
Spreadsheets in Education (eJSiE)

Volume 8 | Issue 1 Article 4

2-7-2015

Sprego Programming
Maria Csernoch
University of Debrecen, Faculty of Informatics, csernoch.maria@inf.unideb.hu

Piroska Biró
University of Debrecen, Faculty of Informatics, biro.piroska@inf.unideb.hu

Follow this and additional works at: http://epublications.bond.edu.au/ejsie

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works
4.0 License.

This Regular Article is brought to you by the Bond Business School at ePublications@bond. It has been accepted for inclusion in Spreadsheets in
Education (eJSiE) by an authorized administrator of ePublications@bond. For more information, please contact Bond University's Repository
Coordinator.

Recommended Citation
Csernoch, Maria and Biró, Piroska (2015) Sprego Programming, Spreadsheets in Education (eJSiE): Vol. 8: Iss. 1, Article 4.
Available at: http://epublications.bond.edu.au/ejsie/vol8/iss1/4

http://epublications.bond.edu.au/ejsie?utm_source=epublications.bond.edu.au%2Fejsie%2Fvol8%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epublications.bond.edu.au/ejsie/vol8?utm_source=epublications.bond.edu.au%2Fejsie%2Fvol8%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epublications.bond.edu.au/ejsie/vol8/iss1?utm_source=epublications.bond.edu.au%2Fejsie%2Fvol8%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epublications.bond.edu.au/ejsie/vol8/iss1/4?utm_source=epublications.bond.edu.au%2Fejsie%2Fvol8%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epublications.bond.edu.au/ejsie?utm_source=epublications.bond.edu.au%2Fejsie%2Fvol8%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://epublications.bond.edu.au/ejsie/vol8/iss1/4?utm_source=epublications.bond.edu.au%2Fejsie%2Fvol8%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epublications.bond.edu.au
mailto:acass@bond.edu.au
mailto:acass@bond.edu.au

Sprego Programming

Abstract
Spreadsheet management is a border-land between office applications and programming, however, it is rather
communicated that spreadsheet is nothing more than an easily handled fun piece. Consequently, the
complexity of spreadsheet handling, the unprepared end-users, their problem solving abilities and approaches
do not match. To overcome these problems we have developed and introduced Sprego (Spreadsheet Lego).
Sprego is a simplified functional programming language in spreadsheet environment, and such as can be used
both as introductory language and the language of end-user programmers. The essence of Sprego is that we
use as few and simple functions as possible and based on these functions build multilevel formulas. With this
approach, similar to high level programming, we are able solve advanced problems, developing algorithmic
skills, computational thinking. The advantage of Sprego is the simplicity of the language, when the emphasis is
not on the coding but on the problem. Beyond that spreadsheets would provide real life problems with
authentic data and tables which students are more interested in than the artificial environment and semi-
authentic problems of high level programming languages.

Keywords
functional language, computational thinking, deep approach metacognitive problem solving, Sprego

Distribution License

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0
License.

Cover Page Footnote
The publication was supported by the TÁMOP-4.2.2.C-11/1/KONV-2012-0001 project. The project has
been supported by the European Union, co-financed by the European Social Fund and partly by OTKA
(K-105262).

This regular article is available in Spreadsheets in Education (eJSiE): http://epublications.bond.edu.au/ejsie/vol8/iss1/4

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://epublications.bond.edu.au/ejsie/vol8/iss1/4?utm_source=epublications.bond.edu.au%2Fejsie%2Fvol8%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages

Sprego programming

Abstract

Spreadsheet management lies between office applications and programming, however, it is
rather communicated that spreadsheeting is nothing more than an easily-handled piece of fun.
Consequently, the complexity of spreadsheet handling, the unprepared end-users, their
problem solving abilities and approaches do not match. To overcome these problems we have
developed and introduced Sprego (Spreadsheet Lego). Sprego is a simplified functional
programming language in the spreadsheet environment, and such as can be used both as
introductory language and the language of end-user programmers. The essence of Sprego is
that we use as few and as simple functions as possible. Based on these functions, we build
multilevel formulas. With this approach, similar to high level programming, we are able to
solve advanced problems, developing algorithmic skills, computational thinking. The
advantage of Sprego is the simplicity of the language, when the emphasis is not on the coding
but on the problem. Beyond that, spreadsheets would provide real life problems with authentic
data and tables which students are more interested in than the artificial environment and semi-
authentic problems of high level programming languages.

1

Csernoch and Biró: Sprego Programming

Published by ePublications@bond, 2014

1. Introduction

With the widespread use of computers, we are faced with an increasing number of
end-users of birotical (computer-related office tools) software [5], [6], [41], [51], [56],
[64], [69], [79]. We have introduced the French based expression “birotical” to clearly
distinguish office applications from other computer applications. Applying this
expression, there is no need for further explanation as to which kind of application is
meant. Birotical software and documents cover mainly text and spreadsheet
management and the resulting documents of these activities.

However, with the high number of untrained and ill-trained end-users, an increase in
the number of error-prone documents is reported, due to the misuse of birotical
software. In the last decade, not only rumours of this undesirable and very
unfortunate situation have been circulating, but researchers have shown that the
problem does indeed exist [4], [5], [32], [33], [34], [64], [66], [67], [68], [69], [75], [77],
[78], [79] and is deeply rooted in the end-users’ lack of computational thinking [33],
[9], [85]. Their ignorance prevents them evaluating their problem solving skills, their
sequences of computer related activities, and so the consequences of these activities
[50].

Apart from a very few authors [4], [5], [25], [26], [27], [36], [76], research mainly
focuses on spreadsheet documents, and the consequences of spreadsheet errors.
However, we have to note here that the main reason that spreadsheets receive more
attention than other birotical documents is because of the financial consequences.
While improperly handled text-based documents mainly result in isolated cases of
misunderstanding, miscomprehension, and misinterpretation, spreadsheets play
fundamental roles in the financial world.

1.1. Sources of misinterpretation

The question, in general, is what has led us to this situation, and what would be the
solutions to reduce the number of errors in these documents. This is a fundamental
question for education. It has been realized that despite the attempts to introduce
formal Computer Sciences/Informatics education, and rearrange classical school
subjects by considering digital competency in primary and secondary education,
student level of computational thinking has not met our expectations [7], [8], [11],
[12], [34], [35]. According to the most extreme opinions, birotical software is to blame
[44], [45]; however, this is not justified. Programs themselves are harmless, they work
on algorithms; the problem arises when teaching does not focus on the algorithm-
driven feature of programs. Teachers are responsible for giving proper instructions
which would lead to the development of the students’ digital literacy, algorithmic
skills, computational thinking [40], [21], [49], [85].

Teacher education, however, has to deal with a triad of circumstances: the human-
computer interaction, the novelty of this school subject, as well as the
commercialized world that has developed around it. The basis of the problems arises
from the communication between humans and “dumb” computers. To reach a high
level of communication between humans and computers we have to develop
computational thinking of humans, and to achieve this formal education is needed.
However, for formal education, teachers are needed, and for teachers, teacher-

2

Spreadsheets in Education (eJSiE), Vol. 8, Iss. 1 [2014], Art. 4

http://epublications.bond.edu.au/ejsie/vol8/iss1/4

education is needed. At this point the loop is closed, and
chicken and the egg problem: who teaches the teachers if there are no teachers? The
lack of proper teacher education led us to a situation in which teachers were looking
for help and for solutions. The software companies were ready to
commercial software. Their emphasis is on user
teachers and end-users with ever newer features, without any scientifically prove
relevance.

These circumstances lead end
(Graphical User Interface), the superiority o
TAEW-based methods (Trial
many error-prone documents.

The students do not see the algorithms behind computer problem solving, and they
accept computer tools, both hardware and software, unconditionally. Testing
university students of I
Application Skills, [7]–[12]
which is well represented in their remarks.

Figure 1: Student answers

In the self-evaluation session of the same project (TAaAS), we asked the students to
list 15 spreadsheet functions which
survey resulted in 99 most impo
presented in Figure 2. Finding the reasons for this incredibly high number of
functions mentioned by the students,
Hungary. What would be your guess?
one-hundred and seventy
These sources are rather user
requirements of coursebooks

Figure 2: Student thinks that all the functions of spreadsheets are important

We can conclude that surface approach methods should not have this overwhelming
power. However, methods can be developed which would change, first of all the
teachers’, and then the end
so that ultimately, students would achieve well
and algorithmic skills. We have no other task but to abandon TAEW
solving methods, and replace them with deep
theoretical background (Section
(Computer Algorithmic and Debugging)

education is needed. At this point the loop is closed, and we are faced with the
chicken and the egg problem: who teaches the teachers if there are no teachers? The
lack of proper teacher education led us to a situation in which teachers were looking
for help and for solutions. The software companies were ready to answer with their

software. Their emphasis is on user-friendly interfaces, bombarding both
users with ever newer features, without any scientifically prove

These circumstances lead end-users to bricolage [4], [5], the unplanned usage of GUI
(Graphical User Interface), the superiority of surface approach problem solving

based methods (Trial-and-Error Wizard-based) [33], [9], and consequently, to
prone documents.

do not see the algorithms behind computer problem solving, and they
accept computer tools, both hardware and software, unconditionally. Testing

students of Informatics (TAaAS project, Testing Algorithmic and
[12], [31]–[35]) we found several indicators to this approach

presented in their remarks.

