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Using Spreadsheets to Teach Signal Detection Theory

Abstract
Signal detection theory (SDT) is a mathematical framework for evaluating the performance of a detection
system, which is broadly applicable across many academic and practical domains, including medicine,
psychology, statistics and engineering. In this article, I present an interactive spreadsheet that allows students
to systematically explore the function of the two key parameters of SDT: the decision criterion and
discriminability. Stimulus distributions and ROC curves update in real time according to user input, thereby
providing an intuitive visualization of the SDT parameters. The spreadsheet can be used to find an optimal
decision criterion for a given level of discriminability, prior probabilities and payoff matrix. The article
includes six problems and suggested answers that instructors may use in the classroom. The article concludes
with a discussion of simple adaptions of the spreadsheet for teaching frequentist statistics and testing
psychologically based models of detection.
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Introduction 
 
Many situations can be described as a signal detection task in which the 
presence or absence of a stimulus must be determined under less-than-
ideal conditions. Such situations range in importance from trivial------such 
as inspecting apples for bruises at the grocery------to highly consequential------
such as detecting a tumor on a chest x-ray. What these situations share in 
common is that error-free performance is not possible and some balancing 
of different errors is necessary. Signal Detection Theory (SDT) is a 
mathematical framework for assessing the performance of a detection 
system when some degree of error is inevitable [1]. SDT has been widely 
applied in many academic and practical domains, including statistics, 
psychology, business, engineering and medicine [1]. One benefit of SDT 
above and beyond simple measurements of accuracy is that it decomposes 
performance into two independent components: discriminability------the 
ability of a system to distinguish between two stimuli------and decision 
criterion------a threshold of evidence required to state that a stimulus has 
been detected.  
 
Learning SDT can be difficult for students for several reasons. First, 
students tend to struggle with null hypothesis significance testing [2], a 
statistical approach that is built upon the same mathematical framework 
that is used in SDT. Understanding the relationship between conditional 
probabilities appears to be a primary point of confusion [2]. Moreover, 
students often fail to understand the important role of prior probabilities 
in assessing performance [3,4]. Second, many sources provide a rigorous 
mathematical treatment of SDT that is not accessible to most students. 
Although more accessible resources exist, they are limited by their static 
treatment of the material. Several lines of research suggest that allowing 
students to interact with material in a systematic fashion may lead to 
better learning than traditional methods [5]. For this reason, students who 
are learning SDT may benefit from the use of an interactive learning 
environment. Spreadsheets provide an ideal interface for an interactive 
learning environment due to their simplicity, flexibility and ubiquity.  
 
Currently, interactive resources for learning SDT are limited if not non-
existent. To fulfill this need, I have developed an interactive spreadsheet 
for teaching SDT. Interactive graphs allow students to systematically 
explore the effect that model parameters have on performance. The 
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spreadsheet is designed as a teaching tool that can be used in a computer 
lab or for students who wish to supplement the curriculum provided by 
their instructor. The spreadsheet is presented in a ready-to-use form that 
requires only rudimentary knowledge of spreadsheets. Thus, the 
spreadsheet is deal for developing a conceptual foundation upon which 
students can build a more mathematically rigorous understanding of SDT. 
A description of the technical details of the spreadsheet is provided for 
interested readers and advanced students, who wish to understand or 
modify the spreadsheet for specific purposes.  
 
The remainder of the article is organized as follows. First, SDT is 
introduced formally in the context of an intuitive example. The layout and 
use of the first spreadsheet is described concurrently. The following 
section introduces the concept of ideal observer analysis and how it can be 
used to determine optimal performance when prior probabilities and a 
payoff matrix can be specified. In addition, the article includes a set of 
problems with suggested answers that teachers may opt to use in the 
classroom. For clarity of presentation, the technical details of the 
spreadsheet are described in the Appendix for interested readers. The 
paper concludes with a discussion of alternative uses of the spreadsheet 
for teaching related concepts, such as null hypothesis significance testing 
and analyzing psychologically plausible models of signal detection 
analysis.  

