allows students to be able to price complex financial 

contracts for which an analytic approach is intractable.  

Keywords: Finance, Options, Simulation, Executive Compensation, Multivariate Normal 

Distribution, Cholesky Decomposition.  

1. Introduction 

Monte Carlo (MC) simulation is often used for evaluating both simple and complex 

financial instruments. The purpose of the paper is to explain the theory behind MC 

simulation valuation of financial instruments with multi-asset multi-period features, 

and to demonstrate the numerical implementation in Excel. 

Most discussions of advanced financial engineering concepts are hampered by the 

difficulty and opaqueness of the mathematical underpinnings of the method. This is 

especially so for the student. However being able to implement some realistic 

examples of such financial calculations greatly aids the understanding of the method 
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and of the financial considerations involved. We believe it may also aid the 

development of more sophisticated computer software for industrial applications of 

the methods. Our discussion should be accessible to readers and students with some 

knowledge of Excel, option pricing, matrix algebra and statistical theory. Our aim is 

to explain MC simulation and risk neutral valuation from a statistical perspective.  

Use of spreadsheet software is widespread throughout the financial services 

industry. Kyng Tickle and Wood (2013) found that spreadsheets are used by finance 

graduates for both simple and complex calculations including valuation of complex 

financial contracts, statistical modelling and also simulation. Contact with recent 

graduates indicates that the valuation of complex employee share options of the type 

we consider here is often done by actuarial consulting firms. A recent survey 

undertaken in Kyng and Taylor (2008) consisting of 93 postgraduate students and 70 

graduates working in the financial services industry found that students prefer 

learning financial mathematics using spreadsheets to the traditional pen and paper / 

calculator method normally used in teaching this material. Graduates find 

spreadsheets easy to learn and easy to use when applying financial and actuarial 

theory in the workplace due to their transparent nature. In this regard we hope that 

the implementations we present here will be of some value to industry practitioners 

as well as to students who may be studying at a traditional university. We have been 

teaching senior actuarial and finance students the theory of Monte Carlo Simulation 

and its application to option pricing for several years and we have found that 

students respond well to learning through the Excel based examples. This approach 

enhances their learning by allowing the transparent implementation of the method. 

The learning hurdles for Excel are much lower than with other software packages, 

and students can quickly develop spreadsheet programs for computing the value of 

many complex financial contracts.  

Monte-Carlo Simulation is in practice a computer based numerical method. It is not 

feasible to implement using the calculator and pen-and-paper approach used in 

traditional expositions of financial and economic subject matter. The traditional pen-

and-paper approach does not allow the treatment of realistic examples nor does it 

give much scope for scenario analysis to readily vary the input parameters. Given the 

complexity of the calculations and the need for the large number of trials required for 

accuracy, a computer implementation of the method is therefore essential. 

Traditional computer programming languages such as C++ and advanced computer 

packages such as Matlab and Mathematica are suited to these tasks, however they 

require a considerable overhead in learning programming syntax and methods. To 

master, they usually require specific study as separate subjects in their own right. 

Most finance and actuarial students have little or no exposure to these more 

advanced tools before undertaking our courses. Spreadsheets in contrast require little 

overhead in programming knowledge and are accessible by the beginner. The 

spreadsheet paradigm, where the details of calculations are developed on the screen 

in a manner mimicking the steps one would take on a sheet of paper, is easy to 

understand. This makes it a very good way to implement and illustrate the methods 

for teaching purposes without being distracted by the intricacies of writing code. The 

input assumptions, the intermediate calculations and the final results are all visible to 

the student, making it easier to understand how the method we’re trying to teach 
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actually works. In our experience students from industry usually come with some 

exposure to Excel in their daily working lives, as spreadsheet software is widely used 

in business. Given the student backgrounds and skills sets, spreadsheet software 

seems a natural choice.  

This paper is organised as follows. Section 2 gives an overview of option pricing 

theory and statistical modelling of asset prices. We also detail the fundamental 

results we use in our novel approach, in particular the use of building block 

instruments such as power options and binary options. Section 3 covers the MC 

simulation pricing of plain vanilla (European) options, and explores the issue of 

required sample size to achieve accuracy to a desired level of confidence. Section 4 

covers the generalisation of the univariate simulation methods of Section 3 to the 

case of multiple Log-Normally distributed assets. We utilise an algorithm derived 

from the constructive proof of the Cholesky square-root of a given covariance matrix 

(provided in Appendix B) and present diagnostics for valid covariance matrices. An 

example Excel implementation of the algorithm is presented. Section 5 presents a 

case study of the pricing of several multi-asset multi-period exotic options, including 

the Executive Stock Option which is the focus of this paper. Section 6 gives a brief 

conclusion. 

2. Statistical modelling of asset prices and financial contract valuation 

Monte-Carlo Simulation was first suggested as a numerical method for the economic 

valuation of options and other financial contracts in Boyle (1977). Since then it has 

become a standard tool of financial modelling. Typically this numerical approach is 

used in circumstances where an analytic formula for the option value is not available 

or difficult to obtain and where other numerical methods are not feasible. Examples 

include path dependent options such as Asian options which have a payoff based on 

the average stock price over the term of the option; spread options which have a 

payoff based on the difference between two asset prices, and rainbow options which 

have payoffs based on the value of a portfolio of assets. 

Under the Black-Scholes option pricing assumptions, the maturity value of the assets 

which define the payoff on an option will be Log-normally distributed. This fact 

allows a closed form formula for the value of standard call and put European 

options, as first demonstrated in the celebrated paper of Black and Scholes (1973).  

A linear combination of Normally distributed random variables will also be 

Normally distributed. In other words the Normal distribution is stable. However a 

linear combination of Log-normally distributed random variables will not be Log-

normally distributed. Since the Log-normal distribution is not stable, this makes it 

very difficult in general to obtain analytic valuation formulae for multi asset, multi 

period options where each of the assets defining the payoff has its own Log-normal 

distribution. It may not in fact be possible, depending on the exact scenario. 

Accordingly other methods need to be employed and MC simulation is a common 

choice.  

MC simulation is a very flexible method and can be used to compute estimates of the 

expectation of a random variable; the expectation of some function of the variable; 
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the variance of a random variable or function thereof; the 100×α percentile of the 

distribution of the variable or function as well as other things of interest. 

Although the technique is quite general, our interest in Monte-Carlo simulation is for 

the numerical calculation of option prices, and in particular for those with non-

standard or exotic features. These arise naturally in many areas of finance, including 

the valuation of Real Options in mining (for examples see Konstandatos and Kyng 

(2012)) as well as in the Executive compensation area we explore here. 

The modern approach to financial valuation rests on the intuitively appealing notion 

that there is no such thing as a free lunch. An arbitrage is a situation where it is 

possible, with certainty, to make a positive profit for zero initial investment, namely 

to have a free lunch. To avoid free lunches therefore we require the absence of 

arbitrage opportunities in a well-functioning market. The absence of arbitrage, 

though taken as axiomatic, should be understood as applying in the statistical sense, 

rather than the usual sense that axioms of mathematics are understood. Namely, 

arbitrage opportunities may arise for short periods but that they will be eliminated 

by active traders as they attempt to exploit them in the operation of a free market.  

The Fundamental Theorem of Asset Pricing ( Harrison and Pliska (1981)) states that an 

arbitrage-free market (S(t),B(t)) consisting of risky asset (S) and a risk-free asset B(t) 

(either cash or bond) is complete if and only if there exists a unique risk-neutral 

probability measure Q that is equivalent to the probability measure P for the 

dynamics of the risky assets S(t) and has numéraire B(t). The risk-neutral probability 

measure expresses the risk-preferences for a risk-neutral investor. Under the risk-

neutral measure, the discounted risky asset is a mathematical martingale, namely: 

  ����/���� � 	
�����/����|��� �1� 
 

Completeness of the market is also important because in an incomplete market the 

price of assets or any contingent claim dependent on the risky assets will not be 

unique. The technical details are beyond the scope of this paper, however an 

expanded discussion may be found in Konstandatos (2008) or Buchen (2012). An 

intuitive and pedagogical introduction to risk-neutral pricing may be found in Tham 

(2001). The simulation approach to option pricing we employ is based on the result 

that any contingent claim depending on a risky asset or even a collection of risky 

assets may be uniquely priced as a discounted expectation with respect to the risk-

neutral measure Q.  

Under the risk neutral discounted expectations approach to option valuation 

therefore, we compute the price of any contingent claim or option as the product  

  ��������� ������� � ������� � �����!�  �2� 
 

In this formulation, the expected payoff is calculated under the risk-neutral 

probability distribution of the price of the underlying asset. The discount factor is 
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calculated using the risk free interest rate for the term of the option contract, which is 

assumed to be a constant which may be determined from the T-bill (Treasury Bill), a 

risk-free government Bond rate or the return on some other essentially risk-free asset 

over the term of the contract. By simulating the dynamics of the assets defining the 

payoff using the risk-neutral distribution, Monte-Carlo simulation allows us to 

compute an estimate of the expected option payoff. It is a simple matter to multiply 

this by the discount factor to obtain the estimated economic value or price of the 

contract. The estimate of the price can be made more accurate by increasing the 

simulated sample size. In the economic valuation of options and other complex 

financial contracts, we typically use MC simulation to estimate both the expected 

payoff on the contract and the standard deviation of the payoff. The standard 

deviation provides information useful for deciding on the sample size required to 

achieve a desired level of confidence in the estimate. With a large enough sample in 

principle we can estimate the option price to any desired level of accuracy. 

The financial derivative contracts we are interested in are options with payoffs that 

depend on the prices of one or more other assets. These other assets could be shares, 

currencies, commodities such as gold or various other tradeable items. These are 

usually referred to as the underlying assets.  

The Black-Scholes model is the standard framework of financial valuation. The 

framework consists of a set of now-standard assumptions about financial markets. 

Since its publication in Black and Scholes (1973), the model and pricing methods 

deriving from it have been extended to cover many other more complex financial 

contracts. The model assumes the underlying asset price process follows the 

stochastic differential equation given by geometric Brownian motion, and makes several 

idealized assumptions about market frictions: 

  ����� � �# $ �� ������ % & �����'���  �3� 
 

where W(t) is a standard Wiener process. The parameters �#, & � are known as the 

drift and volatility of the stock process, and are specific to each stock, which one 

estimates from market data. The parameter y is the continuous dividend yield of the 

stock. These parameters are taken as known or determinable constants in the Black 

Scholes model. Pricing of contingent claims is done using the so-called risk-neutral 

measure, under which the discounted stock process is a mathematical martingale. 