Student answers to “What happens when you double click on a document file

evaluation session of the same project (TAaAS), we asked the students to
ist 15 spreadsheet functions which they think the most important. All together the

in 99 most important functions, and the most extreme answer is
. Finding the reasons for this incredibly high number of

mentioned by the students, we checked the coursebooks available in
What would be your guess? In the Hungarian spreadsheet coursebooks

hundred and seventy-two functions are mentioned. The result explains a lot
These sources are rather user guides, repeating the helps, and do not match the
requirements of coursebooks; actually, they are false teaching materials.

All of them are important!
(this explains their existence)

(word by word: they exist by no chance)

Student thinks that all the functions of spreadsheets are important (the
(left) and the translation (right)

We can conclude that surface approach methods should not have this overwhelming
However, methods can be developed which would change, first of all the

teachers’, and then the end-users’ attitude towards computers, and birotical software,
ltimately, students would achieve well-developed computational thinking

and algorithmic skills. We have no other task but to abandon TAEW-
solving methods, and replace them with deep-approach metacognitive methods. The

Section 3), the details and the characteristics of
(Computer Algorithmic and Debugging) methods are presented in the

we are faced with the
chicken and the egg problem: who teaches the teachers if there are no teachers? The
lack of proper teacher education led us to a situation in which teachers were looking

answer with their
friendly interfaces, bombarding both

users with ever newer features, without any scientifically proven

, the unplanned usage of GUI
f surface approach problem solving

and consequently, to

do not see the algorithms behind computer problem solving, and they
accept computer tools, both hardware and software, unconditionally. Testing

Testing Algorithmic and
we found several indicators to this approach,

What happens when you double click on a document file?”

evaluation session of the same project (TAaAS), we asked the students to
All together the

rtant functions, and the most extreme answer is
. Finding the reasons for this incredibly high number of

we checked the coursebooks available in
sheet coursebooks

The result explains a lot.
guides, repeating the helps, and do not match the

false teaching materials.

l of them are important!
(this explains their existence)

(word by word: they exist by no chance)

the original message

We can conclude that surface approach methods should not have this overwhelming
However, methods can be developed which would change, first of all the

users’ attitude towards computers, and birotical software,
developed computational thinking

-based problem
approach metacognitive methods. The

of CAAD-based
are presented in the consecutive

3

Csernoch and Biró: Sprego Programming

Published by ePublications@bond, 2014

section (Section4), and further examples in Sprego at the end of the article
(Section 8).

1.2. The structure of the paper

In the following two subsections of Introduction we provide a fast overview of the
method entitled Sprego. In Chapter 2 the main research questions and hypotheses
are presented. Chapter 3 provides the detailed theoretical background of this novel
method. In Chapter 4 the details of Sprego is provided with examples and with
additional examples in Chapter 8. It is your choice in which order you read these
sections. You can keep their sequential order, but you also have the option starting
with Chapter 4 and 8, focusing on programming in Sprego, and turn back later on to
the theoretical background.

1.3. Sprego

Within the frame of spreadsheets we invented a method entitled Sprego
programming; Sprego for short. It is an abbreviation of Spreadsheet Lego.

The main idea of Sprego is that we handle spreadsheets as an introductory
programming language for novice and end-user programmers. In this sense, we use
the operators of the spreadsheet language and as few and as simple general-purpose
functions as possible, and based on these simple tools we built multilevel functions
and formulas. With our deep-approach problem solving method (Section 3.2) [22],
[38], [55], [7], [10], [33] we are able to solve computer related problems with an
approach which is well-accepted in other programming paradigms: detecting the
problem, building algorithms, coding, debugging.

In a spreadsheet environment the main activity is data retrieval. In Sprego we can
take advantage both of the environment and the functional language; the data
retrieval will be carried out with methods adapted from other programming
languages.

In spite of the theoretical background which has been available for several years, a
complete system with a methodology for teaching has not emerged.

Within the frame of the TAaAS project, we have been testing Sprego in the last four
years. In the testing process, we run three tests: a pre-test, before starting Sprego, a
post-test, after covering Sprego, and a delayed post-test, one year later. The change in
the students’ results prove the effectiveness of the method. Without any details, the
figures are the following: 5–10%, 60–70%, and 40–50%, in the pre-, post-, and delayed
post-tests, respectively [9], [28], [33]. In the opinion of the pre-service teachers of
Informatics, Sprego has the following characteristics [37]):

• Creating multilevel formulas helps to develop algorithmic skills.

• Using Sprego requires thinking.

• Sprego helps developing logical thinking.

• The characteristics of the simple, general purpose functions are easier to see
[than those of the problem specific functions].

4

Spreadsheets in Education (eJSiE), Vol. 8, Iss. 1 [2014], Art. 4

http://epublications.bond.edu.au/ejsie/vol8/iss1/4

• Sprego gives spreadsheet knowledge for later [post-school] usage.

• The more conscious usage of arguments.

• The general purpose functions can be used in wider context.

• Instead of HLOOKUP() and VLOOKUP(), the use of the INDEX(MATCH())
multilevel function is much more interesting, since it requires more thinking.

1.4. The samples used in the paper

We would like to emphasize that the tables and samples presented in this paper do
not follow the order of their introduction to classes. They rather serve to demonstrate
the joint power which the simple general purpose functions with multilevel
functions together carry within themselves.

However, the sample tables clearly demonstrate one further advantage of Sprego
programming. If we use authentic tables with which students can do real data
retrieval, they will not find the program useless and superficial – in LOGO, [61] and
in high level programming languages, respectively –, as is typical when students are
not really motivated and enthusiastic about programming.

2. Hypotheses

H1. Sprego fulfils the requirements of the deep-approach metacognitive methods;
consequently, it can be used for teaching programming and end-user programming.

H2. Array formulas support Sprego programming, and serve problem solving better
than the built-in functions.

H3. Sprego eliminates the commercialized side-effects of spreadsheet languages.

H4. Sprego supports compatibility between different spreadsheet programs and
different versions.

H5. Sprego is less error-prone than traditional spreadsheet tools and approaches.

3. Theoretical background

The first suggestions for using spreadsheet as an introductory programming
language date back to the late 80s (in [62]), and early 90s [62], and have been raised
several times [63], [83], [71], but a complete system with a teaching methodology for
proper use has not yet been created.

3.1. Should we teach students to program?

There are opinions which state that not everyone should learn programming.
However, Soloway, along with his fellow educators [74], and later on Ben-Ari [6]
stated that programming and algorithmic skills – to use the recently developed
expression – computational thinking [85], should be taught and can be taught to
everyone, only the environment should be matched to the requirements of the
students. It is not necessarily the demanding high level programming languages
which would be the only solution, and especially not as a first language - there are

5

Csernoch and Biró: Sprego Programming

Published by ePublications@bond, 2014

several other possibilities available [72], [63], [65], [83], [71], [80], [6]. We share this
latter idea, and based on it, we have developed our method to support Sprego.
Coding is not something superficial, but is a method which is necessary in order to
communicate effectively with computers; beyond this, there is a wide range of
sources to develop the skills which are required to carry out this communication.

3.2. Deep and surface metacognitive problem solving approaches

The different metacognitive problem solving methods were categorized by Case et al
[17], [18], [19], [20] as deep and surface approach methods. The deep surface
approach is further specialized as a conceptual-based approach, while two further
groups of the surface approach methods are defined: algorithmic and information
based. We have realized, however, that these groups of problem solving methods do
not cover recently-emerged computer related activities. Considering all these, two
further groups, one deep and one surface approach, were added to the already well
accepted system.

The computer connected deep approach category, known as Computer Algorithmic
and Debugging (CAAD) based [33], covers those sequences of activities which are
required to carry out algorithm-driven programming tasks, from the analysis of the
problem to the close of the process by checking the correctness of the activities
carried out [33].

