A Romberg Integral Spreadsheet Calculator

Kim Gaik Tay
Universiti Tun Hussein Onn Malaysia, tay@uthm.edu.my
Tau Han Cheong
Universiti Teknologi Mara, chgtauhan@gmail.com
Nur Kamil Adli Mohd Nawar
Universtiti Tun Hussein Onn Malaysia, nurkamiladli@gmail.com
Sie Long Kek
Universiti Tun Hussein Onn Malaysia, slkek@uthm.edu.my
Rosmila Abdul-Kahar
Universiti Tun Hussein Onn Malaysia, rosmila@uthm.edu.my

Follow this and additional works at: http://epublications.bond.edu.au/ejsie

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Recommended Citation

Tay, Kim Gaik; Cheong, Tau Han; Mohd Nawar, Nur Kamil Adli; Kek, Sie Long; and Abdul-Kahar, Rosmila (2015) A Romberg Integral Spreadsheet Calculator, Spreadsheets in Education (eJSiE): Vol. 8: Iss. 2, Article 2.
Available at: http://epublications.bond.edu.au/ejsie/vol8/iss2/2

A Romberg Integral Spreadsheet Calculator

Abstract

Motivated by the work of Richardson's extrapolation spreadsheet calculator up to level 4 to approximate definite differentiation, we have developed a Romberg integral spreadsheet calculator to approximate definite integral. The main feature of this version of spreadsheet calculator is a friendly graphical user interface developed to capture the needed information to solve the integral by Romberg method. Users simply need to enter the variable in the integral, function to be integrated, lower and upper limits of the integral, select the desired accuracy of computation, select the exact function if it exists and lastly click the Compute button which is associated with VBA programming written to compute Romberg integral table. The full solution of the Romberg integral table up to any level can be obtained quickly and easily using this method. The attached spreadsheet calculator together with this paper helps educators to prepare their marking scheme easily and assist students in checking their answers instead of reconstructing the answers from scratch. A summative evaluation of this Romberg Spreadsheet Calculator has been conducted by involving 36 students as sample. The data was collected using questionnaire. The findings showed that the majority of the students agreed that the Romberg Spreadsheet Calculator provides a structured learning environment that allows learners to be guided through a step-by-step solution.

Keywords

Excel spreadsheet, Romberg integral

Distribution License

©(®)®

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Cover Page Footnote

This project is financially supported by UTHM MDR research grant scheme vote 1109.

A Romberg Integral Spreadsheet Calculator

Abstract

Motivated by the work of Richardson's extrapolation spreadsheet calculator up to level 4 to approximate definite differentiation, we have developed a Romberg integral spreadsheet calculator to approximate definite integral. The main feature of this version of spreadsheet calculator is a friendly graphical user interface developed to capture the needed information to solve the integral by Romberg method. Users simply need to enter the variable in the integral, function to be integrated, lower and upper limits of the integral, select the desired accuracy of computation, select the exact function if it exists and lastly click the Compute button which is associated with VBA programming written to compute Romberg integral table. The full solution of the Romberg integral table up to any level can be obtained quickly and easily using this method. The attached spreadsheet calculator together with this paper helps educators to prepare their marking scheme easily and assist students in checking their answers instead of reconstructing the answers from scratch. A summative evaluation of this Romberg Spreadsheet Calculator has been conducted by involving 36 students as sample. The data was collected using questionnaire. The findings showed that the majority of the students agreed that the Romberg Spreadsheet Calculator provides a structured learning environment that allows learners to be guided through a step-by-step solution.

Keywords: Excel spreadsheet, Romberg integral

1 Introduction

In Calculus, integration is referred to as anti-differentiation. For example the differentiation of $\sin (x)$ gives $\cos (x)$ and the integration of $\cos (x)$ gives $\sin (x)$. Integration has wide applications, for example it is useful for finding the area between the curve of a function on the x-axis or y-axis, area bounded by several curves, volume of solid, mass of solid etc.

Numerical integration is needed when analytical integration may be impossible or unfeasible. It is also required when integrating a tabulated data instead of a known function. There are several numerical integration methods such as trapezoidal, Simpson's $1 / 3$ rule and Simpson's $3 / 8$ rule. To obtain the desired accuracy of the numerical integration, we may use higher order formula, a smaller step size h or Romberg integral. Approximating the definite integral numerically by using the Romberg integration is straightforward, but its repetitive calculations are quite tedious. Hence, there is a need to develop a spreadsheet calculator to help students and educators who need its full solutions.