This can be shown to be mathematically equivalent to setting # � !, the risk-free rate 

of interest, for the stock drift. This means that the expected rate of return on the 

underlying asset is the risk free rate of interest. See Konstandatos (2008), Buchen 

(2012) for details. 

Financial contingent claims typically have a future (time T) payoff which is some 

function *��+� of the time T price of the underlying asset. It can be shown that the 

economic value at times t < T of this contract is the discounted value of the expected 

payoff on the contract, where the underlying asset has the risk neutral distribution. 
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 ,��, �� �  �-.�+-��	�*��+�|���  �4� 
 

The most basic contingent claims are European call and put options. The European 

call option is a financial contract granting the holder the right to sell the underlying 

asset at the future maturity time T at strike price K, whereas the European put grants 

the holder the right to sell the underlying asset at strike K at maturity. The call 

option’s payoff function may be written *��+� � ��+ $ 0�1��+ 2 0� and the 

European put option’s payoff is given by *��+� � �0 $ �+�1��+ 3 0�. We have 

defined the indicator function based on some condition 4: 

 

 1�5� � 61  0  8 9  �!��9 ��:��;  �5� 
 

Typically, we encounter conditions of the form 1��+ 2 5� � =10>�+ 2 5�+ 3 5? for some 

value X. Indicator functions are closely related to the Heaviside Step Function of 

mathematics. They are useful in expressing the complex hurdle conditions which 

will arise in our later analysis. 

The discounted expectations approach allows us to obtain analytic formulae for the 

value of the contract in some cases by evaluating the expectation, as per Harrison 

and Pliska (1983). In the case of the standard European calls and puts we readily 

obtain the following results by evaluating the Gaussian expectations for the given 

payoff functions: 

  ,@��, �� � �-A�+-��� B��C� $ 0 �-.�+-��� B��D�  �6�  ,F��, �� � 0 �-.�+-��� B�$�D�$�-A�+-��� B�$�C�  �7� 
 

where 

  ��C, �D� �  H: ��� ��⁄ � % J! $ � K 12&2L�� $ ��M/&N�� $ �� �8� 
 

This solution is mathematically equivalent to solving the Black-Scholes partial 

differential equation (9) on the domain P � ���, ��|� Q 0, 0 3 � 3 �� 

 

 RSR� % �! $ ��� RSRT % CD &D�D RUSRTU $ !, � 0  �9� 
 

subject to the terminal boundary condition ,��, �� � *���. This result follows from 

the theorem of Feynman & Kac, (see Konstandatos (2008), Buchen (2012) for details; 

Kac (1949) for the original formulation for parabolic PDEs). 
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2.1. Statistical modelling of individual risky assets 

Let us consider a future maturity date at time T and let time t be the current date, at 

which we want to value some derivative contract. The stock price �� is observable, 

but the future stock price at maturity, �+ is a random variable. The capital gain 

component of return on some asset S over the period from times � to � is measured 

via the logarithm of the price relative for the underlying asset, which is the ratio �+ ��⁄ . 

Under the dynamics assumed by the Black-Scholes model, the logarithm of the price 

relative is Normally distributed, with parameters corresponding to those which 

make the discounted stock price a mathematical martingale. This is easily seen by an 

elementary application of Ito’s Lemma 

 

 : �����/����� ~B XY! $ � $ CD &DZ �� $ ��, &D�� $ ��[ �10� 
 

The mean m and variance �Dof the log-price relative are, therefore under the risk 

neutral distribution:  

  \ � 	�: ��+ �]⁄ �� � J! $ � $ Û_UL�� $ �� �11�  �D � `�!�: ��+ ��⁄ �� � &D�� $ ��  �12� 
 

The parameters !, �, & are the risk free rate of interest, the dividend yield and the 

volatility of the asset respectively which are readily determined, see Hull (2006). The 

expectation of the price relative at time t is 	���+ ��⁄ � � ���J�! $ ���� $ ��L and the 

expected rate of the asset’s capital gain return per year is 
C+ : a���J�! $ ���Lb � ! $ �. 

Adding the dividend yield gives the total expected return on the asset per year, 

namely �! $ �� % � � ! which is the risk free rate of interest. This is an essential 

feature of the risk neutral distribution. 

Under the assumption of Geometric Brownian Motion, two log price-relatives 

defined over different and non overlapping intervals ��, c�   and ��, ��  will be 

independent of each other with zero correlation. 

 �� ��, c�  d  ��, �� � e  �f�  ��!!�: ��+ ��⁄ �, : ��g �h⁄ �� � 0 �13� 
 

Two log price relatives defined over overlapping intervals will have a non zero 

correlation. The correlation between the log price relatives over the intervals �0, c� 

and �0, �� is 
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 ��!!�: ��+ �]⁄ �, : ��g �]⁄ �� � ijkl�g,+�jmn�g,+�  �14� 
 

See Konstandatos (2003,2008) and Buchen (2004, 2012) for further details. 

We can statistically model the log price relative from current time t to some future 

time T as a Gaussian random variable  

 

 : ��+ ��⁄ � � J! $ � $ Û_UL�� $ �� % o � &N�� $ ��  �15� 
 

where o~B�0,1�. Simple re-arrangement gives the value of the stock at time T in 

terms of its value at an earlier time t and an N(0,1) distributed random variable Z. 

 

 �+ � �� ��� pJ! $ � $ Û_UL�� $ �� % o � &N�� $ ��q. �16� 
 

2.2. Statistical model of multiple risky assets 

In the multi-asset, multi-period Black-Scholes framework, assets have correlated log 

price relative returns which are jointly multivariate Normally distributed. Suppose 

we have several assets ��1�, ��2�, … , �� � .  Consider any pair of assets J����, ��t�L 

over time intervals ��, c� and ��, ��. The following results define the correlation 

structure of the joint multivariate normal distribution. We refer the reader to 

Konstandatos (2003, 2008) and Buchen (2012) for further details. 

For any asset ���� over a time interval ��, �� we have the log-returns obeying 

individual log-normal dynamics. This requires that the returns for any asset ���� 

have mean and variance: 

 

 	�:�u�����+ �����⁄ � � � Y! $ �k $ CD &kDZ v �17� 
 `�!�:�u�����+ �����⁄ � � � &kDv  �18� 
 

Here v � � $ � is the length of the time interval. The parameters �!, �k , &k� are 

respectively the risk free rate of interest, the dividend yield on asset i, and the 

volatility of asset ����  for � � 1, … ,  . Along with the correlation coefficients wkx 

(defined below), they are taken as inputs to our model. As indicated previously, the 

risk free rate may be determined from observing the T-bill or some other risk-free 

government Bond rate, whereas the other parameters need to be estimated using 

historical data. The estimation of these parameters is outside the scope of this paper, 

however Hull (2006) provides details for their practical estimation. With this set of 

parameters each asset has an expected return equal to the risk free rate of interest. 

Together, these parameters will define the multivariate risk neutral distribution.  
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In the discussion that follows we assume the constant correlations of the standard 

multivariate Black Scholes model we focus on in this paper. Additional 

complications arise in the statistical estimation of non-constant correlations. Such 

complications increase the complexity of the simulation procedure. Estimating non-

constant correlations requires additional statistical techniques and considerations 

which we do not pursue here. See Engle (2002) and Fonseca et al. (2007) for 

additional details. 

The returns on an asset ���� over time intervals ��, c� � � ��, �� are uncorrelated if 

the time intervals don’t overlap: 

 ��, c� d ��, �� � e   y   ��!!�:�u�����g ����h⁄ � , :�u�����+ �����⁄ �� � 0 �19� 
 

Define the overlapping intervals ��, �z� � ���, �{� with intersection ��, �z�   d ��, �{� � J�, \� ��z , �{�L where vz � �z $ �, v{ � �{ $ �. Then returns on an asset ���� 

are correlated, with 

  ��!!a:�uJ����+| �����⁄ L , :�uJ����+} �����⁄ Lb � ~z{   �20� 
 ~z{ � N\� �vz , v{� \���vz , v{�⁄  �21� 
 

The correlation structure between the returns (log price relatives) on different pairs 

of assets also depends on whether we are examining the returns over overlapping 

time intervals or over disjoint time intervals, although the structure is slightly more 

complicated.  

The returns on the assets ���� and ��t� over non-overlapping intervals ��, c� � � ��, �� are also uncorrelated: 

 ��, c�  d  ��, �� � e y   ��!!�:�u�����g ����h⁄ � , :�u���t�+ ��t��⁄ �� � 0  �22� 
 

The returns on the assets ���� and ��t�  over the same time interval will have 

correlation: 

  ��!!�:�u�����+ �����⁄ � , :�u���t�+ ��t��⁄ �� � wkx  �23� 
 

The correlation between returns on assets �����, ��t�� over overlapping intervals ��, �z� � ���, �{� is given by: 

  ��!!a:�uJ����+| �����⁄ L , :�uJ��t�+} ��t��⁄ Lb � ~z{ � wkx . �24� 
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This is due to the two effects of the overlapping time intervals and the different 

assets. 

Finally, we have the result that 

  ��  ��, c�  d  ��, �� � e �f�   \� �c, �� $ \����, �� Q 0  �25� 
 

In this case we have  

 

��`�:�u�����g ����h⁄ � , :�u���t�+ ��t��⁄ �� � wkx &k &xJ\� �c, �� $ \����, ��L. �26� 
 

Given the above assumptions about the statistical model, we can formulate a vector 

of log price relatives, each one over possibly a different time interval. This vector will 

have the multivariate normal distribution. For most applications of interest to us all 

of the different log price relatives will be defined over the same time interval.  

2.3. The mean vector and covariance matrix of the n dimensional vector of log 

price relatives 

We may apply the results of the previous section to specify the correlation structure 

of the log price relatives of n different assets. The idea is that we specify the structure 

pairwise of each pair of assets under consideration. It is convenient to express the 

grouping as a vector. In particular, suppose we have n different assets ���1� ��2� … �� ��. For each asset i we consider the return over the overlapping 

intervals ��, �k� of length vk � ��k $ ��. This is the log price relative ���� � : �����+ �����⁄ �. 