To the original surface approach categories the Trial-and-Error Wizard based
methods are added [33]. They are those computer-specialized activities which gained
have strength with the spread of the GUI, and are highly supported by software
companies. This approach claims that to carry out computer related activities there is
no need for algorithms, since the GUI support is enough to produce the output. The
problem with this method is that its focus is not on real problem solving but on
reaching an end result. The two phenomena and the methods based on them are not
identical.

We have to note here that in 1992 Booth [13] found four different approaches to
program writing; two deep and two surface approach groups, but her results have
remained isolated. Comparing our system, which is the expansion of those of Case et
al, to Booth’s findings, we can draw the following conclusions (C&G, B, Cs&B refer
to publications by Case and Gunstone, Booth, Csernoch and Biró, respectively):

• conceptual (C&G) → structural (B)

• CAAD (Cs&B) → operational (B)

• algorithmic (C&G) → expedient (B)

• information (C&G) → constructional (B)

• TAEW (Cs&B) → GUI navigation

Our purpose with Sprego is to introduce a deep approach metacognitive method,
with which the students’ algorithmic skills can be effectively and efficiently
developed.

6

Spreadsheets in Education (eJSiE), Vol. 8, Iss. 1 [2014], Art. 4

http://epublications.bond.edu.au/ejsie/vol8/iss1/4

3.3. Minimalist theory

We have to keep in mind that in our concept spreadsheet languages would serve as
an introductory language for beginners, and a suitable language for those who do
not want to be professional programmers, but well-skilled end-users. Considering
this point of view, spreadsheet languages, and approaches such as Sprego should be
taught with a minimalist approach [16], [63], [54], and consequently, the methods
developed for teaching high level programming languages for novices can be applied
to this language.

The process of programming is exactly the same as we are familiar with from high
level programming languages (See Sections 4.3, 4.4, and 8). The advantages of
spreadsheet languages in general, compared to high level programming languages,
are that the coding is less demanding, there is no need for explicit declarations, and
the phenomena of function is familiar from studies in Mathematics. A further
simplification of the language, compared to high level programming languages, is
that in the spreadsheet environment we do not write, but just call already existing
functions. One further step would be, as suggested by several researchers, to write
functions [2], [65], but this is not our intention at present.

However, we have seen from the reported error-prone spreadsheet documents that
all these advantages do not guarantee an algorithmic approach to spreadsheet
problems [3], [52], [53]. We have found in our previous research that all of these
advantages would be diminished with the TAEW-based approach to spreadsheet [9],
[28], [29], [30], [31], [32], [33]; the endless new features, the high number of functions
(Sections 4.3.2 and 4.3.3), the demanding and large number of arguments
(Section 4.4), the unplanned wondering and rummaging around in the GUI.

Sprego focuses, on one hand, on the further simplification of the language, by using
as few functions as possible (for the list of Sprego functions see Table 1); on the other
hand, it focuses on the generalization of the language, by using general purpose
functions. With these tools, multilevel functions can be built and a wider range of
problems can be solved than with the problem-specific functions of spreadsheet
programs (for details see Sections 4.3.2, 4.3.3, and 4.4). Frequent use and coding with
a few simple general functions would result in users remembering them and
working with them in an error-free way.

Since the coding in spreadsheets is not demanding, the typing of the codes is highly
recommended. We have to keep in mind the fact that the coding also should follow
the minimalist approach, and as is detailed in Section 4.2, it should start with the
more internal functions, when the formula is the simplest, and should be developed
step by step in an outwards direction [15], [24]. A further simplification of coding in
Sprego is the usage of array formulas (for details see Sections 4.3, 4.4, 8). These tools
would prepare students for handling arrays, creating and debugging source codes in
high level programming languages.

As in other programming languages, at the beginning the minimalist approach
should be accompanied with full guidance, especially in case of non-programmers,
which would help the students to develop their algorithmic skills [14], [54], [57], [60],
[70].

7

Csernoch and Biró: Sprego Programming

Published by ePublications@bond, 2014

We can conclude that with the minimalist approach supporting Sprego, the focus is
not on the language, but on the problems, which is one of the key issues in teaching
programming [13]. This allows students to focus on the problem, since the language
is not a barrier; it only plays a marginal role.

3.4. Spreadsheet language

Spreadsheets are visual, first-order functional languages [65], and considering the
number of users, they are the most popular programming systems in use today [1].
As has been proved, functional languages would serve effectively as first languages
[13], being more reliable than imperative languages, using the familiar phenomenon
of the function, letting the user focus more on the problem than on the coding, and
consequently, producing fewer errors [1], [13].

However, the high number of spreadsheet documents containing errors does not
seem to be in accordance with the high expectations of the more traditional
functional languages. As has already been mentioned in Sections 1.1 and 3.3, and
proved in our previously published works, this is mainly due to the TAEW-based
problem solving methods, which are highly favoured and supported by the GUI.
However, we cannot neglect the fact that the number of end-users makes the
relevance of spreadsheet among functional languages even greater [1]. Previous
attempts to improve spreadsheet languages have mainly focused on its
approximation to traditional programming languages.

Sprego focuses on the already available tools of spreadsheet languages in harmony
with the features of traditional functional languages.

• Spreadsheet programs perform automatic recalculation: whenever the
contents of a cell have been edited, all cells that are directly or transitively
dependent on that cell are recalculated [71].

• Spreadsheet programs distinguish between several types of data, such as
numbers, text strings, logical values (Booleans), and arrays. However, this
distinction is made dynamically [71].

• Functional languages have a very small syntax and a logically well-defined
semantics [13].

• Functional languages are more problem-oriented than conventional languages
[43].

• Functional languages have a simple mathematical basis, the lambda calculus,
and because of the lack of side-effects, program correctness proofs are easier
[43].

• The intuitive understanding of functions that the students bring with them
from their school mathematics studies, should be an advantage when studying
a functional programming language which exploits this before they study the
imperative languages [13]. Based on this theoretical background, we
understand function in a semantic sense, as a mapping rather than any sort of
syntax (“code”) for the function [42].

8

Spreadsheets in Education (eJSiE), Vol. 8, Iss. 1 [2014], Art. 4

http://epublications.bond.edu.au/ejsie/vol8/iss1/4

3.5. Levels of mastery

Beyond the already mentioned disadvantages of the TAEW-based methods, one of
the main weaknesses of the method is that it does not follow the recommended order
of levels of mastery [21]. The major characteristic of the TAEW-based methods is that
the first level, the understanding the concept, is skipped over, and the second level,
the usage is taken as the starting level. This is what Gove [44], [45] mixed up when he
was discussing teaching Word and Excel, instead of text and spreadsheet
management. The consequences of leaving out the first level of mastery are aimless
clicking and error-prone documents. Consequently, there is no chance to reach the
third level of mastery, where students would be able to consider a concept from
multiple viewpoints and/or justify the selection of a particular approach to solve a
problem [21].

4. Results – Sprego

Considering the theoretical background we had to find out whether the tools to build
Sprego and its teaching methodology were available in the spreadsheet languages.
Three tools were required, and regardless of the programs and their versions, they
are all available.

Spreadsheet tools for Sprego:

• Simple, general-purpose language blocks: using as few and as simple
functions as possible.

• The ability to define new structures: creating multilevel functions and
formulas.

• Array formulas: eliminating the copying of formulas.

By applying these tools we are able to solve spreadsheet problems of differing
complexity, without the desire for ever newer amendments to the spreadsheet
programs, the endless searching for problem-specific and program-specific built-in
functions, and endless rummaging around in the helps and supports. Consequently,
in Sprego the emphasis is not on the language and on the GUI, but on the problems,
which would serve at least two purposes: providing an introductory language for
professional programmers [13] and a language for end-user programmers [62], [63],
[83].

4.1. Sprego functions

For beginners, fewer than ten simple, general-purpose functions would serve as a
starting kit to write programs in spreadsheets (Table 1, Sprego1). As students
advance in spreadsheet programming the need for a few more functions would arise.
However, we have to keep in mind that general-purpose functions should be
introduced, not those which are invented for solving special problems. Considering
these principles, moving from the functions introduced from the very beginning to
those introduced as we advance towards professionalism, we can group them into
three sets. The dozen functions of Sprego1 and Sprego2 are compulsory for everyone,
even for novices. Sprego3 is optional, and additional simple functions would be

9

Csernoch and Biró: Sprego Programming

Published by ePublications@bond, 2014

added to this group, depending on the development and interest of the students [9],
[29], [37].

In addition to the already mentioned advantages of using and building our own
formulas, there is one more which should be mentioned here; there is a great
probability that new problems will arise for which there is no built-in function
(Task 5 and Task 9).