A series of papers working on solving numerical methods in classrooms and examination situations using spreadsheet which focuses on systems of nonlinear and linear equations, approximation of interpolation, computing of eigenvalues, ordinary differential equations (ODEs) by the Fourth-order Runge-Kutta (RK4) and the Laplace equation can be seen in [1-11]. Recently, a Richardson's extrapolation spreadsheet calculator up to level 4 was developed in [12] to approximate definite differentiation numerically. However, literature works dealing with spreadsheet calculator for approximating the definite integral using the Romberg integral in Excel
has not been explored as yet. Thus, in this paper, we developed a Romberg integral spreadsheet calculator to approximate the definite integral.

This paper is organized as follows. Section 2 provides the background of Romberg integration for definite integral. A numerical example is given in Section 3. The spreadsheet calculator, its numerical solution and Excel commands are discussed in Section 4. Finally, a conclusion is given in the final part of this paper, Section 5.

2 Romberg Integration

There are two ways to improve the accuracy of the numerical integration namely decreasing the step size h or using a higher order formula that employs more points. A third approach, based on Romberg integration which uses two integrals, gives a more accurate approximation

For a given a function of $f(x)$, approximations I, to the definite integral $\int_{a}^{b} f(x) d x$ can be approximated using the Romberg Integration as follows: [13]
$I(J, K)=\frac{4^{K} I(J, K-1)-I(J-1, K-1)}{4^{K}-1}+O\left(h^{2 K+2}\right), \quad J=1,2, \ldots, \quad K=1,2, \ldots$
$I(J, 0)=\frac{h}{2}\left[f_{0}+f_{n}+2 \sum_{i=1}^{n-1} f_{i}\right], J=0,1,2, \ldots$

$$
\text { (2) } h_{0}=h, h_{1}=\frac{h}{2}, h_{2}=\frac{h}{4}, \ldots, h_{J}=\frac{h}{2^{j}}
$$

The iteration process (1) is repeated until $|I(J, J)-I(J, J-1)|<\varepsilon$ or $|I(J, J)-I(J-1, J-1)|<\varepsilon$ for a specified value of ε. The value of $I(J, J)$ then approximates $\int_{a}^{b} f(x) d x$ at this level.

Romberg Integration table for K from 1 to 4 is shown in Table 1.

Table 1: Romberg Integration Table for level K values from 1 to 4

J	h_{J}	K						
		0	1	2	$I(J, 3)$	$I(J, 4)$		
		$I(J, 0)$	$I(J, 1)$					
0	h_{0}	$I(0,0)$						
1	h_{1}	$I(1,0)$	$I(1,1)$					
2	h_{2}	$I(2,0)$	$I(2,1)$	$I(2,2)$				
3	h_{3}	$I(3,0)$	$I(3,1)$	$I(3,2)$	$I(3,3)$			
4	h_{4}	$I(4,0)$	$I(4,1)$	$I(4,2)$	$I(4,3)$	$I(4,4)$		

3 Numerical Example

In this section, a numerical example to be solved by Romberg integration is provided.

Question

The velocity of a falling parachutist is given by $v(t)=\frac{g m}{c}\left(1-e^{-\frac{c}{m} t}\right)$, where $g=9.80665 \mathrm{~m} / \mathrm{s}^{2}, m=80 \mathrm{~kg}$ and $c=10 \mathrm{~kg} / \mathrm{s}$. At time $t=0 \mathrm{~s}$, the initial velocity is 0 m / s at the origin. By using Romberg integration,
(a) find the distance travelled by the parachutist from time $t=0 \mathrm{~s}$ to $t=10 \mathrm{~s}$.
(b) find the absolute error if the exact solution is $d(t)=\int v(t)=\frac{g m}{c}\left[t+\frac{m}{c} e^{-\frac{c}{m} t}\right]$,

Solution

(a) The distance travelled by the parachutist from time $t=0 \mathrm{~s}$ to $t=10 \mathrm{~s}$ is given by $d(t)=\int_{0}^{T} \frac{g m}{c}\left(1-e^{-\frac{c}{m} t}\right) d t$.
Given $\quad g=9.80665 \mathrm{~m} / \mathrm{s}^{2}, m=80 \mathrm{~kg}$ and $c=10 \mathrm{~kg} / \mathrm{s}$, then $d(t)=\int_{0}^{10} 9.80665(8)\left(1-e^{-\frac{t}{8}}\right) d t$.
The distance travelled can be approximated by Romberg integration as shown on top of Figure 7 in Section 4.
b) The exact distance is given by $d(t)=\int v(t)=\frac{g m}{c}\left[t+\frac{m}{c} e^{-\frac{c}{m} t}\right]$. By substituting the numerical values of m, c and g and evaluate t from 0 to 10 into the given distance function, we get the exact distance $d(t)=\int_{0}^{10} v(t) d t=\frac{g m}{c}\left[t+\frac{m}{c} e^{-\frac{c}{m} t}\right]_{0}^{10}=9.80665(8)\left[10+8 e^{-\frac{5}{4}}-8\right]=336.7241450$ which is the same as calculated at the bottom of Figure 7 in Section 4. The absolute error is also shown at the bottom of Figure 7 in Section 4.