We obtain a vector ���1� ��2� … �� �� of such log price relatives. This vector has 

a multivariate normal distribution. 

The mean of this vector is \� � �\�1� \�2� … \� �� where \��� �Y! $ �k $ CD &kDZ vk. The correlation between ���� and ��t� is ��!!J����, ��t�L � wkx~kx 

where ~kx � i\� Jvk, vxL \��Jvk, vxL�  and the covariance between ���� and ��t� is ��`J����, ��t�L � wkx&k&x\� Jvk , vxL. 

 

2.3.1.  Power and Binary Power Option contracts 

In this paper we will replicate standard call and put option prices in terms of simpler 

instruments. The basic instrument we use is the power option with power n, where n is 

some constant which may or may not be an integer. This is a financial contract that 

pays the holder some power of the price of the underlying asset at the maturity date 

T, with payoff * � ��+�l. For example when n = 1 the power contract provides the 

holder with one unit of the stock and if n=0 the contract provides the holder with one 

unit of cash at maturity. 
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The binary power options also pay the holder a power of the price of the underlying 

asset at the maturity, conditional however on the stock price being either above or 

below some threshold level, namely * � ��+�l1��+ � 5�. The up binary power option is 

exercised if the underlying asset price �+ is above the threshold value X (the exercise 

price) and the down binary power option is exercised if �+  is below X.  

The value of the power option payoff at time t depends on the stock price �� and on 

other economic variables in the Black-Scholes formula. We will use the risk neutral 

discounted expectation approach to value this contract. Computing the discounted 

expectation of the payoff we may determine the value of these contracts.  

The value of the power option is ,��, �� � �-.�+-��	�*�  �  ����l������ �v� where �� � � CD  D&D %  Y! $ � $ CD &DZ $ ! and v � � $ �. The calculation of the expected 

payoff was computed using the risk-neutral distribution. We include a derivation of 

this result in Appendix B. 

Consider the exponent �� �v in this formula. For n = 0 this is �� �v � $!v and the 

value of the contract is ,��, �� � �-.�. We recognize this as the present value at time t 

of a $1.00 paid at time T. For n = 1 this is �� �v � $�v. The value of the contract is ,��, �� � ��-A�. This is the current stock price discounted at rate y for term v. 

In a similar manner binary power options may also be defined and valued. The binary 

power option which also pays some arbitrary power of the risky asset at maturity, 

only this time provided that an exercise condition on the stock price is met. There are 

in fact two types, the up-power binary and the down-power binary. The payoffs at 

expiry from both may be written as follows: 

  ,���, �� � ��+�l1���+ Q �5� �27� 
 

We have introduced the notation � K1 , namely a state indicator determining if we’re 

in the up-state for an up-power binary or in the down state for a down power binary 

respectively. We can see this since 

  �� � � $1 �f�  ��+ Q �5 �� ����`�:� � �� �+ 3 5  �28�  �� � � %1 �f�  ��+ Q �5 �� ����`�:� � �� �+ Q 5  �29� 
 

The expectation may be computed similarly for the power binary option. Details are 

provided in Appendix B. See Konstandatos (2008) or Buchen (2012) for further 

details. The result is expressed in terms of the univariate Normal distribution: 

 

 ,���, �� � ������ �v�����lB Y�J�D %  &√vLZ. �30� 
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2.4. Binary power options as building blocks 

The idea of decomposing option prices into more basic building blocks has been a 

recurring theme of our previous work. Konstandatos (2003, 2008) and Buchen (2004, 

2012) first illustrated this approach for all European options with payoffs which are 

affine in the stock price. In particular, Konstandatos (2008) demonstrates a complete 

framework for pricing both European and also path dependent options such as 

multi-dimensional barrier options and lookback options in terms of recurring 

building blocks. It transpires that these techniques are applicable to pricing Executive 

Stock Options in terms of combinations of the power options and binary power 

options defined above.  

A simple demonstration of this is as follows. The choices n = 1 and s = +1 give �� �v � $�v and �D %  &√v � �C The value of the contract is ,��, �� � ��-A�B��C�. 

This is the first term in the BS formula for a call option. For n = 0 and s = +1 we get �� �v � $!v and �D %  &√v � �D The value of the contract is ,��, �� � �-.�B��D�. 

This is the second term in the BS formula for a call option. It follows that a 

combination of long 1 unit of the first contract and short X units of the second 

contract will reproduce the Black Scholes formula for the European call. 

Similarly, the choices n = 1 and s = -1 give �� �v � $�v and �J�D %  &√vL � $�C to 

give ,��, �� � ��-A�B�$�C�. This is the second term in the BS formula for a put 

option. The choices n = 0 and s = 1 we get �� �v � $!v and �J�D %  &√vL � $�D, with 

value ,��, �� � $�-.�B��D�. This is part of the first term in the BS formula for a put 

option. A combination of long X units of the 2nd contract and short 1 units of the 1st 

contract is therefore equivalent to the Black Scholes European put option formula. 

It should be apparent that many types of option contracts can be expressed as a 

linear combination of power options and binary options. This includes as mentioned 

standard call options and put options, and also cash or nothing binary options, asset 

or nothing binary options, and gap call and put options which are calls and puts with 

exercise prices which are different to their strike prices.  

3. Random number generation in Excel and Monte Carlo evaluation of standard 

European options. 

The pricing of plain vanilla options dependent on one source of uncertainty is a 

classic example of the application of the MC method. We refer the reader to Brewster 

et al. (2012) as a readable exposition of basic aspects of the application of the 

technique for plain vanilla call options on a single underlying asset. In this section 

we recap the MC pricing of a plain vanilla call, and extend the analysis to show how 

the methods may be extended to provide an estimate of the accuracy of the 

computed price.  

Although not immediately apparent, it is possible to place some confidence 

bounds on the numerically obtained prices of options obtained using Monte Carlo 

simulation. We will use the standard European call option to illustrate. We begin by 

noting that the payoff at maturity for the standard call is  
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 * � \����+ $ 5, 0� � ��+ $ 5�1��+ 2 5� �31� 
 

This payoff is a random variable with a mean, variance and a standard deviation 

which we may determine analytically in terms of our power binary options. For the 

call (and put, which we omit) option payoffs it is possible to do this analytically but 

others may require numerical evaluation. We will use these results to illustrate the 

MC method for the European call option and compare the numerical results with the 

analytic results. We start by noting that the expectation of the payoff is the call option 

price multiplied by the factor ����!v� 

  	�*� �  H��.-A����B��C� $ 5B��D�M �32� 
 

To compute the variance, we note that  

  *D � J�+D $ 2�+5 % 5DL�1��+ 2 5��D         � �+D1��+ 2 5� $ 25�+1��+ 2 5� % 5D1��+ 2 5�. �33� 
 

So that  

 

	�*D� � 	J�+D1��+ 2 5�L $ 25	a�+1��+ 2 5�b % 5D	�1��+ 2 5��. �34� 
 

We simply note that the right hand side involves a combination of binary power 

option payoffs with n = 2, n = 1 and n = 0. The relevant power binary multiplied by 

the accumulation factor ����!v� gives each expectation. Using our power binary 

formula we obtain the discounted expectations: 

 

 ����$!v�	J�+D1��+ 2 5�L � ��D�J_U�.-DAL�BJ�D % 2&√vL �35�  ����$!v�	�25�+1��+ 2 5�� � 25���-A�BJ�D % 1&√vL �36�      ����$!v�  	�5D1��+ 2 5�� � 5D�-.�BJ�D % 0&√vL �37�  
The undiscounted expectations are thus: 

 

 	J�+D1��+ 2 5�L � ��D�J_U�D.-DAL�BJ�D % 2&√vL, �38�  	�25�+1��+ 2 5�� � 25����.-A��B��C� �39�     	�5D1��+ 2 5�� � 5DB��D� �40� 
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After some algebra we obtain 

 

 `�!�*� � ��D�J_U�D.-DAL�BJ�D % 2&√vL $ 25����.-A��B��C�  
                        %   5DB��D� $ H��.-A����B��C� $ 5B��D�MD  �41� 
 

We now consider a call option example over a stock currently valued at S = $10.00, 

with a term of 3 months (T=0.25 years), with an exercise price of X = $10.00. Assume 

the stock pays no dividend during the term of the option and that the volatility is 

40% per annum and the risk free rate is 10% per annum. 

For our example we can compute the expected payoff and the variance of the payoff. 

We can also compute the expectation and variance of the sample payoff for a 

simulated sample of size n. This is what we do next. For our data we have  

 � � 0, � � 0.25, �� � 10, 5 � 10, ! � 10.00%, & � 40.00%, � � 0.00%, v � � $ � � 0.25 

 

The mean of the log price relative is 

 

\ � X! $ � $ 12 &D[ v � X0.10 $ 0.00 $ 12 0.40D[ 0.25 � 0.005. 
 

The standard deviation of the log price relative is  

 

� � &√v � 0.40√0.25 � 0.20. 
 

Based on this we obtain: 

 

�D � : ��� 5⁄ � % \� � : �10.0 10.0⁄ � % 0.0050.20 � 0.025. 
 

We need to compute the prices of the up-type binary power options with powers n = 

0,1,2 to determine the value of the option, the expected option payoff and the 

variance of the option payoff. Details of the calculations are as follows: 

 

�D % 0&√v � 0.025 % 0.00 � 0.025 � B��D� � 0.509973, �D % 1&√v � 0.025 % 0.20 � 0.225 � BJ�D % &√vL � 0.589010, 
�D % 2&√v � 0.025 % 2 � 0.20 � 0.425 � BJ�D % 2&√vL � 0.664582, 
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 � 0 � �� �v � $!v � $2.50%,  � 1 � �� �v � $�v � $0.00%,  � 2 � �� �v � �&D % ! $ 2��v � �0.16 % 0.10 $ 2 � 0.00�0.25 � 6.50%. 
 

It follows that the values of the three binary power options are: 

 � 0 � , � �l���l��BJ�D %  &√vL � 1 � �-].]D� � 0.509973 � $0.497381, 
 � 1 � , � �l���l��BJ�D %  &√vL � 10 � �-].]]] � 0.589010 � $5.890104, 
 � 2 � , � �l���l��BJ�D %  &√vL � 100 � ��].]�� � 0.664582 � $70.921432. 