Sprego programming focuses heavily on the usage of variables. The method is
borrowed from the traditional programming languages to make the
programs/documents less error-prone. In spreadsheet management there are two
options for variables: we can use the default names of the cells and arrays with the
spreadsheet references or we can give custom names.

Table 1: The introduction of spreadsheet functions for novice end-user programmers, starting with
group Sprego1, adding the functions of Sprego2 later on, while Sprego3 is optional

Sprego1 Sprego2 Sprego3

SUM() MATCH() SMALL()

AVERAGE() INDEX() LARGE()

MIN() ISERROR() AND()

MAX() OR()

LEFT() NOT()

RIGHT() ROW()

LEN() COLUMN()

SEARCH() OFFSET()

IF() SUBSTITUTE()

 TRANSPOSE()

 ROUND()

 RAND()

 INT()

To match the requirements of other programming languages the IF() function has to
be included in group Sprego1. However, we have to note here that the official
descriptions of the IF() function have to be reworded, because end-users, especially
novices, do not understand them. The reason is simple: they just do not have the
vocabulary and the background knowledge to understand condition, test, logical test
[48]. The following list is a selection of descriptions of IF() function from spreadsheet
wizards and helps which untrained end-users and students do not understand.

• “logical test: The condition that you want to check” [23],

• “test is or refers to a logical value or expression that returns a logical value
(TRUE or FALSE)” [46],

• “Test is any value or expression that can be TRUE or FALSE” [47].

10

Spreadsheets in Education (eJSiE), Vol. 8, Iss. 1 [2014], Art. 4

http://epublications.bond.edu.au/ejsie/vol8/iss1/4

Table 2: The reworded description of the IF() function

argument the role of the argument

1. yes/no question

2. the output of the function if the answer to the question is yes

3. the output of the function if the answer to the question is no

IF(yes/no_question,output_if_the_answer_is_yes, output_if_the_answer_is_no)

4.2. Creating multilevel formulas

The other tool for solving problems in this minimalist spreadsheet environment is the
ability to create multilevel functions. Depending on the age group to which Sprego
programming is introduced,

• the phenomenon of function and multilevel function would be familiar, and
with Sprego word problem solving based on authentic data would be learnt,

• Sprego programming can be used to introduce the phenomenon,

• it is an environment enabling us to practise how values would be transferred
from the internal function to the external function, and to understand the
relation between the domain and range of the functions in this hyponym and
hypernym relationship.

In this approach to spreadsheet management, students understand that functions in a
formula can be embedded into each other. The output of the innermost function is
the argument of the function around it; its output value is the argument of the next
function around it, and so on, until we reach the outermost function, whose output is
the output of the whole multilevel formula. The functions hold each other just like
the popular matryoshka dolls do (Figure 3).

Figure 3: The structure of multilevel functions is similar to that of the matryoshka dolls [87]

The realization of the multilevel functions should follow the evaluation order. This
means that first the innermost functions should be constructed and evaluated. If this
is done correctly, we can expand the formula and the results appear in the same
array (Table 14 and Table 15). Here we create the function outside to the first one,
using its output value as an argument of the outside function.

4.3. Array formulas

There are several possible tools in spreadsheet management which support deep-
approach metacognitive problem solving. In the following, array formulas (AF) are
introduced, one of the possible solutions. Array formulas are a long-existing feature

11

Csernoch and Biró: Sprego Programming

Published by ePublications@bond, 2014

of spreadsheets, but somehow they have never
array handling without the complexity know
[81], [82], [84], [30], [71], [80]

In general, we distinguish between two different kinds of array formulas and their
combinations:

• the output by default is an array,

• the output by default is one value, but the default non
substituted by an array(s),

• the combination of the types above, when both arguments and output values
are non-default arrays.

There is one further group of array formulas which are worth mentioning:
conditional array formulas. This group of formulas would fit into any of the three
groups listed above; however, its significance from several different points of view
gives it a special status. The great advantage of conditional array formulas is that
they are able to substitute built
program-dependent and version
effective use of spreadsheet progr

Figure 4: Table extracted from the

4.3.1. Multiple-result array formulas

Array output as default

There are functions whose output by default is an array
of the most commonly used functions in this group is the pair of the
(Formula 3) function and the
index arguments of the function is set to 0

To close and evaluate an array formula not a simple Enter should be used but the
Ctrl + Shift + Enter combination in Windows (Excel, Calc), and Cmd
MacOS. The resulting formula is compass

Task 1: Create a cross-reference table of the names of the states

{=INDEX(A2:A51,COLUMN

of spreadsheets, but somehow they have never reached the status they deserve:
array handling without the complexity known in high level programming languages

[80], [86].

In general, we distinguish between two different kinds of array formulas and their

the output by default is an array,

the output by default is one value, but the default non-array argument(s) are
substituted by an array(s),

the combination of the types above, when both arguments and output values
default arrays.

one further group of array formulas which are worth mentioning:
conditional array formulas. This group of formulas would fit into any of the three
groups listed above; however, its significance from several different points of view

s. The great advantage of conditional array formulas is that
they are able to substitute built-in problem-specific functions, which are highly

dependent and version-dependent, and which are one of the blocks to an
effective use of spreadsheet programs [9], [10], [28], [29], [30], [31], [32]

Table extracted from the List of states and territories of the United States

result array formulas

There are functions whose output by default is an array – a vector or a matrix. Two
of the most commonly used functions in this group is the pair of the

function and the INDEX() function with a vector output – when one of the
index arguments of the function is set to 0 (Formulas 1 or 2).

To close and evaluate an array formula not a simple Enter should be used but the
Enter combination in Windows (Excel, Calc), and Cmd

MacOS. The resulting formula is compassed around with curly braces.

reference table of the names of the states (Figure 4).

COLUMN()-1,0))}

reached the status they deserve:
n in high level programming languages

In general, we distinguish between two different kinds of array formulas and their

array argument(s) are

the combination of the types above, when both arguments and output values

one further group of array formulas which are worth mentioning:
conditional array formulas. This group of formulas would fit into any of the three
groups listed above; however, its significance from several different points of view

s. The great advantage of conditional array formulas is that
specific functions, which are highly

dependent, and which are one of the blocks to an
[32], [33], [37].

List of states and territories of the United States webpage [88]

a vector or a matrix. Two
of the most commonly used functions in this group is the pair of the TRANSPOSE()

when one of the

To close and evaluate an array formula not a simple Enter should be used but the
Enter combination in Windows (Excel, Calc), and Cmd + Enter in

around with curly braces.

(1)

12

Spreadsheets in Education (eJSiE), Vol. 8, Iss. 1 [2014], Art. 4

http://epublications.bond.edu.au/ejsie/vol8/iss1/4

{=INDEX(R[1]C[-1]:R[50]

{=TRANSPOSE(A2:A51)}

As the name of this group of formulas suggests, the output is an array. To display all
the results of the formula the output array has to be defined. The method with which
arrays can be defined is one of the advantages of spreadsheet interfaces; there is
nothing else to do but select the suitable range on the worksheet. If the array needed
is too big for the screen we can make further use of the advantages of the GUI; we
can hide rows and columns (for example
we can switch between the two types of reference to the one which is more
convenient – for selecting the array the R1C1, while for creating formulas it is the A1
type which is more convenient.

For novice and end-user programmers it is a great advant
no need for the definition and declaration of the variables and the arrays in the code.

Figure 5: The cross reference table of the states displayed in the R1C1 and the A1 reference types

Array output as non-default

The non-default array output supersedes the copying of formulas, which is an error
prone technique [65], [64]
remarkable, since one of the ma
rooted in the copying of formulas.

The non-default multiple-
one of whose default argument(s) is overruled by an array. Since the result is an
array, to display all the output values, the array has to be defined and selected.

The application of array formulas instead of error
advantages:

• There is one formula inst

• There is no need for re

• The formula is secured, since none but the first occasion of the formula can be
modified, which is in the first cell of the array.

Relying on all of these advantages, building multilevel formulas from the inside
outwards is extremely simple. Onc

[50]C[-1],COLUMN()-1,0)}

51)}

the name of this group of formulas suggests, the output is an array. To display all
the results of the formula the output array has to be defined. The method with which
arrays can be defined is one of the advantages of spreadsheet interfaces; there is

hing else to do but select the suitable range on the worksheet. If the array needed
is too big for the screen we can make further use of the advantages of the GUI; we
can hide rows and columns (for examples see Figure 4, Figure 6, and
we can switch between the two types of reference to the one which is more

for selecting the array the R1C1, while for creating formulas it is the A1
type which is more convenient.

user programmers it is a great advantage of the GUI that there is
no need for the definition and declaration of the variables and the arrays in the code.