 

Signal Detection Theory 
 
SDT was originally developed during World War II to optimize the 
detection of radio signals in environments perturbed with background 
interference [6]. SDT has been used more broadly to include human 
perception among other applications. Perception can be conceptualized as 
a signal detection task in which the brain must interpret an imperfect 
signal. The signal may be degraded due to interference from a variety of 
internal and external sources, including momentary lapses in attention, 
random thoughts that may come to mind or distractions in the 
environment. SDT can be intuitively illustrated with phantom vibration 
syndrome, a phenomenon experienced by the majority of cellphone users 
[7,8]. Phantom vibration syndrome occurs when a person falsely perceives 
vibrations from his or her phone. In SDT, random variation in perception 
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is commonly modeled as a normally distributed random variable as 
follows [1]: 
 
 V~N�µ, σ�	 (1) 
 
in which V is the perceived vibration, µ is the mean, and σ� is the variance. 
For the sake of simplicity, σ� is assumed to be 1. Figure 1 provides a 
graphical illustration of normally distributed perceived vibration. 
 

 

 

 

Figure 1: The strength of perceived phone vibration represented as a normally distributed random 
variable. 
 
Because a true vibration and a phantom vibration cannot be perfectly 
distinguished, there are four possible outcomes depicted in the confusion 
matrix located in the tab ‘ROC curves and Distributions’, cells C39:F42. 
(see Figure 2). When the phone actually vibrates, one may correctly 
respond ‘‘Yes’’, resulting in a hit or ‘‘No’’, resulting in a miss. By contrast, 
when the phone does not vibrate, a person may incorrectly respond ‘‘Yes’’, 
resulting in a false alarm or correctly respond ‘‘No’’ resulting in a true 
negative. As will be discussed shortly, the values in the confusion matrix 
are controlled by two parameters, corresponding to discriminability and 
decision criterion.  
 

 
Figure 2: A close up of the confusion matrix for phantom vibration syndrome located in the tab 
‘‘ROC Curves and Distributions’’   
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The confusion matrix can be represented in terms of two normal 
distributions------one distribution corresponding to each possible state of the 
world (see Figure 3). Importantly, the placement of the distribution on 
separate graphs with a common x-axis clearly conveys the conditional 
relationships used in the SDT analysis. The scale of the perceived 
vibration is arbitrarily measured in standard units with the ‘‘No 
Vibration’’ distribution centered with a mean of zero. From the 
perspective of a person who perceives a vibration, it is impossible to 
determine which state of the world is true. That is, whether the perceived 
vibration is real or not.  To cope with this uncertainty, one must set a 
decision criterion to determine whether a ‘‘Vibration’’ response is given or 
a ‘‘No vibration’’ response is given. When this parameter is varied in cell 
B45, the distributions, confusion matrix and ROC curve update 
accordingly (see Figures 3 and 4). In Figure 3, the decision criterion is 
depicted as vertical black line that separates hits from misses when the 
vibration is present and separates false alarms from true negatives when 
no vibration is present. The decision criterion balances the tradeoffs of 
committing misses and false alarms (and, by extension, hits and true 
negatives). In comparing Figure 3 to Figure 4, it can be seen that 
increasing the decision criterion will decrease the rate of false alarms at 
the expense of increasing misses.  
 

 

 

 
 
 
 

 
Figure 3: A screenshot of the interface in the tab ROC and Distributions tab. d’ = 1 and c’ = 0. 
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The decision criterion can be measured with a variety of metrics. For the 
purposes of the present article, I will discuss c, which is an absolute 
measure, and c’, which is a relative measure. The decision criterion in 
Figure 3 is .50 as measured by c. It is often more informative to measure 
the decision criterion relative to the standardized differences between the 
distributions. This standardized difference is known as d’, which is a 
measure of discriminability (to be discussed below). c’ can be calculated as 
[1]: 
 

 c� �  .5d� � c   
 

(2a) 

 c� � � �Φ������	 � Φ�����	
2 � 

 

(2b) 

 
As displayed in cell B45, c’ is zero, A value of zero indicates that the 
criterion is unbiased in the sense that false alarms and misses are equally 
likely. In Figure 4, c’ is increased to 1, producing more misses than false 
alarms.  
 

 

 

 

Figure 4: A screenshot of from the ROC and Distributions tab showing an increase in the decision 
criterion compared to Figure 1. d’ = 1 and c’ = 1. 