 

The call option is a combination of long 1 unit of the power binary option with n = 1 

and short 10 units of the power binary option with n = 0 so the value of the call is $5.890104 $ 10 � $0.497381 �  $0.916291. The expected payoff on the call is $0.916291 � �].]D� �  $0.939487  
Next we want to compute the expectation of the square of the payoff and from this 

the variance of the payoff. The expected squared payoff is the expected payoff on a 

portfolio comprised of:  %5D �  100 units of the power binary option with n = 0, $25 �  $20 units of the power binary option with n = 1, %1 �  1 units of the power binary option with n = 2. 

The value of this combination of binary power options is 49.74- 

117.80+70.92=2.8574845.  

The expectation of the squared payoff is $2.8574845 � �].]D� �  $2.929822,  

the variance of the payoff is 2.929822 $ 0.939487D � 2.047186 , 
the standard deviation of the call option payoff is √2.047186 � 1.430799. 

 

3.1. Computing the value of the call option via Monte-Carlo Simulation 

Using Excel we can generate a random number U from the uniform distribution on 

the range 0 to 1 using the !� �� � function. This uniform random number can be 

used as the argument to the inverse of the cumulative density function of the 

standard normal distribution to obtain a random number Z from standard normal 

N(0,1) distribution. In Excel we use  �!\�� `J!� �� �L to compute such a random 

number Z. 

From Z we compute � � �o % \ and this has a normal distribution with mean m and 

standard deviation s. This Y has the same distribution as the logarithm of the price 

relative. From Y we compute ' � ������ � �����o % \�. This variable W has the 

same Log-Normal distribution as the price relative. From W we compute � � ��' 

which is the product of the price relative and the initial stock price at time t. This S 

has the same Log-Normal distribution as the stock price at maturity. Next we 

15

Kyng and Konstandatos: Multivariate Monte-Carlo Simulation and Financial Contracts

Published by ePublications@bond, 2014



  

compute the option payoff, which for a call option is * � \���� $ 5, 0�. P will be a 

random number from the distribution of the payoff.  

The formulae to apply are:  c � !� �� �, o � B-C�c�, � � �o % \, ' � ������, � � �]', * � \���� $ 5, 0�.  
where U is a uniform random number. 

If we do this set of calculations once, we generate a sample of size 1 from the 

distribution of the payoff from the option. If we repeat this calculation n times, we 

generate a sample of size n from the distribution of the payoff of the option. Suppose 

we do this and generate a sample *C, *D, … , *l  of size n from the distribution of the 

payoff from the option. This is an i.i.d. sample. We can compute the sample mean of 

the sample of payoffs *� � Cl �*C % *D % � % *l� � Cl �∑ *klk�C �. This sample mean is an 

unbiased estimate of the expectation of the payoff.  

Suppose that 	�*� is the expectation of the payoff P and `�!�*� is the variance of the 

payoff P, then statistical theory tells us that 	�*�� � 	�*� and `�!�*�� � Cl `�!�*� and ���*�� � C√l ���*�. This means that the expectation of the sample average (the 

“estimate”) is the same as the expectation of the payoff and the standard deviation of 

the sample average is 
C√l times the standard deviation of the payoff. This means that 

if we increase the sample size n, we will not change the expectation of the sample 

average but the variance and the standard deviation of the sample average will get 

smaller. 

Every time you repeat the statistical experiment of generating a sample of size n from 

the distribution of P, you will obtain a different sample average *�. The central limit 

theorem of statistics tells us that as the sample size n increases, the probability 

distribution of *� converges to a normal distribution with 	�*�� � 	�*�  and  `�!�*�� �Cl `�!�*�. 

So by increasing the sample size we reduce the variance of the sample mean and 

hence increase the accuracy of the sample mean as an estimator of the expected 

payoff. For a sample of size 1 the Monte-Carlo simulation will produce an estimated 

payoff *� with 	�*�� �  $0.939487 and `�!�*�� � 2.047186 and ���*�� � 1.430799. 
For a sample of size n the Monte-Carlo simulation will produce an estimated payoff *� with 	�*�� �  $0.939487, `�!�*�� � 2.047186  ⁄  and ���*�� � 1.430799 √ ⁄ . The 

coefficient of variation is  �,�*�� � ���*�� 	�*��⁄ . We now look at the effect of an 

increase in the sample size on the mean, standard deviation and coefficient of 

variation  of the estimated expected payoff. 

 

n 	�*�� ���*�� �,�*�� 

1 0.939487   1.430799  152.30% 

10 0.939487   0.452458  48.16% 

100 0.939487   0.143080  15.23% 
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1,000 0.939487   0.045246  4.82% 

10,000 0.939487   0.014308  1.52% 

100,000 0.939487   0.004525  0.48% 

1,000,000 0.939487   0.001431  0.15% 

Table 1: Convergence of MC simulated European Option prices 

 

The standard deviation of the estimated payoff ( )sd P  decreases as the simulated 

sample size n increases. The ratio of the standard deviation to the mean is known as 

the coefficient of variation and it is a measure of relative variability. It provides us with 

a way of measuring the accuracy of our estimate. More precisely, it allows us to 

determine confidence intervals for the estimated price. To see this, the sample mean 

has a distribution that converges to the normal distribution as the sample size 

increases. Since the sample mean is a random variable, each time we use MC 

simulation we will get a different result. There is a 95% probability that the true 

expected payoff is within two standard deviations of the estimated payoff. This 

means the accuracy of the calculation increases as the sample size increases. So with 

a sample of size 1000000 we can be 95% confident that the estimated expected payoff 

given by the MC method is within 0.30% of the true value predicted by the model.  

The required sample size is often an issue of importance with the MC method. A 

large sample size makes for more accurate option prices but this comes at the 

expense of a longer computation time. For options that are actively traded, dealers 

may want to be able to obtain the prices quickly. They may need to have the option 

prices pre-calculated for a range of parameter values so they can get a quick estimate 

of the price for trading purposes. Often the more complicated types of option where 

MC simulation is required aren’t actively traded. For instance many executive share 

options are highly complex and are valued via MC simulation on a computer using 

an overnight run of the program.  

On a final note, our confidence in the accuracy of the estimates produced by the MC 

method assumes a correct specification of the model parameters. Assuming the input 

parameters are correctly specified, we can be confident of being within the stated 

tolerance of the theoretically correct answer predicted by the model for a given 

simulation sample size. Uncertainty about the parameter values assumed in this, or 

any, model will create an additional source of uncertainty in the calculation results. 

Parameter value uncertainty will also be present when using any other numerical 

method for computing the value of an option contract, even when an analytical 

valuation formula is available. Dealing with this type of uncertainty gives rise to its 

own set of issues, and is beyond the scope of this paper. A common approach 

employed by practitioners to deal with this additional uncertainty is to calculate a 

range of option prices for a plausible range of input parameters, to produce a range of 

plausible option values. Our main concern is to ensure we’ve selected a sample size 

large enough for our estimates to be tolerably close to the theoretically expected 

value for any specific set of input parameters. 
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3.2.  Example Excel implementation 

We perform a simulation to create a sample of size 25 from the distribution of the 

payoff.  

 

Figure 1: simulation spreadsheet rows 1:8 

 

We start up Excel, open a blank sheet and enter data into the cell range A1:A4 and 

text / labels into the cell range B1:B4 as indicated in Figure 1. In the cell range A9:G9 

we enter text for our column headings for the various calculations in the simulation. 

We then fill the cell range A10:A34 with the numbers from 1 to 25. We fill the cell 

range B10:G10 with the formulae as indicated in the Figure 2. These formulae are 

Excel implementations of the calculations for the first trial of the simulation.  

 

 

Figure 2 

 

After we have done this, we can copy the cell range B10:G10 to the cell range 

B11:G34. This will get Excel to compute the results for trials 2:25 of the simulation. 

The results for the first 10 trials are shown in Figure 3 below, for one run of the 

simulation with 25 trials. 

Next we enter data or Excel code in cells D1:D8 to compute the following items: 

 

The theoretical expected payoff on the call option 

The theoretical standard deviation of the payoff 

The theoretical standard deviation of the sample average 

The coefficient of variation of the sample average 

The sample average from the simulation 

The sample standard deviation from simulation 
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The estimated option price obtained from the simulation 

 

In the cells E1:E8 we enter relevant text / labels to indicate what’s in the adjacent cells 

in column D. This is shown in Figure 1. For one run of the simulation with a sample 

size of 25 we obtained the results shown in Figures 1 and 3 below. The expected 

payoff was $0.9163. The theoretical standard deviation of the payoff is 1.4308. The 

sample size is 25 so the theoretical standard deviation of the sample average is 1.4308 5 � 0.28616⁄  and the coefficient of variation of this sample average is 0.28616 0.9163 � 30.459%⁄ . The sample average from the simulation was $0.9357, 

the standard deviation of the payoff from the simulation was $1.4626 and the 

coefficient of variation of the sample average was �1.4626 5⁄ � 0.9357 � 31.261%⁄ . 

The analytic formula gives a value of $0.9163 for the call option and the MC 

simulation gives a value of $0.9126, which is the sample average, discounted at 10% 

per annum for 0.25 years. 

 

 

Figure 3: simulation spreadsheet rows 9:19 

 

3.2.1. Sample size and accuracy 

Running the simulation allows us to estimate both the sample average and the 

coefficient of variation of the sample average, an estimate of the accuracy of the 

sample average. It allows us to estimate how large a sample we need for a specified 

target level of accuracy in the result.  