4 Romberg Integration Spreadsheet Calculator

Figure 1 illustrates the initial layout of the Romberg integral spreadsheet calculator. The spreadsheet calculator is capable of computing the Romberg integral table up to any level.

Figure 1: Initial layout of Romberg Integral Spreadsheet Calculator

Once the Input button is clicked, it will open a parameter input form as given in Figure 2 to capture all required information to solve the integral by Romberg method. Users are only required to enter the variable in the integral, the integrand and the lower and upper limits of the integral, select desired accuracy of one decimal place, two decimal places, up to the calculation of nine decimal places from the drop down menu, provide exact function if it exists and lastly click the Compute button which is associated with VBA programming written to compute the Romberg integral table. If Compute button is clicked before any variable is input, an Error message box will be prompted on top of parameter input form as displayed in Figure 2.

Figure 2: User input form and an error message box if no variable is provided

Once the Compute button is clicked after the variable is provided, but the integrand is not given, then another error message box will pop out as seen in Figure 3.

Figure 3: Error message box if no integrand is provided

Once Compute button is clicked after the variable and integrand are provided, but the lower limit of the integration is not given, the third error message will be displayed as shown in Figure 4.

Figure 4: Error message box if the lower limit is not provided

Once Compute button is clicked after the variable, integrand and the lower limit are provided, but the upper limit of the integration is not given, the fourth error message will be displayed as seen in Figure 5.

Figure 5: Error message box if the upper limit is not provided
Once all required parameters are entered as seen in Figure 6 and Compute button is clicked, the answer of the integral is displayed on top of the input form as seen in Figure 7, whereas the exact solution and its absolute error are displayed at the bottom of the exact equation as seen in Figure 7. On the other hand, the Romberg integral table will be displayed as seen in Figure 8. The Clear button will clear all data inputted, while the close button will close the input form.

Figure 6: All required parameters

Figure 7: The solution

Figure 8: The solution of Romberg integral table
If the variable typed does not tally with the variable in the integrand, then the following error message will be displayed as shown in Figure 9.

Figure 9: Error message if variable typed does not tally with integrand

5. The Evaluation of Romberg Spreadsheet Calculator

We have tested this Romberg spreadsheet calculator on 36 Master of Electrical Engineering students who took the Advanced Engineering Mathematics (AEM) course in Universiti Tun Hussein Onn Malaysia in semester 1 2014/2015. One of the sub topics in the AEM course is Romberg Integral which is taught in week 6. Initially, the students have been taught on how to solve Romberg integral traditionally using calculators. After that, they were taught how to solve Romberg integral in standard Excel spreadsheet environment. Lastly, the Romberg Spreadsheet Calculator was given to them and they were exposed on its usage. Students tested the same integral for the third time using this method. The Romberg Spreadsheet Calculator and questionnaires were later given to them. They were asked to test the spreadsheet calculator for other integrals. The questionnaires were collected in week 14.

There are four aspects of evaluation being conducted for this spreadsheet calculator, namely content, design \& presentation, teaching strategy design, and technical aspect using a questionnaire that consisted of 24 items. A 5-point Likert scale was used to rate the response of the participants towards the RK4 Spreadsheet Calculator. The participants were asked to answer each question by rating each item using the
following scale: $1=$ strongly disagree; $2=$ disagree; $3=$ neutral; $4=$ agree and $5=$ strongly agree.

The findings of the Romberg Spreadsheet Calculator are shown in Table 2. Findings indicated that the majority of the students agreed that the Romberg Spreadsheet Calculator is useful in terms of content ($\mathrm{M}=4.37, \mathrm{SD}=0.42$), design \& presentation ($\mathrm{M}=4.35, \mathrm{SD}=0.44$), teaching strategy design ($\mathrm{M}=4.31, \mathrm{SD}=0.54$) and technical aspect ($\mathrm{M}=4.30, \mathrm{SD}=0.54$). According to the results shown in mode, the majority of the participants agreed that this Romberg Spreadsheet Calculator is good when it comes to teaching strategy design, followed by content and technical aspect. This can be proven by the statement given by the participants during the interview. Some of the participants mentioned that "It is easier than Excel" and "I like it in terms of speed to get the result and the lack of complexity of it" and "It is clear, easy to use and facilitate my further understanding of Numerical Analysis concept". However, they are neutral with regards to the design and presentation of the Romberg Spreadsheet Calculator as stated by one of the participants "Add in audio for instruction to make it more user friendly."