The cross reference table of the states displayed in the R1C1 and the A1 reference types

default

default array output supersedes the copying of formulas, which is an error
[64]. This characteristic of the multiple-result array formulas is

remarkable, since one of the major sources of errors in spreadsheet document is
rooted in the copying of formulas.

-result array formulas are created from function(s), at least
one of whose default argument(s) is overruled by an array. Since the result is an

y, to display all the output values, the array has to be defined and selected.

The application of array formulas instead of error-prone copying has several

here is one formula instead of many.

here is no need for re-copying when the formula is changed.

formula is secured, since none but the first occasion of the formula can be
modified, which is in the first cell of the array.

Relying on all of these advantages, building multilevel formulas from the inside
outwards is extremely simple. Once we have the algorithm there is nothing else to do

(2)

(3)

the name of this group of formulas suggests, the output is an array. To display all
the results of the formula the output array has to be defined. The method with which
arrays can be defined is one of the advantages of spreadsheet interfaces; there is

hing else to do but select the suitable range on the worksheet. If the array needed
is too big for the screen we can make further use of the advantages of the GUI; we

and Figure 7), and
we can switch between the two types of reference to the one which is more

for selecting the array the R1C1, while for creating formulas it is the A1

age of the GUI that there is
no need for the definition and declaration of the variables and the arrays in the code.

The cross reference table of the states displayed in the R1C1 and the A1 reference types

default array output supersedes the copying of formulas, which is an error-
result array formulas is

jor sources of errors in spreadsheet document is

result array formulas are created from function(s), at least
one of whose default argument(s) is overruled by an array. Since the result is an

y, to display all the output values, the array has to be defined and selected.

prone copying has several

formula is secured, since none but the first occasion of the formula can be

Relying on all of these advantages, building multilevel formulas from the inside
e we have the algorithm there is nothing else to do

13

Csernoch and Biró: Sprego Programming

Published by ePublications@bond, 2014

but create the formula in the first cell of the array, and select the array for the
formula. From this point on, the modifications can be applied to the first occasion,
which is the first cell of the array, and then the whole array is filled in with the new
values.

In the following examples all the formulas are array formulas, either single or
multiple result array formulas. By solving the problems, we always start with the
most inside function, and this very same formula is extended and evaluated in each
step. The outputs of the consecutive formulas are presented in the evaluation tables
connected to each task.

Task 2: Remove the leading Space from the names of the states (Figure 4, Table 3).

The characteristics of Task 2:

• The names of the states have different lengths (D for differences).

• Each name is preceded by one Space (S for similarities).

• The new string is one character shorter than the original (S).

• The string which should be cut out from the original is on the right side (S).

The algorithm of Task 2:

• Deciding the length of the original string (Formula 4),

• Deciding the length of the shorter string (Formula 5)

• Cutting out the shorter string from the right side of the original string
(Formula 6).

In the following, to solve the given problems sequences of array formulas are created
by editing already existing formulas, starting with the first one. The first sequence of
formulas is presented in Formulas 4–6). For editing a formula we have to switch to
the formula editing bar. To do this we can use the F2 function key or the Control + U
key combination in Windows or MacOS , respectively, or a double click on the
formula bar.

The coding of Task 2:

{=LEN(A2:A51)} (4)

{=LEN(A2:A51)-1} (5)

{=RIGHT(A2:A51,LEN(A2:A51)-1)} (6)

14

Spreadsheets in Education (eJSiE), Vol. 8, Iss. 1 [2014], Art. 4

http://epublications.bond.edu.au/ejsie/vol8/iss1/4

Table 3: The output values of the formulas solving Task 2

States F4 F5 F6

 Alabama 8 7 Alabama

 Alaska 7 6 Alaska

 Maryland 9 8 Maryland

 Massachusetts[D] 17 16 Massachusetts[D]

 Oregon 7 6 Oregon

 Pennsylvania[E] 16 15 Pennsylvania[E]

 Vermont 8 7 Vermont

 Virginia[G] 12 11 Virginia[G]

 Washington 11 10 Washington

 West Virginia 14 13 West Virginia

 Wisconsin 10 9 Wisconsin

 Wyoming 8 7 Wyoming

Task 3: Remove the accidental [X] string from the end of the names of the states (Figure 4,
Table 4).

The characteristics of Task 3:

• Not all the strings have [X] (D).

• The names have different length (D).

• The [X] is on the right side of the name (S).

• The [X] string is three-character-long (S).

• The [X] string starts with a [character (S).

The algorithm of Task 3:

• Deciding the positon of [(Formula 7)

• Checking the presence or lack of [(Formula 8)

• Question for the presence or lack of [(Formula 9) (the true branch of the IF()
function is substituted with the empty string)

• If there is no [X] string then write out the Space-free string, which comes from
Formula 6 (Formula 10)

• If there is an [X] string then cut out the left side of the Space-free string, to the
left of the [character (Formula 11 or 12)

The coding of Task 3:

{=SEARCH("[",A2:A51)} (7)

{=ISERROR(SEARCH("[",A2:A51))} (8)

{=IF(ISERROR(SEARCH("[",A2:A51)),””)} (9)

15

Csernoch and Biró: Sprego Programming

Published by ePublications@bond, 2014

{=IF(ISERROR(SEARCH("[",

{=IF(ISERROR(SEARCH("[",
RIGHT(A2:A51,LEN(A2:
LEFT(RIGHT(A2:A51,LEN

{=IF(ISERROR(SEARCH("[",
RIGHT(A2:A51,LEN(A2:
LEFT(RIGHT(A2:A51,LEN

Table

States F7

 Alabama #VALUE

 Alaska #VALUE

 Maryland #VALUE

 Massachusetts[D]

 Oregon #VALUE

 Pennsylvania[E]

 Vermont #VALUE

 Virginia[G]

 Washington #VALUE

 West Virginia #VALUE

 Wisconsin #VALUE

 Wyoming #VALUE

4.3.2. Single-result array formulas

Single-result array formulas are those whose
formulas non-default array are used as arguments.

Figure

The sample table in Figure
I, and K), the number of the winners (columns D, F, H, and J), and the winning ball
numbers (columns L–P) of the lottery played in Hung
from the 45th week of 2004 (row 512) and the prizes from
869).

("[",A2:A51)),RIGHT(A2:A51,LEN(A2:A51)-1))}

("[",A2:A51)),
2:A51)-1),

LEN(A2:A51)-1),SEARCH("[",A2:A51)-2))}

("[",A2:A51)),
2:A51)-1),

LEN(A2:A51)-1),LEN(A2:A51)-4))}

Table 4: The output values of the formulas solving Task 3

F7 F8 F9 F10

VALUE! TRUE Alabama Alabama

VALUE! TRUE Alaska Alaska

VALUE! TRUE Maryland Maryland

15 FALSE FALSE FALSE Massachusetts

VALUE! TRUE Oregon Oregon

14 FALSE FALSE FALSE Pennsylvania

VALUE! TRUE Vermont Vermont

10 FALSE FALSE FALSE Virginia

VALUE! TRUE Washington Washington

VALUE! TRUE West Virginia West Virginia

VALUE! TRUE Wisconsin Wisconsin

VALUE! TRUE Wyoming Wyoming

result array formulas

result array formulas are those whose output is one value, but inside the
default array are used as arguments.

Figure 6: The sample table of the Hungarian lottery [89]

Figure 6 shows the dates of the draws, the prizes (columns E, G,
I, and K), the number of the winners (columns D, F, H, and J), and the winning ball

P) of the lottery played in Hungary. The dates are recorded
from the 45th week of 2004 (row 512) and the prizes from the 1st week of 1998 (row

 (10)

(11)

(12)

F11 or F12

Alabama

Alaska

Maryland

Massachusetts

Oregon

Pennsylvania

Vermont

Virginia

Washington

West Virginia

Wisconsin

Wyoming

output is one value, but inside the

shows the dates of the draws, the prizes (columns E, G,
I, and K), the number of the winners (columns D, F, H, and J), and the winning ball

ary. The dates are recorded
the 1st week of 1998 (row

16

Spreadsheets in Education (eJSiE), Vol. 8, Iss. 1 [2014], Art. 4

http://epublications.bond.edu.au/ejsie/vol8/iss1/4

Task 4: Find the total amount of the prizes of the match-5 winners (Figure 6).

To solve Task 4 we have to calculate the sum product of two vectors: Match 5 (No.)
and Match 5 (Ft), columns D and E, respectively.

However, this is a case in which you can avoid introducing a new built-in function.
This problem can be solved with a single-result array formula, and there is no need
for the built-in SUMPRODUCT() function.

The characteristics of Task 4:

• The number of the winners and prizes are stored in two vectors.