The coefficient of variation gives us an indication of the accuracy of the result 

produced by the simulation. The sample average from the simulation is an estimator 

of the true expected payoff. A 95%confidence interval for the expected payoff is the 

sample average plus or minus 2 times the coefficient of variation multiplied by the 

sample average. The simulation sample average is accurate to within twice the 

coefficient of variation with a probability of 95%. 
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For the simulation results shown above, the sample average and sample standard 

deviation from the simulation are close to the theoretically correct results. This was a 

chance result. We ran the simulation with 25 trials again another 3 times and 

obtained sample averages of 1.2914, 0.6349 and 1.3847 and sample standard 

deviations of 1.4379, 1.0438 and 1.5807 respectively. These compare to the theoretical 

results of 0.9163 for the average and 1.4308 for the standard deviation. The 

simulation will produce a different result every time you run it. To improve the 

accuracy of the result we need a larger sample size. An accuracy of plus or minus 

62.52% with probability of 95% isn’t that good. To improve it by a factor of 100 to 

plus or minus 0.6252% we would need to increase the sample size by a factor of 

10000. This will make the simulation run more slowly.  

4. Multivariate Statistics: Some relevant theory  

Often we want to generate a set of n correlated random variables. These may be 

normally distributed. In the option pricing context we may be interested in 

computing the economic value of a multi-asset, multi-period option or financial 

contract. Using simulation we may want to generate a sample of log-price relatives of 

these multiple assets, and these log price relatives are normally distributed. There 

may be n different log price relatives and these are assumed to have a multivariate 

normal distribution with a particular vector of means and matrix of covariances. The 

parameters of the distribution are those of the so called risk neutral distribution. The 

prices of the various assets are obtained by exponentiating the log price relatives and 

multiplying the result by the initial asset price. 

Usually we will know the parameters we want to use in the simulation, i.e. the mean 

vector and the covariance matrix. Using Excel it is straightforward to generate 

random variables from the B�0,1� normal distribution. Accordingly it is easy to 

create a vector of dimension n which is i.i.d. and which has this standard normal 

distribution.  

If we can generate a sample of n independent identically distributed random 

variables, with mean zero and variance one then we can put these into a vector of 

dimension n. This will give us a vector random variable with mean vector equal to 

the zero vector and covariance matrix equal to the n by n identity matrix.  

Let �� � ��C �D … �l� be a vector of n random variables and let  �� � ~l � ~l be 

the covariance matrix of this vector, so that skx � ��`J�k , �xL.  

Let �� � �#C #D … #l� be the vector of means so that  #k � 	��k� and let � � ~j �~l be some m by n matrix of constants 

Then the covariance matrix of the m dimensional random vector � � � � � is given 

by the matrix calculation �� � � � �� � ��,the mean is 	��� � � � �.  

Let �  �C �D … �l   � be a random vector with i.i.d. components where 	��k� �#, ,�!��k� � 1. If m = n then �� is the identity matrix and �� � ���� � ��� which is 

the product of the matrix � and its transpose. 
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4.1. Simulating multi-variate normally distributed random samples with given 

correlation structure. 

Consider an n dimensional i.i.d. standard normal vector �� � ��C �D … �l� with 

mean vector �� � �0 0 … 0�, and covariance matrix �� � � 1 00 1 … 0… 0… …0 0 … …… 1 . 

Suppose we want to simulate samples of a normally distributed vector random 

variable �� � �¡C ¡D … ¡l� and we know in advance the covariance matrix 

structure for �,  given by the matrix �� which take as an input to our calculation, 

along with the mean vector 	���� � ���.  
If we can find an n by n matrix � such that �� � � � �� then the matrix calculation �� � �� � �� % ��� gives us a simulated vector of dimension n from the multivariate 

normal distribution with mean ��� and covariance matrix ��. 

Theorem: Given a positive definite covariance matrix �, there is a unique n by n 

matrix � such that � is lower triangular: �kx � 0 ��! t Q � and that � � � � ��. The 

matrix  � is called the Cholesky Square Root of the covariance matrix.  

We present a proof of this theorem in Appendix C. The proof is constructive, so the 

implementation of the proof provides an algorithm or procedure for calculating the 

Cholesky Square Root matrix in Excel, or in any other software package that is 

capable of the required matrix calculations. The algorithm also provides a diagnostic 

check on whether the proposed covariance matrix is positive definite. As the proof is 

by induction, the procedure is iterative. It also provides a diagnostic check on 

whether or not the proposed covariance matrix is positive definite, and therefore a 

valid covariance matrix.  

 

4.2. Excel implementation of the Cholesky Square Root calculation 

The theorem and proof in Appendix B provides us with a matrix based recursive 

algorithm for computing the Cholesky square root. Let �¢ be a n by n positive 

definite covariance matrix. We partition this matrix is �¢ � £ �¢-¤ ¥¢-¤¥¢-¤� �ll ¦ where S¨-C 

is a n-1 by n-1 matrix obtained from �¢ by deleting row n and column n, ¥¢-¤ is a n-1 

by 1 matrix obtained from �¢ by taking the first n-1 entries from column n of �¢ and �ll is the entry in row n, column n of �¢.  

Let ©¢ be the Cholesky square root of �¢. We partition  ©¢  as  ©¢ � £ ©¢-¤ ª¢-¤«¢-¤� �ll ¦ 

where ©¢-¤  is the Cholesky square root of �¢-¤, ª¢-¤  is an n-1 by 1 matrix of zeros, «¢-¤� is a 1 by n-1 matrix containing the first n-1 entries in row n of the matrix ©¢ and �ll is the entry in bottom right hand corner of ©¢.  

Then we compute ©¢ � £ ©¢-¤ ª¢-¤«¢-¤� �ll ¦ via «¢-¤� � ¥¢-¤� � �©¢-¤��-¤, and �ll �
N�¬ $ �«¢-¤� � «¢-¤��  respectively, in that order. We first compute ©® as shown 

below, then from that we compute ©¯, then  ©° etc. 
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These calculations can be done using Excel’s matrix functions. We have made a slight 

change in notation from that used in the theorem in the appendix. We make the 

following substitutions: �¤¤ � �¢-¤; �¤® � ¥¢-¤; ©¤¤ � ©¢-¤; ©¤® � ª¢-¤; ©®¤ � «¢-¤� 
in the theorem to obtain the recursive relationship. 

 

Example: we shall use the matrix �° � � 16 88 5 12 $411 $412 11$4 $4 70 $31$31 63   to illustrate the 

algorithm and its excel implementation by applying it to the problem of computing 

the Cholesky square root of a 4 by 4 covariance matrix. The matrix �¯ is �¯ �
²�CC �CD �C³�DC �DD �D³�³C �³D �³³´ � ²16 8 128 5 1112 11 70´ and the matrix  �® is �® � p�CC �CD�DC �DDq � p16 88 5q. The 

matrix �¤ � �16�. We compute ©® from �® first, then we compute ©¯ from �¯ 

 

Suppose the matrix �° is in the cell range A2:D5 and we use the cell range F2:I5 to 

compute the Cholesky square root ©°, as shown in figure 4. 

 

 

 

Figure 4: Excel Implementation of Cholesky Square Root Calculation 

 

The calculations for the Cholesky square root of a 1 by 1 covariance matrix are trivial, 

for our example we have ©¤ � H√16M � �4� .  
Consider the 2 by 2 covariance matrix �® � p�CC �CD�DC �DDq. The Cholesky square root of 

�® is ©D � p�CC �CD�DC �DDq where �CC � √�CC;  �DC � �CD √�CC⁄ ; �DD � N�DD $ �DCD . The 

formula for ©D in terms of �® is ©® � µ √�CC 0�CD √�CC⁄ N�DD $ �CDD �CC⁄ ¶. Direct calculation 

confirms that ©D©D� � �D. These results can also be obtained by applying the 

equations set out in Appendix C of Kwan (2011) to the two dimensional case, which 

outlines the implementation of a different procedure for doing this. Note that if �DD $ �DCD · 0 then this means the proposed covariance matrix used as the input for 

the calculation was not positive definite. We obtain ©® � p4 02 1q and we note that 

p4 02 1q � p4 20 1q � p16 88 5q for our example. The matrix ©® is in the cell range F2:G3. 
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We put the relevant excel calculations into that cell range as follows: F2=A2^0.5; 

G2=0; F3=A3/F2; G3=(B3-F3^2)^0.5 

The matrix �¯ obtained from �° by deleting the 4th row and 4th column can be written 

as a partitioned matrix in the form �³ � £ �® ¥®¥®� �³³¦. This matrix resides in the cell range 

A2:C4. This is comprised of the 2 by 2 submatrix �® in the top left corner, the 1 by 2 

matrix ¸® in the top right hand corner, the 2 by 1 matrix ¸®� � �12 11� in the bottom 

left corner (cell range A4:B4) and the 1 by 1 matrix containing the single number �³³ � 70 (cell C4) in the bottom right hand corner.  

Now consider the 3 by 3 matrix �¯ � ²�CC 0 0�DC �DD 0�³C �³D �³³´=£�® ª¹® �³³¦ which is a lower 

triangular matrix, partitioned as for �¯. This �¯ resides in the cell range F2:H4 and �® 

is as above (and in cell range F2:G3) , ª � p00q is a 2 by 1 matrix of zeros (in cell range 

H2:H3), ¹®� � ��³C �³D� is a 1 by 2 matrix containing the first 2 entries of row 3 of �¯ 

(in cell range F4:G4), and a 1 by 1 matrix containing the entry �³³ in the bottom right 

hand corner (cell H4).  

The non-diagonal entries in the last row of �¯ are in  «®� � ¥®� � �©®��-¤. For our data 

this is «®� � �¤® ¤¤� � p4 20 1q-¤ � �¤® ¤¤� � p%0.25 $0.50 1 q-¤ � �¯ º�. In excel 

we compute this by selecting the cell range F4:G4 and entering the formula 

=MMULT(A4:B4,MINVERSE(TRANSPOSE(F2:G3))) and then pressing enter while 

holding down the control and shift keys. This is how you enter matrix formulae into 

excel. The diagonal entry in row 3 of �¯  is �ll � N�sll $ �«¢-¤�«¢-¤�� .Using our 

data we get ip70 $ Y�3 5� � p35qZq � √70 $ 34 � 6. In excel we compute this by 

entering the formula =(C4-MMULT(F4:G4,TRANSPOSE(F4:G4)))^0.5 into cell H4. 

Hence we obtain �¯ � ²4 0 02 1 03 5 6´ as the square root of �¯ � ²16 8 128 5 1112 11 70´ 

 

Next we want to compute  �° using �¯ and �°. To implement «¯� � ¥¯� � �©¯��-¤ in 

excel we choose the cell range F5:H5 and enter the matrix formula 

 =MMULT(A5:C5,MINVERSE(TRANSPOSE(F2:H4)))  

¥¯� � �$4 $4 $31� and ��¯��-¤ � ²4 2 30 1 50 0 6´-C � ²0.25 $0.5 %0.2916670 1 $0.8333330 0 %0.166667´  

 » «¯� � �$4 $4 $31� � ²0.25 $0.5 %0.2916670 1 $0.8333330 0 %0.166667´ � �$1 $2 $3�  
The diagonal entry in row 4 of �° is �¼¼ � N�s¼¼ $ �«¯�«¯�� . In excel we enter the 

matrix formula =(D5-MMULT(F5:H5,TRANSPOSE(F5:H5)))^0.5 into cell I5 to 

implement this. The result is �¼¼ � ½²63 $ ¾�$1 $2 $3� � ²$1$2$3´¿´ � √63 $ 14 � 7 
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It follows that �° � �%° %ª%® %¤ %ª %ª%ª %ª%¯ %º$¤ $® %À %ª$¯ %Á  is the Cholesky square root of the 

covariance matrix �°.   