Table 2: Descriptive Analyses of Romberg Spreadsheet Calculator Evaluation

Descriptive Statistics	Content	 Presentation	Teaching Strategy Design	Technical Aspect
Mean	4.37	4.35	4.31	4.30
Std. Deviation	0.42	0.44	0.54	0.54
Mode	4.67	4.33	4.67	4.50

6 Conclusion

A Romberg integral spreadsheet calculator with graphical user interface input form was developed to approximate the definite integral using VBA programming. The spreadsheet calculator is very user friendly. It provides an alternative tool for approximating the definite integral via Romberg integration. It can be used as a marking scheme for educators and students who need its full solutions. Last but not least, it effectively reduces the calculation time and increases the students' learning interest.

References

[1] Tay, K. G., Kek, S. L. \& Abdul-Kahar, R. (2009). Solving Non-Linear Systems by Newton's Method Using Spreadsheet Excel. Proceedings of the 3 ${ }^{\text {rd }}$ International Conference on Science and Mathematics Education (CoSMED 2009). Pg. 452-456.
[2] Kek, S. L. \& Tay, K. G. (2008). Solver for System of Linear Equations. Proceeding of the National Symposium on Application of Science Mathematics 2008 (SKASM 2008). Pg 605-615. BatuPahat: Penerbit UTHM.
[3] Kek, S.L. \& Tay, K. G. (2009). Design of Spreadsheet Solver for Polynomial Interpolation. National Seminar on Science and Technology2009 (PKPST 2009): Pg. 69-73.
[4] Tay, K. G., Kek, S. L. \& Abdul-Kahar, R. (2010). Lagrange Interpolating Polynomial Solver Using Spreadsheet Excel. Proceedings of the National Symposium on Application of Science Mathematics 2010 (SKASM 2010) and $18^{\text {th }}$ Mathematical Science National Symposium (SKSM 2010). Pg. 331-337.
[5] Tay, K. G., Kek, S. L \& Abdul-Kahar, R. (2014). A Bivariate Approximation Spreadsheet Calculator by Lagrange Interpolation. Spreadsheets in Education (eJSiE): 7(1): Pg. 1-8. ISSN 1448-6156.
[6] Tay, K. G. \& Kek, S. L. (2008). Approximating the Dominant Eigenvalue Using Power Method through Spreadsheet Excel. Proceeding of the National Symposium on Application of Science Mathematics 2008 (SKASM 2008). Pg 599-604. Batu Pahat: Penerbit UTHM.
[7] Tay, K. G. \& Kek, S. L. (2009). Approximating the Smallest Eigenvalue Using Inverse Method through Spreadsheet Excel. Proceeding of the $17^{\text {th }}$ National Symposium on Mathematical Science (SKSM 2009). Pg. 653-658.
[8] Tay, K. G. \& Kek, S. L. (2009). Fourth Order Runge-Kutta Method Using Spreadsheet Excel. Proceedings of the $4^{\text {th }}$ International Conference on Research and Education in Mathematics (ICREM4).Pg. 666-672.
[9] Tay, K. G., Kek, S. L. \& Abdul-Kahar, R. (2012). A Spreadsheet Solution of a System of Ordinary Differential Equations Using the Fourth-Order RungeKutta Method. Spreadsheets in Education (eJSiE): 5(2): Pg. 1-10. ISSN 1448-6156.
[10] Tay, K. G, Cheong, T.H, Lee, M. F., Kek, S. L \& Abdul-Kahar, R. (2015). A fourth-order Runge-Kutta (RK4) Spreadsheet Calculator For Solving A System of Two First-Order Ordinary Differential Equations Using Visual Basic (VBA) Programming. Spreadsheets in Education (eJSiE): 8(1): Pg. 1-9.
[11] Tay, K. G., Kek, S. L. \& Abdul-Kahar, R. (2009). Solutions of Laplace's Equations Using Spreadsheet Excel. National Seminar on Science and Technology 2009 (PKPST 2009). Pg. 40-45.
[12] Tay, K.G., Kek, S. L., Abdul-Kahar, R., Azlan, M. A. \& Lee, M. F. (2013) A Richardson's Extrapolation Spreadsheet Calculator for Numerical Differentiation," Spreadsheets in Education (eJSiE): 6(2): 1-5. ISSN 1448-6156.
[13] Rao, S.S., (2002). Applied Numerical Methods For Engineers and Scientists. Upper Saddle River, New Jersey: Prentice Hall.