• The number of the winners and prizes are paired.

The algorithm of Task 4:

• Calculating the products of the numbers of the winners and the prizes. The
output is a vector. There is no need to display all the components of the vector;
consequently, we only display the first component of the vector, which
appears in the cell of the formula (Formula 13).

• Summing the components of the vector of the products (Formula 14).

We have to note here, however, that if we wish to check the correctness of the vector
(Formula 13) we always have the opportunity to create array value results on the
worksheet.

The coding of Task 4:

{=D2:D869*E2:E869} (13)

{=SUM(D2:D869*E2:E869)} (14)

The generalization of the problem is detailed in Task 12.

Task 5: Calculate the square sum of the differences of the number of the winners and the
average of the number of the winners for those who have 2 matches (Figure 6, Table 5).

The characteristics of Task 5:

• The number of the winners has to be compared to a calculated value, which in
this case is the average of the number of the winners.

• The output is a single value, the square sum of the differences.

The algorithm of Task 5:

• Calculating the average of the numbers of winners (Formula 15). The result is
a real number.

• Calculating the difference between the components of the vector and the
average (Formula 16). The result is a vector. The first component of the vector
is displayed in the cell of the formula.

• Calculating the square of the components of the vector from the previous step
(Formula 17). The first component of the vector is displayed.

17

Csernoch and Biró: Sprego Programming

Published by ePublications@bond, 2014

• Summing the components of the vector (Formula 18). The result is a real
number.

The coding of Task 5:

=AVERAGE (J2:J869) (15)

{=J2:J869-AVERAGE(J2:J869)} (16)

{=(J2:J869-AVERAGE(J2:J869))^2} (17)

{=SUM((J2:J869-AVERAGE(J2:J869))^2)}} (18)

Since the ultimate output of a single-result array formula is one value, there is no
need to display all the items of the array during the consecutive steps of building the
formula. In this case the one value or the first item of the array is displayed in the cell
of the formula (Table 5). One further advantage of not displaying all the items of the
arrays is that the size of the spreadsheet documents can be reduced.

Table 5: The output values of the formulas solving Task 5

Match 2 (No.) F15 F16 F17 F18

77 170 110 121,8 -32 951,8 1 085 821 624 1 780 096 622 741

Similar single-result formulas can be created with array formulas to solve other
problems. If we are aware of this technique, we can again realize that many of the
built-in functions of the spreadsheet programs are completely unnecessary (SUMSQ(),
SUMX2MY2(), SUMX2PY2(), SUMXMY2()).

4.3.3. Conditional array formulas
Conditional array formulas are the combinations of the methods previously detailed. The

main characteristic of these formulas is that there is a condition(s) nested in the

multilevel formula. Based on the selection of the condition, different output vectors

serve as the argument of the outside function.

Figure 7: The sample table of the countries of the Earth

18

Spreadsheets in Education (eJSiE), Vol. 8, Iss. 1 [2014], Art. 4

http://epublications.bond.edu.au/ejsie/vol8/iss1/4

Task 6: Give a continent in G2. Find the number of countries in the G2 continent (Figure 7,
Table 6).

The characteristics of Task 6:

• Countries which are in the G2 continent should be counted, and the counter
should be incremented when there is a matching country.

• Countries which are not in the G2 continent should be ignored.

This is a classical looping task with an IF structure inside the loop.

The algorithm of Task 6:

• We have to decide whether the continents of the countries match the given
continent or not. This can be carried out with one IF() function. The first
argument of the IF() function holds the question; however, when using an
array formula, not just one question, but many are included (Formula 19). The
number of the questions equals the number of the components of the vector,
and consequently the number of the output values.

• If the answer is yes to a question, a 1 should be stored (Formula 20).

• If the answer is no to a question, we ignore it, and in this case the default
FALSE value is stored (Formula 20).

• The result of the IF() function is a vector whose components are 1s or FALSEs
(Formula 20). Similarly to the previous tasks there is no need to display the
whole vector, the first component of the vector appears in the cell.

• Finally, we have to count the number of 1s in the output vector (Formula 21).
The result is a whole number.

The coding of Task 6:

{=B2:B236=G2} (19)

{=IF(B2:B236=G2,1)} (20)

{=SUM(IF(B2:B236=G2,1))} (21)

Table 6: The output values of the formulas solving Task 6 with all the possible continents G2

Country G2 F19 F20 F21

Afghanistan Africa FALSE FALSE 57

Afghanistan America FALSE FALSE 50

Afghanistan Asia TRUE 1 54

Afghanistan Europe FALSE FALSE 49

Afghanistan Oceania FALSE FALSE 25

It is worth adding a title to each task. For Task 6 a suitable title is constructed in
(Formula 22). Again, this is a classical novice programming task, but more
meaningful than the “Hello World!” task.

="The number of the countries in "&G2 (22)

19

Csernoch and Biró: Sprego Programming

Published by ePublications@bond, 2014

In Formula 22 a string and a variable are concatenated with the concatenating
operator. There is no need for the CONCATENATE() function; consequently, it is
redundant.

Task 7: Give a number in H2. Tell the population of those countries whose area is greater
than H2 (Figure 7).

Task 6 and Task 7 share the same characteristics and algorithm. There are only minor
differences:

• There is a question to both tasks, however the questions the tasks (compare
Formula 19 to Formula 23).

• While in Task 6 we collected and added 1s, in Task 7 we collect the
populations of the countries and add these values (compare Formula 20 to
Formula 24 and Formula 21 to Formula 25).

Apart from these two minor differences, nothing has changed, and most importantly,
the structure of the two solutions is the same.

The coding of Task 7:

{=D2:D236>H2} (23)

{=IF(D2:D236>H2,E2:E236)} (24)

{=SUM(IF(D2:D236>H2,E2:E236))} (25)

Table 7: The output values of the formulas solving Task 7 with two different values in H2

Country Area H2 F23 F24 F25

Afghanistan 647 500 600 TRUE 27 756 5 989 991

Afghanistan 647 500 700 000 FALSE FALSE 4 121 077

The title of Task 7 is presented in Formula 26).

="The population of countries whose area is greater than "&H2&" km²" (26)

Task 8: Give two numbers in H2 and I2. Find the average population of those countries
whose area is between the values in H2 and I2 (Figure 7, Table 8).

Again, the structure is the same as we have seen in the two previous tasks. The
differences are the following:

• The question is complex; we have to create it with an AND connection
(Formula 27 or 28).

• The output value is an average (Formula 29 or 30 and the extended
Formula 32 or 33).

• We have to be aware of the possibility that both cells could hold either the
smaller or the greater number (Formula 32 or 33 and Formula 34).

The algorithm of Task 8 contains the formation of the AND connection. There are two
options to create the AND connection:

20

Spreadsheets in Education (eJSiE), Vol. 8, Iss. 1 [2014], Art. 4

http://epublications.bond.edu.au/ejsie/vol8/iss1/4

• embedding IF() functions (Formula 27 or 32),

• multiplying the two sets within one IF() function (Formula 28 or 33).

The coding of Task 8:

{=IF(D2:D236>H2,IF(D2:D236<I2,E2:E236))} (27)

{=IF((D2:D236>H2)*(D2:D236<I2),E2:E236)} (28)

{=AVERAGE(IF(D2:D236>H2,IF(D2:D236<I2,E2:E236)))} (29)

{=AVERAGE(IF((D2:D236>H2)*(D2:D236<I2),E2:E236))} (30)

Table 8: The output values of the formulas solving Task 8 with different values in H2 and I2

Country Area H2 I2 F27 or F28 F29 or F30

Afghanistan 647 500 600 1 500 FALSE 1079.5

Afghanistan 647 500 500 000 700 000 27 756 29 990.6

The title text of Task 8 is in Formula 31.

="The average population of those countries whose area is between "&
H2&" and "&I2&" km²" (31)

For a further improvement of the solution we have to consider which cell holds the
smaller, and which the greater, number; consequently both Formula 29 and 30 can be
further modified. The simplest solution is that instead of the plain H2 and I2 variables
the smaller and the greater values will be used, respectively. Consequently, the same
is true for the title.

{=AVERAGE(IF(D2:D236>MIN(H2,I2),IF(D2:D236<MAX(H2,I2),E2:E236)))} (32)

{=AVERAGE(IF((D2:D236>MIN(H2,I2))*(D2:D236<MAX(H2,I2)),E2:E236))} (33)

The modified title text of Task 8 is in Formula 34.

="The average population of those countries whose area is between
"&MIN(H2,I2)&" and "&MAX(H2,I2)&" km²" (34)

We can also create OR and XOR connections with the built in IF() functions or with
operations of sets. The coding is carried out in a similar way to the AND connection.
We have to note here that in the conditional built-in functions only the AND
connection is included.