 

4.2.1. Diagnostic test for positive definite input covariance matrix � 

Finally, the implementation of the recursive calculation provides us with a diagnostic 

check-step in determining whether we have a valid (i.e. positive definite) covariance 

matrix. The matrix equation determining the diagonal entry in the last row of the 

Cholesky square root matrix is �ll � N�ll $ �¹-¤�¹-¤�. The input covariance 

matrix is positive definite if and only if �ll $ �¹-¤�¹-¤� Q 0. If the proposed 

covariance matrix isn’t positive definite then it won’t have a Cholesky square root. 

The following example illustrates this.  

The matrix �° � � 1 00 1 0.7 0.40.4 0.70.7 0.40.4 0.7 1 00 1   is not positive definite.  

We can write �° as a partitioned matrix  �° � £ �¯ ¸¯¸¯� �¼¼¦ where �¯ � ² 1 0 0.70 1 0.40.7 0.4 1 ´, 

¸¯� � �0.4 0.7 0�, �¼¼ � 1.  

The matrix �¯ is positive definite. Its Cholesky square root is 

�¯ � ² 1 0 00 1 00.7 0.4 0.591608´ 

We try to compute �° � £ �¯ ª¯«¯� �¼¼¦ using ¹¯� � ¸¯���¯��-¤ and 

�¼¼ � N�¼¼ $ �¹¯�¹¯� 

We obtain «¯� � ¥¯��©¯��-¤ � �0.4 0.7 $0.94657� and �¼¼ $ �¹¯�¹¯� � $0.546. 

This last result is negative, so we can’t compute the Cholesky square root. This 

indicates that the matrix �° was not positive definite. The diagnostic check is to 

compute �ll $ �¹-¤�¹-¤� and check it the result is negative. If so then the input 

matrix �¢ was not positive definite.  

For this matrix we have a negative eigenvalue of -0.10 and an associated eigenvector 

of Â� � �%1 %1 $1 $1�. The calculation Â��°Â gives the result Â��°Â � $0.40. 

The implications of the proposed covariance matrix not being positive definite are 

discussed in Kwan (2010) in the context of portfolio optimisation. In the context of 

this paper, the implication is that the methodology is invalid and the option prices 

computed by the method will be incorrect.  

4.3. Statistically modelling the asset prices in terms of the standard normal 

distribution 

The following equations set up our statistical model for the MC simulation. The 

sequencing of formulae to apply are:  
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Compute Ã� � ��C �D … �l� a vector of n uniform U(0,1) random 

variables using �k � !� ��� 

Compute �� � �¡C ¡D … ¡l�  a vector of n N(0,1) distributed random 

variables using o��� � B-CJc���L 

Compute Â� � ��C �D … �l� � Ä� % ���� where � � √� is the Cholesky 

square root of �. This is the vector of log price relatives.  
Compute Å� � �ÆC ÆD … Æl� � ������C� �����D� … �����l��. 
This is the vector of log price relatives calculated by component-wise 

exponentiation.  

Compute the vector Ç� � ��C �D … �l�. This is the vector of asset prices.  

 

We have �k � ����� � Æk is the i
th

 entry in that vector and it represents the 

value of the i
th

  asset at time �k. The term ����� here means the value of the i
th

  

asset at time t, and we assume this is given / observable. The term ����+ 

means the value of that asset at some future time T and this is to be modeled.  

 

Compute the payoff function which is a function of the vector Ç�of such future 

asset values.  

 

These calculations create the simulated payoff for the first trial of our simulation. We 

can write the equations for the vector of future asset prices in terms of the vector of 

initial asset prices in vector form as �È� � ÇÉ�����Ä� % �����. We would want to repeat 

the above calculations M times (for large M) so we can obtain an estimate of the 

expected payoff with low relative variability.  

5. Case Study: Excel Implementation of a Multivariate Simulation 

With multi asset, multi period financial contracts, the payoff at maturity will be a 

complicated function of the values of several different assets as observed at possibly 

several different times. Such features naturally arise in various option pricing 

scenarios. For example an exchange option allows the holder to exchange one risky 

asset for another. Clearly, the option payoff in this case depends on the value of the 

two different assets at the maturity date. Spread options provide a payoff equal to 

the greater of D – X or zero where D is the difference between two asset prices and X 

is some fixed value. Rainbow Options are call or put options over a portfolio of 

assets. 

Below we present several examples of multi asset financial contracts. Multi-asset 

features also arise naturally in the context of executive compensation. The main 

example motivating our discussion is that of an executive share option (ESO) which 

contains various performance conditions to be satisfied for the vesting and exercising 

of the option. These conditions are typically encountered in ESO structures. Consider 

the following structure: The executive must be in the continuous service of the 

employer ABC for two years and meet several performance hurdles on the return on 

the company’s stock price at the two year mark. Namely, the stock return over the 

two year period must have: 
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• increased by 20%,  

• exceeded that of the market return over the same period by 10%,  

• exceeded the stock price return on rival company XYZ stock by 15%. 

 

If all three performance conditions are met then the executive is granted an option on 

the ABC stock that matures three years later with an exercise price of 150% of the 

ABC share price value at the time the executive commenced employment. These 

conditions collectively are known as the hurdle. If these conditions aren’t met then the 

option payoff at time T = 5 years is cancelled. If the hurdle conditions are met then 

the ESO grants a call option payoff at time T = 5 years on ABC with an exercise price 

equal to 150% of the ABC share price at time t = 0. This is a typical structure for an 

executive share option. 

The ESO structure therefore defines an option contract with a payoff which depends 

on three different risky assets (ABC corporation shares, XYZ corporation shares and 

the market index) measured at three times, two of which are future times: t = 0, U = 2 

and T  =  5 years. The final payoff is made at time T = 5 and will correspond to that of 

a call option on ABC shares, with an exercise price equal to 150% of the ABC share 

price at time t = 0. To price the option we begin with noting that we have three 

sources of uncertainty, the two stock prices and the market index which we denote:  

 ��1�  �  Ê�� ����Ë, ��2�  �  ����Ë \�!Ë�� � ���, S�3�  �  5�o ����Ë  
 

These asset prices are observed at time t = 0, U = 2 and T =  5 years. Translating the 

performance hurdles using this notation, the payoff of the ESO at its maturity date 

may be written as  

 * � 1C1D1³  �  \�����1�� $ 1.5��1�], 0� 

where 

 

1C � 1 Ì��1�D��1�] Q 1.2Í , 1D � 1 Ì��1�D ��1�]⁄��2�D ��2�]⁄ Q 1.1Í , 1³ �  1 Ì��1�D ��1�]⁄��3�D ��3�]⁄ Q 1.15Í. 
 

This is a product of three indicator functions and a call option payoff. The payoff is 

made at time T = 5 but it also depends on market conditions at time U = 2 and we 

want to compute the value of the contract as at time t = 0. The three conditions in the 

indicator functions collectively define the hurdle at time U = 2. Each of the assets 

defining the payoff has its own Log-Normal distribution. The final payoff is a 

function of four different Log-Normal random variables and obtaining an analytic 

formula for it is challenging. However it is possible to obtain an analytic solution 

involving the four dimensional cumulative normal distribution, but we omit the 

details as they are beyond the scope of this paper.  
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Another example of a multi-asset multi-period option we will examine is the three 

asset rainbow call option with maturity at time 3 and with payoff * � \�����1�³ %��2�³ % ��3�³ $ 5, 0�. It is a call option with exercise price X, however the underlying 

asset is a portfolio of three assets consisting of their sum. The underlying asset will 

not have a Log-Normal distribution so it is not possible to derive a Black-Scholes 

type valuation formula for this payoff. 

The underlying asset will not have a Log-Normal distribution so it is not possible to 

derive a Black-Scholes type valuation formula for this payoff. The spread option with 

maturity at time 3 and with payoff * � \�����1�³ $ ��2�³ $ 5, 0� is a third example 

of a multi-asset multi-period option we consider. This is a call option with exercise 

price X however this time the underlying asset is a portfolio consisting of a long 

position in the first asset and a short position in the second asset.  

The valuation of all three contracts involves calculating the expected payoff at 

maturity under the risk neutral distribution, which we estimate using the MC 

simulation approach. The following parameters are assumed, and these define the 

means, variances and covariances of returns on these assets. We are interested in four 

different returns but these are defined relative to three different assets. For one of 

these assets we have returns over two different times. The risk free rate of interest is ! � 5.00%. 

 

Stock ��1� 

ABC 

��2� 

XYZ 

��3� 

Index 

Initial price $1.00 $1.00 $500.00 

Dividend yield �C � 2.00% �D � 3.00% �³ � 4.00% 

Volatility &C � 40.00% &D � 30.00% &³ � 20.00% 

 

Correlations: 

 

stock 1 2 3 

1 wCC � 1.00 wCD � 0.70 wC³ � 0.50 

2 wDC � 0.70 wDD � 1.00 wD³ � 0.40 

3 w³C � 0.50 w³D � 0.40 w³³ � 1.00 

 

We have two different intervals: � � 0, c � 2, � � 5: ��, c� � �0,2� � � ��, �� � �0,5�. 

The intersection of these is �2,5�. We have four different log-price relatives which 

define the ESO contract payoff. These are  

�C � : ���1�g ��1��⁄ � � : ���1�D ��1�]⁄ �,  

this is the return on ABC over the first 2 years 
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�D � : ���2�g ��2��⁄ � � : ���2�D ��2�]⁄ �,  

this is the return on XYZ over the first 2 years 

�³ � : ���3�g ��3��⁄ � � : ���3�D ��3�]⁄ �,  

this is the return on the index over the first 2 years 

�¼ � : ���1�+ ��1��⁄ � � : ���1�� ��1�]⁄ �,  

this is the return on ABC over the first 5 years. 