 
Errors are due to the fact that the distributions overlap and, thus, are not 
completely distinguishable from each other. At a conceptual level, the 
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overlap of the distributions represents discriminability. As such, 
discriminability serves as an overall measure of accuracy independent of 
the decision criterion. One of the most common measures of 
discriminability is d’, which is computed with either of the following 
formulas [1]: 
 d� � µ� � µ��σ  

 

(3a) 

 
 d� � Φ���hit	 � Φ���FA	 

 
(3b) 

In the first formula, v and nv subscript the vibration and no vibration 
distributions, respectively. This formula emphasizes that d’ is the 
standardized difference between the two distributions. In the second 
equation, Φ��  denotes the inverse cumulative normal function. The 
second equation shows how the response probabilities can be transformed 
into standard units. The effect of increasing d’ with c’ held constant at zero 
can be seen by comparing Figure 4 to Figure 5. Two important points are 
worth noting. First, false alarms and misses are less likely when d’ is 
increased because it is an over all measure of accuracy. Second, 
discriminability is independent of the decision criterion because false 
alarms and misses remain equally likely in each case. The reason for 
independence is that c’ was fixed at zero.  
 

 

 

 

 

6

Spreadsheets in Education (eJSiE), Vol. 7, Iss. 3 [2014], Art. 4

http://epublications.bond.edu.au/ejsie/vol7/iss3/4



 
Figure 5: A screenshot of from the ROC and Distributions tab showing an increase in 
discriminability compared to Figure 1. d’ = 2 and c’ = 0. 

 
Receiver Operating Characteristic (ROC) curves are used in SDT to 
evaluate performance across a range of decision criteria at a fixed level 
discriminability. The hit rate is plotted against the false alarm rate as a 
function of c’ at a fixed d’ (the solid curve). The identity line represents d’ 
= 0, a case in which a person cannot discriminate phantom vibrations from 
true vibrations. The green dot represents the hit rate and false alarm rate 
associated with the user defined parameters d’ and c’ in cells A45 and B45, 
respectively.  

 

Ideal Observer Analysis 

 
Although perfect performance is not possible, a decision criterion can be 
selected so as to optimize the balance of false alarms and misses (and true 
negatives and hits by extension) [1]. The optimal decision criterion will 
depend on the payoffs associated with each of the four possible outcomes 
and the prior probability (a.k.a. base rate) of true and phantom vibrations. 
For instance, suppose you are awaiting an important phone call about a 
job to which you recently applied. Missing the phone call could 
potentially be costly and receiving the phone call could be equally 
beneficial. By contrast, a false alarm and true negative would be relatively 
less consequential. Figure 6 shows the interface of the tab Ideal Observer 
Analysis. The payoff matrix in the cells spanning I33:K36 has been 
configured to map onto the situation described above. 
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Figure 6: A screen shot of the tab titled Ideal Observer Analysis.  

 
The optimal decision criterion can by found by maximizing a utility 
function that weights each outcome by its probability of occurring. Each 
outcome is associated with an economic measure called a utility that 
represents a person’s subjective preference. In the current example, the 
negative utility of a miss is twice that of a false alarm.  The utility function 
sums the probability weighted utilities to form a composite measure of the 
utility or ‘‘goodness’’ associated with a given d’ and c’. Formally, the 
utility function is defined as: 
 
 EU�X|d�, c�	 �  ) ) P�x,	P�x-|s	U�

 

-/0

 

,/1
x,-	 

 

(4) 

where EU is the expected utility, 2�34	 is the prior probability of state s, 2�35|6	 is the conditional probability of making response r given state s, 7�345	 is a utility function that maps objective units onto subjective units. 
For simplicity, I assume that utilities are equal to their objective values: 7�345	 �  345. s and r are outcome indicator variables in which  
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S �  9s � 1 if vibration is presents � 0 if vibration is absent E 
 