Task 9: Give a continent in G2. Find the capital city of the largest country in the G2
continent (Figure 7, Table 10).

The algorithm of Task 9:

• Separating the countries in G2 from the others (Formula 35). The output is a
vector with the areas of the G2 countries and FALSEs.

• Selecting the largest area of this vector (Formula 36). The output is a number
from the vector of the areas.

21

Csernoch and Biró: Sprego Programming

Published by ePublications@bond, 2014

• Finding the index of this component of the vector (Formula 37). The output is
an index, a whole number.

• Finding the capital city with the same index in the vector of the capital cities
(Formula 38).

Before providing the solution to Task 9, we have to draw attention to the fact that the
Sprego groups of functions (Table 1) include only the INDEX() and the MATCH()
matrix functions. This is intentional, since these two functions are general purpose
functions, while the other popular functions are troublesome, and are not worth
using. The comparison of the INDEX(MATCH()) multilevel functions and the
HLOOKUP(), VLOOKUP() are detailed in Table 9 [58].

Table 9: The comparison of the INDEX(MATCH()) and the HLOOKUP(), VLOOKUP() functions

INDEX(MATCH()) HLOOKUP(), VLOOKUP()

Search vector

search both in rows and columns
HLOOKUP() or VLOOKUP() searches only
in rows or columns, respectively

Result vector

can be anywhere in the table
below the search row (HLOOKUP())

right to the search column (VLOOKUP())

The orders of the values in the search vector

• ascending (default)

• descending

• no order

• ascending (default)

• descending (not available)

• no order

The orders of the values in the search vector

• one value (default)

• one vector

• one value (default)

• one vector (not available)

To solve Task 9 VLOOKUP() is ruled out, since the data is arranged in columns.
HLOOKUP() is ruled out because the output vector is left to the search vector,
consequently the only solution is the INDEX(MATCH()) multilevel function
(Formulas 37 and 38).

The coding of Task 9:

{=IF(B2:B236=G2,D2:D236)} (35)

{=MAX(IF(B2:B236=G2,D2:D236))} (36)

{=MATCH(MAX(IF(B2:B236=G2,D2:D236)),D2:D236,0)} (37)

{=INDEX(C2:C236,MATCH(MAX(IF(B2:B236=G2,D2:D236)),D2:D236,0))} (38)

22

Spreadsheets in Education (eJSiE), Vol. 8, Iss. 1 [2014], Art. 4

http://epublications.bond.edu.au/ejsie/vol8/iss1/4

Table 10: The output values of the formulas solving Task 9 with all the possible continents in G2

Country G2 F35 F36 F37 F38

Afghanistan Africa FALSE 2 505 810 198 Khartoum

Afghanistan America FALSE 9 976 140 37 Ottawa

Afghanistan Asia 647 500 17 075 200 176 Moscow

Afghanistan Europe FALSE 2 166 086 84 Nuuk

Afghanistan Oceania FALSE 7 686 850 12 Canberra

The title of Task 9 is in Formula 39.

="The capital city of the largest country in "&G2 (39)

As has been presented above, creating conditions with single-result array formulas
has many advantages:

• The structure is simple:

• there is a condition deep in the formula, coded with an IF() function(s),

• the output of the IF() function(s) is an array (Table 12, Step 3),

• which is the argument of a function outside the IF() function(s) (Table 12,
Step 4).

• We use simple general purpose Sprego functions.

• We handle variables.

• We can define AND, OR, and XOR connections.

• We can avoid the use of the troublesome built-in conditional functions:
COUNTIF(), COUNTIFS(), SUMIF(), SUMIFS(), AVERAGEIF(), AVERAGEIFS(),
COUNTBLANK(), which we refer to as *IF?() functions [59], [73]:

• *IF?() functions are not compatible; they vary from program to program,
and from version to version.

• *IF?() functions use different syntactic rules for the constants and the
variables, and for equality and inequality (compare Table 11 and
Table 13),

• *IF?() functions handle only the AND connection,

• In the *IF?() functions no embedded functions are allowed.

• The order of the arguments are different of functions with similar
purposes (compare the two solutions in Table 13).

• There is no need for the database functions [39], whose usage requires some
kind of data-management- knowledge, which novices do not have.

The examples have proved that problems similar to those presented to novices in
high level languages can be solved with Sprego functions. There is no need for the
problem-specific problem loaded built-in functions. We can work more effectively,
and more problems can be solved with the simple general purpose functions. Beyond

23

Csernoch and Biró: Sprego Programming

Published by ePublications@bond, 2014

the obvious advantages of the Sprego functions, most importantly, we have to notice
that students' algorithmic skills are developed by building the algorithms for the
given problems, and they carry out real data retrieval.

4.4. Debugging

There is one more tool which works effectively with Sprego functions and Sprego
programming; this is debugging. The importance of debugging in spreadsheet
languages is as great as in any other programming language; however, built-in
functions do not support debugging. They do not allow any insight into the
algorithms behind the functions. This drawback of the built-in functions is another
source of error-prone documents.

For debugging it is worth cropping the table to a reasonable size, for at least two
reasons. First of all, checking tens and hundreds of values is tiresome, boring, time-
consuming and makes it difficult to find the essence of the problem. The other
problem with long arrays is that the debugging window is small, not of a convenient
size, not re-sizeable, and data cannot be copied from it.

Table 11: The debugging of the COUNTIF() function solving Task 6

 =COUNTIF(B2:B8,G2)

1. COUNTIF(B2:B8,G2)

2. 2

When using the built-in IF() functions the steps of the evaluation are hidden from the
user (Table 11 and Table 13); there are no options for debugging and analyzing the
process of the evaluation of the formulas. The results of the IF() functions are
presented in one step, without any traces of the algorithms lying behind them.

Table 12: A comparison of the debugging of the SUM(IF()) and AVERAGE(IF()) array formulas

The number of countries in G2 continent
(Task 6).

The average population of those countries
whose area is smaller than H2 (Task 8).

 {=SUM(IF(B2:B8=G2,1))} {=AVERAGE(IF(D2:D8<H2,E2:E8))}

1. SUM(IF(B2:B8=G2,1)) AVERAGE(IF(D2:D8<H2,E2:E8))

2.
SUM(IF({"Asia","Europe","Africa

","Oceania","Europe","Africa",

"America”}="Africa",1))

AVERAGE(IF({647500,28748,

2381740,199,468,1246700,102}

<600,E2:E8))

3. SUM(IF({FALSE,FALSE,TRUE,FALSE,

FALSE,TRUE,FALSE},1))

AVERAGE(IF({FALSE,FALSE,FALSE,

TRUE,TRUE,FALSE,TRUE},E2:E8))

4. SUM({FALSE,FALSE,1,FALSE,FALSE,

1,FALSE})

AVERAGE({FALSE,FALSE,FALSE,69,

68,FALSE,12})

The other advantage of the conditional single-result array formulas is that their
structures constitute similar problems, so the steps of the evaluation process of this
kind of multilevel function are also similar (Table 12). One of the most important
steps is Step 3 in Table 12, which presents the output vector of the IF() function. This

24

Spreadsheets in Education (eJSiE), Vol. 8, Iss. 1 [2014], Art. 4

http://epublications.bond.edu.au/ejsie/vol8/iss1/4

vector serves as the argument of the outside function SUM() and AVERAGE() (Table 12,
Task 6 and Task 8, respectively).

Table 13: A comparison of the argument-list and the evaluation steps of the built-in functions
AVERAGEIF() and AVERAGEIFS()

 =AVERAGEIF(D2:D8,"<"&H2,E2:E8) =AVERAGEIFS(E2:E8,D2:D8,"<"&H2)

1. AVERAGEIF(D2:D8,"<"&H2,E2:E8) AVERAGEIFS(E2:E8,D2:D8,"<"&H2)

2. AVERAGEIF(D2:D8,"<"&600,

E2:E8)
AVERAGEIFS(E2:E8,D2:D8,"<"&600)

3. AVERAGEIF(D2:D8,"<600”,

E2:E8)

AVERAGEIFS(E2:E8,D2:D8,

"<"&600)

4. 49.66666667 49.66666667

5. Conclusions

Based on previously published results, the high expectations placed on spreadsheet
programming have been partially realized; spreadsheets are extremely popular. On
the other hand, we are faced with the side effects of this popularity, namely, the
unexpectedly high number of error-prone documents, causing serious financial
losses, for certain common applications.

We have proved that the lack of deep approach metacognitive problem solving
methods has led us to misuse spreadsheets. The most widely accepted methods for
solving spreadsheet problems is the TAEW-based surface approach method, which
lacks the skills required to solve computer related activities, i.e. to build algorithms.