The payoff on the ESO contract is a function of these variables. The payoff is  * � 1C1D1³��1�]\��������¼� $ 1.50,0� 

where  1C � 1������C� Q 1.2�; 1D � 1������C $ �D� Q 1.1�;  1³ � 1������C $ �³� Q 1.15� 

 

The product 1������C� Q 1.2�1������C $ �D� Q 1.1�1������C $ �³� Q 1.15� is the 

hurdle and the term ��1�]\��������C� $ 1.50,0� is the call option payoff.  

We need to obtain the covariance matrix of the vector of four log price relatives as 

part of the input to the MC simulation calculation. This is the covariance matrix 

 

�¼ � �0.320 0.1680.168 0.180 0.080 0.3200.048 0.1680.080 0.0480.320 0.168 0.080 0.0800.080 0.800  

 

These covariances are calculated as follows:  

 ��`��C, �C� � 1.00 � 0.40 � 0.40 � 2 � 0.320, ��`��C, �D� � 0.70 � 0.40 � 0.30 � 2 � 0.168, ��`��C, �³� � 0.50 � 0.40 � 0.20 � 2 � 0.080, ��`��C, �¼� � 1.00 � 0.40 � 0.40 � 2 � 0.320, ��`��D, �D� � 1.00 � 0.30 � 0.30 � 2 � 0.180, ��`��D, �³� � 0.40 � 0.30 � 0.20 � 2 � 0.048, ��`��D, �¼� � 0.70 � 0.30 � 0.40 � 2 � 0.168, ��`��³, �³� � 1.00 � 0.20 � 0.20 � 2 � 0.080, ��`��³, �¼� � 0.50 � 0.20 � 0.40 � 2 � 0.080, ��`��¼, �¼� � 1.00 � 0.40 � 0.40 � 5 � 0.800. 
 

The Cholesky square root of this matrix was computed using the Excel code 

developed above. The result is the matrix  
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�¼ � �0.565685 0.0000000.296985 0.302985 0.000000 0.0000000.000000 0.0000000.141421 0.0198030.565685 0.000000 0.244147 0.0000000.000000 0.692820 . 
 

The mean of the vector of log price relatives is  �� � 	�Â�� � �$0.10 $0.05 $0.02 $0.25�. 
 

The components are calculated as follows: 

#C � X! $ �C $ 12 &CD[ � 2 � X0.05 $ 0.02 $ 12 0.4D[ � 2 � $0.10, 
#D � X! $ �D $ 12 &DD[ � 2 � X0.05 $ 0.03 $ 12 0.3D[ � 2 � $0.05, 
#³ � X! $ �³ $ 12 &³D[ � 2 � X0.05 $ 0.04 $ 12 0.2D[ � 2 � $0.02, 
#¼ � X! $ �C $ 12 &CD[ � 5 � X0.05 $ 0.02 $ 12 0.4D[ � 5 � $0.25. 

 

We are now ready to demonstrate the calculations for the first iteration of the 

simulation. We generate a sample of four i.i.d N(0,1) random variables and put them 

into a row vector. Suppose we do this and obtain the following random 4-d normal 

vector: �� � �0.588339 $0.630870 0.042154 2.539468�. 
We perform the matrix calculation  Â � � � � % � 

� �0.565685 0.0000000.296985 0.302985 0.000000 0.0000000.000000 0.0000000.141421 0.0198030.565685 0.000000 0.244147 0.0000000.000000 0.692820  � � 0.588339$0.6308700.0421542.539468   % �$0.10$0.05$0.02$0.25 . 
 

The result is Â � �%0.232815$0.066417%0.061002%1.842210  which is the vector of log price relatives. 

 

We exponentiate this component wise to obtain the vector of price relatives 

Å � ����Â� �
ÏÐ
ÐÑ exp�%0.232815�exp�$0.066417�exp �%0.061002�exp�%1.842210�ÕÖ

Ö× � �1.2621480.9357411.0629016.310469 . 
From this we can compute the payoff at time T = 5. The three conditions defining the 

hurdle are all satisfied so the payoff P is calculated as follows: 

 

29

Kyng and Konstandatos: Multivariate Monte-Carlo Simulation and Financial Contracts

Published by ePublications@bond, 2014



  

1C � 1�1.262148 Q 1.2� � 1; 1D � 1 =1.2621480.935741 Q 1.1? � 1; 1³ � 1 =1.2621481.062901 Q 1.15? � 1 

* � 1C � 1D � 1³ � max�6.310469 $ 1.50,0� � 1.00  �  4.810469. 
 

This completes the calculations for one iteration of the MC simulation calculation of 

the ESO contract payoff. We need to repeat these calculations a large number of 

times, and obtain the sample average payoff. This is an estimate of the expected 

payoff on the ESO.  

We can also compute the payoffs on the other contracts: The payoff on a plain vanilla 

5 year call option on Stock 1 with the same exercise price as the ESO would also be 

4.810469. The ESO and the call option will have the same payoff provided the 3 

conditions in the hurdle at time 2 years are all met, otherwise the ESO payoff is zero. 

The payoff on a spread option on the difference between the return on asset 1 and the 

return on asset 2 with an exercise price of 0.10 would be max(1.262148 - 0.935741-

0.10,0) =  0.226407. The payoff on a 3 asset rainbow option over an equally weighted 

portfolio of assets 1, 2 and 3 with an exercise price of 1.1 would be max(1.08693-

1.10,0) = 0. Each of these other payoffs is some function of the four price relatives.  

5.1. The Excel implementation  

The relevant inputs to the calculations are set out as shown in Figure 5 below. These 

apply to each of the examples considered.  

 

Figure 5: the financial assumptions for the case study 
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Figure 6: mean vector, covariance and Cholesky matrix 

 

The cell range B24:E24 is the input data for the mean vector. The cell range B27:E30 is 

the covariance matrix. The cell range B33:E36 is the Cholesky square root of the 

covariance matrix. These are shown in figure 6. We set up the calculations for the 

first trial of the simulation. This is shown in Figures 7 and 8.  

 

 

 

Figure 7: results for the Z and Y vectors for the first 10 trials 
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Figure 8: W vector and payoffs for ESO, Call, Spread and Rainbow Options, first 10 trials 

 

In the cell range B41:E41 we calculate the 4 entries in the z vector of standard normal 

random variables. The Excel code is =NORMSINV(RAND()) in each of these cells. In 

the cell range F41:I41 we compute the 4 entries in the Â vector of log price relatives. 

This is computed using the Excel matrix formula to compute Â� � ���� % �� which is 

=MMULT(B41:E41,TRANSPOSE($B$33:$E$36))+$B$24:$E$24. Note that in the excel 

implementation the �, Â, Å vectors are set up as row vectors, as is the mean vector, 

hence the need to compute Â� � ���� % ��  instead of Â � �� % �. In the cell range 

J41:M41 we compute the components (price relatives) for the Å vector by 

exponentiating the components of the Â vector. Having set up the code for one 

iteration of the simulation we can copy the range B41:M41 to the rows below to 

compute the results for other iterations of the simulation.  

In Figure 8 we show the payoff calculations for the ESO and the other example multi 

asset options we considered. These are all functions of the four components of the W 

vector.  

To test the simulation we copied these rows so we had a simulation sample of size 

1,000,000, making the spreadsheet file very large. In practice the iterations of the 

calculation would probably be done using the Excel add-on Visual Basic (VBA) so as 

to avoid the need to keep all of the results for each of the iterations and store only the 

relevant final results. The results were as follows: 

 

Call 

Option 

Spread 

Option 

Rainbow 

Option 

Item calculated 

$0.3073 $0.1398 $0.1271 estimated expected payoff 

$1.0060 $0.3267 $0.2688 estimated standard deviation of payoff 

1000000 1000000 1000000 sample size 

0.33% 0.23% 0.21% estimated coefficient of variation 

$0.2394 $0.1089 $0.0989 estimated value of option 

Figure 9: Option price results 
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From Figure 9 we see that the sample average, which is our estimated expected 

payoff, was 0.1704. The sample standard deviation was 0.8545. The estimated 

coefficient of variation of the sample average was 0.50% based on the sample 

average, sample standard deviation and sample size, which was 1,000,000. The 

estimated option value is $0.1327. Based on the coefficient of variation we claim that 

the ESO value is 95% certain to be within 1.00% of the estimated value. For the Call 

option the estimated value is $0.2394 and we are 95% confident that the true value of 

the call is within 0.66% of this estimated value. Pricing the call analytically the result 

is $0.2397. The ratio of the MC price of the call to the analytic value of the call is 

99.87%. Based on the results we’ve achieved a reasonable level of accuracy for the 

contract prices.  

There are methods to make the MC simulation approach faster and more accurate. 

These include variance reduction techniques such as antithetic variates and more 

sophisticated programming approaches but these are beyond the scope of this paper 

and would use more sophisticated tools such as Matlab, R, Mathematica, C, C++. 

Using Excel for this calculation however is beneficial for understanding how the 

method works. Using Excel we started with the input data, performed the 

intermediate calculations which are quite involved, and produced the final results all 

in the one file. This file gets big and unwieldy with a large sample size. In practice, 

industry practitioners would want to automate these calculations in the Excel Visual 

Basic programming language or possibly perform them using some other software 

package. 

6. Conclusion 

In this paper we have discussed the Monte Carlo simulation method for the pricing 

of options on multiple underlying sources of uncertainty. We covered various 

aspects of the theory of the MC method and demonstrated its application to the 

problem of option pricing for options over a single asset, and also for an executive 

compensation option pricing example involving multiple periods with multiple 

sources of uncertainty. We have covered the detailed Excel implementation of these 

calculations. Our Excel demonstration for options on a single underlying asset with a 

single source of uncertainty (for the plain vanilla call and put options) for which the 

price and variance was computed analytically, illustrate the sample size required to 

achieve a given level of confidence in the result. This highlights the statistical nature 

of the MC method for the student.  

The methods we have presented provide the student with a readily extendable 

procedure to price options with an arbitrary number of sources of uncertainty, which 

may in practice consist of multiple underlying assets evaluated at multiple times. The 

major advantage of an Excel illustration is that the input assumptions, intermediate 

calculations and final results are all visible to the student in the one file, thus helping 

the student to gain a better understanding of the method and its implementation.  