r �  Fr � 1 if respond presentr � 0 if respond  absent E 
 
The optimal value of c’ can be approximated through visual inspection of 
Figure 6, which shows the expected utility as a function of c’ (black line). 
Alternatively, an exact solution can be obtained using the Solver add-in. 
Solver uses an efficient algorithm to search for the value of c’ that 
maximizes the expected utility. The algorithm is efficient because it can 
generally arrive at a solution without exploring the parameter space in its 
entirety. A minimum of three settings must be specified in Solver: the 
objective value, whether the objective value is maximized or minimized 
and the parameters that are free to vary. As shown in Figure 7, the 
objective value is the expected utility (cell D38), which is set to be 
maximized, and c’ (cell B39) is the value Solver will optimize. The optimal 
c’ = -.35 as shown in Figure 6. Selecting a low decision criterion agrees 
with the intuition that misses are worse than false alarms. Therefore, more 
false alarms can be tolerated. One limitation of this analysis is that 
assuming equal prior probabilities for true and phantom vibrations is not 
plausible. A more realistic prior probability for the true vibration might be 
.85, which can be entered into cell A35. When the prior probability for a 
true vibration is high, a weaker perceptual signal is needed to respond 
‘‘Yes’’ to a perceived vibration. Thus, a lower decision criterion is optimal 
with high prior probabilities. The optimal c’ becomes -1.21 after taking 
this more realistic prior probability into account.  
 
Once a response has been made, it is possible to update the prior 
probability that a vibration is real, which is known as a posterior 
probability. This updating process is formalized through Bayes’ theorem. 
According to Bayes’ theorem: 
 

 P�s �  1|r �  1	  �  P�s �  1|r �  1	 P�s � 1	
P�s �  1|r �  1	 P�s � 1	 � P�s �  0|r �  1	 P�s � 0	 

(4) 

In other words, Equation 4 is the probability that a perceived vibration is 
true, given that one has responded that it is true. In Figure 6, the prior 
probability increases from .50 to .78 given that one has responded ‘‘Yes’’. 
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Bayes’ theorem can be applied in a similar fashion when one responds 
‘‘No’’.  
 

 

 

 

Figure 7: A screen shot the setup window for the Solver add-in. 
 

One common finding is that people do not make optimal decisions due to 
risk aversion [9]. One way to quantify risk is to use the variability in 
potential outcomes associated with a decision option [9,10]. As an 
example, many people purchase health insurance even though it increases 
total healthcare expenditures on average. Purchasing health insurance 
allows a person to pay a ‘‘surcharge’’ to reduce the variability in potential 
healthcare expenditures, which could range from nothing to quantities 
that are several orders of magnitude greater than one’s income. A 
common measure of the variability is the variance: 

 

 VarGU�X|d�, c�	H �  ) ) P�x,	P�x-|s	GU�x,-	 � EUH�
 

-/0

 

,/1
 

 

(5) 

One simplified method of accounting for risk aversion is to maximize the 
ratio of the expected value to the variance (sometimes called the 
coefficient of variation).  In some cases, maximizing the ratio and the 
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expected utility will produce the same c’, whereas in other cases they may 
diverge. Figure 8 shows an example in which c’ will diverge for a risk 
neutral and risk averse person. Simply, changing the payoff for a hit to 50 
changes the optimal c’ to -.98 for a risk neutral person. In the general case, 
a risk averse person would set c’ < -.98. However, if a risk averse person 
was specifically maximizing the ratio of the expected value to the 
variance, c’ could equal -1.34.  

 

 

 

 

Figure 8: A screen shot of the tab titled Ideal Observer Analysis showing that optimal c’ can differ 
for risk neutral and risk averse persons. 

 

Problems 

 
This section provides five problems that instructors may use to teach SDT. 
A suggested answer is given for each problem. Problem 1 is designed to 
exemplify the difference between discriminability (d’) and decision 
criterion (c’). Problem 2 demonstrates that decision criterion (c’) balances 
tradeoffs between false alarms and misses. Problems 3 and 4 require 
students to identify which SDT parameters are likely to play a key role in 
different situations. The goal of Problem 5 is to provide students with 
practice constructing plausible payoff matrices for realistic situations. 
Problem 6 demonstrates that maximizing accuracy (such as posterior 
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probability correct) is not necessarily an ideal criterion for good 
performance.  
 
Problem 1 
 

In the tab ‘‘ROC and Distributions’’, set d’ = 1 and c’ = 0. What happens to 
the false alarm and miss rate in the distribution when d’ is increased? 
What happens to the ratio of the false alarm to the miss rate? 
 
Suggested Answer: Increasing d’ decreases the false alarm and miss rates. 
However, the ratio remains the same when d’ =1 and d’ =2. The ratio is 
about 1 by visual inspection. The reason the ratio is the same is that c’ is 
constant and represents a decision criterion that balances the tradeoff 
between false alarms and misses.  
 
Problem 2 

 
In the tab ‘‘ROC and Distributions’’, set d’ = 1 and c’ = 0. What happens to 
the false alarm and miss rate in the distribution when c’ is increased?  
 
Suggested Answer: Increasing c’ decreases the false alarm but at the 
expense of more misses because c’ balances false alarms and misses. When 
adjusting the criterion, false alarms cannot be improved without a 
corresponding increase in misses and vice versa.  
 
Problem 3 

 
Suppose that you are at a store and see a person who might be a former 
classmate. It has been several years since you have see your classmate and 
so it is unclear whether this person is your classmate or a stranger. Further 
suppose that you normally use glasses but you forgot to wear them. How 
would that change d’ and c’?  
 
Suggested Answer: Not wearing your glasses will make it more difficult 
to distinguish you classmate from a strange. Thus, d’ would decrease. 
However, this would not change c’.  
 
Problem 4 
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Imagine that you must adjudicate an alleged case of racial profiling 
involving airport security. According to the allegation, airport security has 
used racial profiling when deciding to conduct searches for suspected 
contraband. Suppose you want to use SDT to compare the security 
performance for searching a racial minority group and a racial majority 
group. Which SDT parameter(s) would indicate whether airport security 
is using racial profiling? 
 

Suggested answer: lower d’ for the racial minority group would simply 
indicate poorer discriminability. In other words, performance may be 
worse for detecting contraband on the racial minority group, perhaps due 
to cultural variation in the display of suspicion. This would not provide 
evidence of profiling. A decreased c’ for the racial minority group would 
provide evidence of racial profiling because it implies that security sets a 
lower decision criterion for searching. 
 
Problem 5 

 
Suppose that you work in quality control at a company manufactures 
toasters. The toaster may malfunction or cause a small fire if the electrical 
components are faulty. For this reason, missing a defective toaster can be 
very costly. While false alarms are less costly, the company loses some 
money when functional toasters are thrown away. Construct a plausible 
payoff matrix for this situation. Note that the scaling of the matrix entries 
is somewhat arbitrary. What is most important is the relative values. 
 
Suggested answer: Answers may vary from student to student. However, 
misses should be more costly than false alarms to reflect the higher cost of 
potential fire damage. The problem did not provide any information 
about hits and true negatives. One reasonable approach is to set those 
values equal to each other.  
 
Problem 6 

 
Building upon your previous answer, suppose the prior probability of a 
defective toaster is 1%. Find the optimal decision criterion (c’) for your 
payoff matrix. What happens when you increase the prior probability to 
5%? What happens when you maximize the posterior probability of 
detecting a defective toaster given a ‘‘Yes’’ response (cell G35) and why is 
that not necessarily a suitable method to optimize performance? 
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Suggested answer: Answers will vary from student to student but the 
qualitative results should be similar. Assuming the utility of a hit = true 
negative = 100, false alarms = -50  and miss = -1,000, the optimal decision 
criterion is c’ = 1.30. When the prior probability of a defective toaster 
increase from 1% to 5%, the decision criterion will decrease (c’ = .48). The 
reason is that a person should be more willing to say a toaster is defective 
when they tend to be defective more often in general. The c’ associated 
with maximizing the posterior probability of detecting a toaster is 6.57, 
which is much higher than the c’ = 1.30. This is a poor benchmark because 
it does not take into account that misses are more costly than false alarms 
and the prior probability of a defective toaster is low.  

 
Conclusions 
 

SDT provides a flexible mathematical framework for assessing the 
performance of a detection system (human or otherwise) and has 
applications in many academic and practical domains. The interactive 
spreadsheet provides an intuitive way to understand and visualize 
performance in terms of the model’s key parameters: discriminability and 
the decision criterion. The ready-to-use format ensures that students with 
little knowledge of spreadsheets can benefit from the pedagogic 
spreadsheet presented in this paper. The spreadsheet can be easily 
modified to serve other purposes, such as teaching statistics in the 
frequentist framework. Concepts such as false alarms, hits, decision 
criterion and discriminability in SDT correspond to type 1 errors, power, 
alpha and effect size in frequentist statistics, allowing an easy transition 
between topics. In addition, psychologically based models, such as 
Prospect Theory, could be subsumed within SDT to better describe actual 
performance of humans [11]. For example, risk aversion could be easily 
incorporated into SDT with the addition of one parameter, α. For the sake 
of simplicity, I assumed risk neutrality in the utility function and used the 
properties of the payoff matrix to measure risk aversion (e.g. the ratio of 
the expected value to the variance). However, risk aversion can be 
modeled with a concave function representing diminishing sensitivity to 
the magnitude of the outcomes, i.e. U�x	 �  x  J, where  0 K α K 1. This 