In our discussion on the extension of the MC method to the pricing of multivariate 

contingent financial contracts, we provided a complete coverage of all the 

background theory required to understand the multi asset Black-Scholes framework. 
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This included the relevant multivariate statistical theory and the theory of covariance 

matrices and their Cholesky square root. In this regard, we have endeavoured to 

construct a self-contained exposition for students and practitioners interested in 

learning and applying these methods. We have presented a constructive proof of the 

existence and uniqueness of the Cholesky square root matrix which forms the basis 

of the multi-dimensional simulation algorithm, and shown how to perform the 

calculations in Excel. The implementation procedure of the algorithm naturally 

contains a diagnostic check of whether the proposed covariance matrix used in the 

calculations is positive definite. This is an important intermediate step to ensure that 

the final calculated prices are correct, as otherwise the methodology we present is not 

applicable and the final results will not be reliable.  

The method for simulating correlated normally distributed random variables and the 

simulation of correlated Log-Normally distributed random variables has applications 

to statistical modelling outside of option pricing which we do not cover here. The 

detailed implementation of the MC method for the economic valuation of multi asset 

contingent contracts using Excel is an advanced topic in financial mathematics, 

normally covered in senior undergraduate units or postgraduate units. The 

demonstration of the method in a commonly available software package such as 

Excel is a useful way to facilitate a wider understanding of these methods.  
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7. Appendix A: Notational Conventions  

Before proceeding, we give a brief account of notational conventions we employ in 

this paper. A bold face upper case letter e.g. Ú denotes a matrix. The transpose of this 

matrix is denoted Ú�. A bold face lower case letter e.g. Û denotes a column vector. 

The transpose of this vector is denoted Û�. We use ª to denote a column vector of 

zeros. A plain text lower case letter with two subscripts e.g. �ÜÝ denotes a matrix 

element in row i and column j of the matrix Ú. A plain text lower case letter with one 
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subscript e.g. ÞÜ denotes a vector element from the vector Û. A plain text lower case 

letter without subscripts denotes a scalar. 

8. Appendix B: Derivation of the Power Option and Power Binary Option 

Analytic Formulae. 

The power option with power n, where n is some constant, is a financial contract that 

pays the holder some power of the price of the underlying asset at the maturity date 

T, with payoff * � ��+�l. The binary power option also pays some arbitrary power of 

the risky asset at maturity, provided that an exercise condition on the stock price is 

met. There are in fact two types, the up and the down power binary options. The 

payoffs at expiry from both may be written as:  ,���, �� � ��+�l1���+ Q �5� 

The price relative �+ ��⁄  has a lognormal distribution and it can be written in terms of 

the standard normal variable Z as �+ ��⁄ � ��� XY! $ � $ CD &DZ v % &√vo[ where τ � T $ t. The nth power of this price relative is also lognormally distributed: ��+ ��⁄ �l � ��� Y Y! $ � $ CD &DZ v %  &√voZ Using standard properties of the 

lognormal distribution the expectation of the nth power of the price relative is 	���+ ��⁄ �l� � ��� Y Y! $ � $ CD &DZ v % CD  D&DvZ. The discounted expectation is �-.�	���+ ��⁄ �l� � ��� YCD  D&Dv %  Y! $ � $ CD &DZ v $ !vZ. We can write this as �-.�	���+ ��⁄ �l� � ������ �v� where �� � � CD  D&D %  Y! $ � $ CD &DZ $ !. It follows 

that the value at time t of the power option with payoff * � ��+�l is �-.�	���+ ��⁄ �l���l � ��l������ �v� 

The up binary power option with payoff ,�C��, �� � ��+�l1��+ Q 5� has a value at 

time t given by the discounted expectation �-.�	���+�l1��+ Q 5�|���. The indicator 

function expressed in terms of �+ has an equivalent indicator function expressed in 

terms of the variable Z, and the equivalence is 1��+ Q 5� â 1�Z Q $�D� where �D is as 

in the Black Scholes formula for a European call option with an exercise price of X. 

This allows us to obtain a formula for the discounted expectation of the payoff on the 

binary power option contract expressed as an integral in terms of z as follows: 

  �-.�	���+�l1��+ Q 5�|��� �   
       ����l ä ��� Y Y! $ � $ CD &DZ v %  &√v¡ $ !vZ ��¡��¡å-æU  �A1� 
 

where ��¡� � C√Dè ��� Y$ CD ¡DZ is the pdf of Z. 

The integral is of the form 1 � ä ����é % ê¡���¡��¡åë . Straight-forward integration 

gives 1 � ��� Yé % CD êDZ ä ������åë-ì  on changing variables to � � ¡ $ ê. In turn this 

yields 1 � ������ �v�BJ�D %  &√vL on substituting é �  Y! $ � $ CD &DZ v $ !v, ê � &√v and í � $�D. It follows that the value of the binary power option is as stated in 

section 2.3.1. 
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These binary power options can be combined to create other options such as 

European call and put options, gap call and put options and various other types of 

options. In particular they can be used to obtain analytic formulae for the mean and 

the variance of the call and put option payoffs.  

9.9.9.9. Appendix C: Existence of Cholesky Square Root Matrix    
The following result is used in the constructive proof of the Cholesky Square Root 

matrix which follows. 

Theorem [Determinants of Partitioned Matrices] Let î be an  �   partitioned 

matrix, partitioned as follows: î � £î¤¤ î¤®î®¤ î®®¦ where îÜÝ has size  k �  x for �, t � 1,2, 
where  C %  D �   and 0 3  C 3  . Let Ú � î-¤ be the  �   inverse of î, and 

partitioned as Ú � £Ú¤¤ Ú¤®Ú®¤ Ú®®¦ where ÚÜÝ has size Ü � Ý. 
 

If ����î®®� � ª then ����î� � ����î®®����Jî¤¤ $ î¤®î®®-¤î®¤L 

If ����î¤¤� � ª then ����î� � ����î¤¤����Jî®® $ î®¤î¤¤-¤î¤®L 

 

Proof: See Graybill (1976) pp19-21 

 

Definition. [Positive Definite Matrix] An n by n matrix � is positive definite if and 

only if all of its eigenvalues are strictly positive. If so then �� � � � � Q 0 for all 

vectors � ï ~l such that  � � 0. If all of the eigenvalues are non negative (but 0 is an 

eigenvalue) then the matrix is non negative definite instead of positive definite.  

We next state and prove an important theorem about positive definite covariance 

matrices. This theorem and its proof follow Graybill (1976) p260 but with slight 

modifications for the purposes of this paper.  

 

Theorem: [Existence of the Cholesky Square Root]. Let � be a � � � positive definite 

symmetric real matrix. Then there exists an upper triangular  � � �  real  matrix È of 

rank �  with ÉÜÜ Q 0 for � � 1,2, … , � such that ÈÈ� � �  and È is unique.    

Proof: We use mathematical induction. First, let � � 1. Since � is positive definite and 

real we can write � � Ç¤¤®. So �CC � |�CC| and È is upper triangular with É¤¤ Q 0 and 

it is unique. 

Now suppose the theorem is true for � � Ë, so that for any Ë � Ë positive definite 

symmetric real  matrix �¤¤ there exists a unique upper triangular real  matrix È¤¤ 

with ÉÜÜ Q 0 for � � 1,2, … , Ë such that È¤¤ È¤¤ � � �¤¤. Let � be a Ë % 1 � Ë % 1  

positive definite symmetric real matrix. Since it is positive definite we can write � as 

a partitioned matrix � � £�¤¤ �¤®�®¤ �®®¦ where �¤¤ is of size Ë � Ë  �¤® is of size Ë � 1,   �®¤ � �¤®� is of size 1 � Ë and �®® is of size 1 � 1  (a scalar). By our induction 
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hypothesis we can write �¤¤ � È¤¤ È¤¤ � where  È¤¤ is  a unique upper triangular Ë � Ë  real  matrix with positive diagonal elements.  

Let �¤¤ � È¤¤� and define È � £È¤¤ È¤®È®¤ È®®¦ as a Ë % 1 � Ë % 1  partitioned matrix 

where where È¤¤ is of size Ë � Ë  È¤® is of size Ë � 1, È¤® � �¤¤-¤�¤®,   È®¤ is of size 1 � Ë and all its entries are zero, and È®® is of size 1 � 1  (a scalar), with È®® � Þ and 

Þ � iJ�®® $ �®¤�¤¤-¤�¤®L 

Then È�È � µ È¤¤� ª�¤®�È¤¤-¤ Þ¶ £È¤¤ �¤¤-¤�¤®ª Þ ¦ � µÈ¤¤�È¤¤ �¤®�®¤ �¤®��¤¤-¤�¤® % Û®¶ � �  

Because: È¤¤�È¤¤ � �¤¤, �¤®�È¤¤-¤È¤¤ � �¤®� � �®¤, �¤®�È¤¤-¤�¤¤-¤�¤® ��¤®���¤¤È¤¤�-¤�¤® � �¤®���¤¤�-¤�¤® 

To complete the proof we need to show that �®® $ �®¤�¤¤-¤�¤® Q 0 so that Þ is real. 

To show this we write ������ � �����¤¤�óôÉJ�®® $ �®¤�¤¤-¤�¤®L. Since both � and �¤¤ are positive definite we have ������ Q 0  and �����¤¤� Q 0 from which it follows 

that óôÉJ�®® $ �®¤�¤¤-¤�¤®L Q 0 and since �®® $ �®¤�¤¤-¤�¤® is a scalar it equals its 

determinant and hence �®® $ �®¤�¤¤-¤�¤® Q 0. Hence the matrix È � £È¤¤ �¤¤-¤�¤®ª Þ ¦ is unique, upper triangular and all its diagonal elements are 

positive. The transpose of È is C=£ �¤¤ ª�¤®�È¤¤-¤ Þ¦ which is the Cholesky Square Root 

of S. 

This result allows us to compute the Cholesky Square Root of the Ë % 1 � Ë % 1  

matrix S from the Cholesky square root of the Ë � Ë  matrix �¤¤ and the other entries 

in S. This allows us to compute the Cholesky square root matrix recursively. We can 

implement the calculations in Excel using the built in matrix functions such as 

transpose, minverse, and mmult, as demonstrated in Section 4.  
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