model of risk aversion is more flexible than the simple model presented in 
the paper, which contains no adjustable parameters. Prospect Theory also 
suggests that people are loss averse. In other words, losses are weighted 
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more than gains of equivalent magnitude: U�x	 �  λx  J  for x < 0. Solver 

could be used to find the value of α and λ that optimally fits the data. In 
conclusion, the interactive spreadsheet provides an interactive interface 
for learning SDT that can easily be adapted for advanced purposes.  
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Appendix 1 Construction Details 

 
ROC and Distributions 

 
The data for the distributions are offset to columns BJ through BN for 
clarity of presentation. The values for the X-axis range form -5 to 5 in 
column BJ.  The distributions were divided at the criterion, c’ (Cell B45), 
into hits and misses and false alarms and true negatives. This results in 
four columns------one for each of the possible outcomes starting in column 
BK. For example, a true negative is defined by the area under the curve of 
the ‘‘No Vibration’’ distribution starting at c’. This was implemented with 
the following function: = 
IF(BJ2<=$CJ$2,NORM.DIST(BJ2,$CC$2,$CD$2,0)," "), which suppresses 
values above the absolute criterion c. c is found by solving for equation 2a: 
CJ2 = 0.5*E41+F41. The mean is 0 in cell CC2. The distributions were 
partitioned for hits, false alarms and misses in a similar manner. d’ in cell 
E41 controls the standardized difference between the distributions. The 
ROC curve was found by plotting hits against false alarms across varying 
levels of c’ in column BJ. For example, the false alarm values were 
computed as BO2 =1-NORM.DIST(BJ2,$CC$2,$CD$2,1) across the full 
range of values in column BJ. Coordinates for the identity line can found 
in columns BQ and BR, which range from 0 to 1. The green circle in the 
ROC plot indicates the hit and false alarm rate associated with d’ and c’ in 
cells E41 and F41, respectively. The hit rate and false alarm rate were 
computed with the cumulative normal distribution functions: C41 = 1-
NORM.DIST(CJ2,E41,1,1) and D41 = 1-NORM.DIST(F41+E41*0.5,0,1,1), 
respectively.  
 
Ideal Observer Analysis 

 
The ROC curve was generated using the same procedures described in the 
previous section. The other graph shows the expected utility and its 
standard deviation as a function of c’. The data for this graph is offset to 
columns BT through BX. Column BT contains c’ values ranging from -3 to 
3. Using a similar procedure as described in the previous section, columns 
BW and BX contain false alarm and hit rates as a function of c’ in column 
BT. The following formula computes the expected utility based on 
Equation 3 as a function of the c’, the false alarm rate and the hit rate:  BV2 
= $A$35*($J$35*BX2+$J$36*(1-BX2))+$B$35*($K$35*BW2+$K$36*(1-BW2)). 
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This formula references the prior probabilities (A35 and B35) and 
appropriate values of the payoff matrix (J35:K36). Column BU contains the 
ratio of the expected utility and its variance as a function of c’, the false 
alarm rate and the hit rate and can be computed with the following 
formula based on Equation 4: BU2 = BV2/($A$35*BX2*(BV2-
$J$35)^2+$A$35*(1-BX2)*(BV2-$J$36)^2+$B$35*BW2*(BV2-
$K$35)^2+$B$35*(1-BW2)*(BV2-$K$36)^2)). Cell AG2  computes the 
exceed utility associated with the user defined d’ and c’ in cells A39 and 
B39, respectively. The expected utility can be maximized by optimizing 
cell B39 in the Solver Add-in. The prior probabilities can be entered in cell 
A35. The posterior probabilities in cells G35:H36 are computed through 
Bayes’ theorem, e.g. =(A35*E35)/(A35*E35+B35*F35).  
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