Considering the advantages of the spreadsheet languages, we have invented a
programming method which would serve as an introductory language for
programmers and as the ultimate language for end-user programmers, which we
have named Sprego.

Sprego is a deep approach metacognitive problem solving environment, which has
borrowed and combined proven methods from high level programming languages.
The three milestones of Sprego are

• using as few and as simple general purpose functions as possible,

• building multilevel formulas,

• building array formulas.

With this approach the requirements of the deep approach metacognitive methods
are fulfilled (H1).

In addition to building the theoretical background we had to find the tools which are
needed to carry out our H1 hypothesis. Spreadsheets have a long-established, built-
in, but hardly used feature, the array formulas, which suit our requirements. As has
been presented in the previous sections, with array formulas we can solve problems
well known and well accepted in teaching programming to novices (H3). The few
simple general purpose functions for creating the formulas do not require the service

25

Csernoch and Biró: Sprego Programming

Published by ePublications@bond, 2014

of the GUI; it is much more convenient to build and expand the array formulas by
typing and coding than by wandering around in the GUI (H3). On the other hand,
the advantage of the GUI is obvious, and makes the programming more convenient
for novices, both when defining the variables and arrays, and when handling large
tables.

Based on the minimalist approach which supports Sprego, the differences between
the various spreadsheet programs and versions are eliminated. Using Sprego there is
no need to check the versions of the programs, and, furthermore, there is free
transportation of formulas between MS Excel and OpenOffice, LibreOffice Calc (H4).

Since Sprego mainly relies on simple general purpose functions, and these functions
are frequently used, the users get used to them in a short period of time and make
fewer errors than in the rarely used, problem-specific functions, with their strange
syntactic rules and lists of arguments. Beyond this, the usage of array formulas
eliminates the errors caused by copying formulas (H5).

Altogether, we have found a programming language and technique which could
serve as an introductory language and the language of those who do not want to be
professional programmers, i.e. end-user programmers. The method and the
technique support the development of computational thinking, an ability which is
very much required to solve computer related activities, and for effective human
computer interaction.

6. Bibliography

[1] Abraham, R. and Erwig, M. (2006) Type inference for spreadsheets. In
Proceedings of the 8th ACM SIGPLAN international conference on Principles
and practice of declarative programming,
http://web.engr.oregonstate.edu/~erwig/papers/TypeInf_PPDP06.pdf,
accessed 15-July-2014.

[2] Abraham, R. and Erwig, M. (2009) Mutation Operators for Spreadsheets. IEEE
Transactions on Software Engineering, 35(1), pp. 94–108.

[3] Angeli, C. (2013) Teaching spreadsheets: A TPCK perspective. In Kadijevich,
Dj. M., Angeli, C., and Schulte, C. (Eds.). 2013. Improving Computer Science
Education. New York and London: Routledge; pp. 132–145.

[4] Ben-Ari, M. (1999) Bricolage Forever! PPIG 1999. 11th Annual Workshop. 5–7
January 1999. Computer-Based Learning Unit, University of Leeds, UK.
http://www.ppig.org/papers/11th-benari.pdf, accessed 12-April-2014.

[5] Ben-Ari, M. and Yeshno, T. (2006) Conceptual models of software artifacts.
Interacting with Computers, Volume 18, Issue 6, December 2006, pp. 1336–1350.

[6] Ben-Ari, M. (2011) Non-myths about programming. Proceeding. ICER '10
Proceedings of the Sixth international workshop on Computing education
research. July 2011 | Vol. 54 | No. 7 | Communications of the ACM.

[7] Biró, P. and Csernoch, M. (2013) Deep and surface structural metacognitive
abilities of the first year students of Informatics. 4th IEEE International

26

Spreadsheets in Education (eJSiE), Vol. 8, Iss. 1 [2014], Art. 4

http://epublications.bond.edu.au/ejsie/vol8/iss1/4

Conference on Cognitive Info-communications, Proceedings, Budapest, pp.
521–526.

[8] Biró, P. and Csernoch, M. (2013) Programming skills of the first year students
of Informatics. XXIII. International Conference on Computer Science 2013,
EMT, in Hungarian, pp. 154–159.

[9] Biró, P. and Csernoch, M. (2014) An Algorithmic Approach to Spreadsheets,
in Hungarian, Interdiszciplináris pedagógia és a fenntartható fejlődés. Szerk.:
Buda András, Kiss Endre, DE Neveléstudományok Intézete, Debrecen, 310-
321, 2014. ISBN: 9789634737308

[10] Biró, P. and Csernoch, M. (2014) Deep and surface metacognitive processes in
non-traditional programming tasks. In: 5th IEEE International Conference on
Cognitive Infocommunications CogInfoCom 2014 Proceedings. IEEE Catalog
Number: CFP1426R-USB, Vietri sul Mare, Italy, 49-54, 2014. ISBN:
9781479972791.

[11] Biró P. and Csernoch M. (2014): Students’ Knowledge in Informatics from the
Students’ and the Teachers’ Perspectives. In Hungarian, Informatika szakos
hallgatok tudására vonatkozó tudásmerés tanári es hallgatói
megközelítésben. In: Minőség és versenyképes tudás: Neveléstudományi
konferencia 2013. Szerk.: Demény Piroska, Foris-Ferenczi Rita, BBTE,
Pedagógia es Alkalmazott Didaktika Intézet, Kolozsvár, 165-172, 2014. ISBN:
9789730163414.

[12] Biró, P., Csernoch, M., Abari, K., Máth, J. (2014) First year students'
algorithmic skills in tertiary Computer Science education. In: Proceedings of
the 9th International Conference on Knowledge, Information and Creativity
Support Systems, Limassol, Cyprus, November 6-8, 2014. Ed.: George
Angelos Papadopoulos, Cyprus Library, Cyprus, 301-306, 2014. ISBN:
9789963700844.

[13] Booth, S. (1992) Learning to program: A phenomenographic perspective.
Gothenburg, Sweden: Acta Universitatis Gothoburgensis.

[14] Bransford, J.D., Brown, A.L. and Cocking, R.R., Ed. (2004) How People Learn:
Brain, Mind, Experience, and School, Washington, D.C.: National Academy
Press.

[15] Calculation operators and precedence 2013. http://office.microsoft.com/en-
us/excel-help/calculation-operators-and-precedence-HP010342223.aspx,
accessed 12-April-2014.

[16] Carroll, J.M. (1990) The Nurnberg funnel: designing minimalist instruction for
practical computer skill, M.I.T. Press, Cambridge, Mass.

[17] Case, J.M. (2000) Students' perceptions of context, approaches to learning and
metacognitive development in a second year chemical engineering course.
Unpublished PhD, Monash University, Melbourne.

27

Csernoch and Biró: Sprego Programming

Published by ePublications@bond, 2014

[18] Case, J.M. and Gunstone, R.F. (2002) Metacognitive development as a shift in
approach to learning: an in-depth study. Studies in Higher Education, 27(4), pp.
459–470.

[19] Case, J.M. and Gunstone, R.F. (2003) Approaches to learning in a second year
chemical engineering course. International Journal of Science Education, 25(7),
pp. 801–819.

[20] Case, J.M., Gunstone, R.F. and Lewis, A. (2001) Students' metacognitive
development in an innovative second year chemical engineering course,
Research in Science Education, 31(3), pp. 331–355.

[21] Computer Science Curricula 2013. Curriculum Guidelines for Undergraduate
Degree Programs in Computer Science. December 20, 2013. The Joint Task
Force on Computing Curricula Association for Computing Machinery (ACM)
IEEE Computer Society. http://www.acm.org/education/CS2013-final-
report.pdf, accessed 12-April-2014.

[22] Cox, M. T. (2005) Metacognition in computation: A selected research review.
Artificial Intelligence, 169 (2), pp. 104–141.

[23] Create conditional formulas. http://office.microsoft.com/en-us/excel-
help/create-conditional-formulas-HP005251012.aspx, accessed 1-June-2014.

[24] Creating formulas 2011. Last modified 5 January, 2011.
http://wiki.openoffice.org/wiki/Documentation/OOo3_User_Guides/Calc_Gui
de/Creating_formulas#Operators_in_formulas, accessed 12-April-2014.

[25] Csernoch, M. (1997) Methodological Questions of Teaching Word Processing.
3rd International Conference on Applied Informatics: Eger-Noszvaj,
Hungary, August 25–28, 1997, pp. 375–382.

[26] Csernoch, M. (2009) Teaching word processing – the theory behind. Teaching
Mathematics and Computer Science, 2009/1. pp. 119–137.

[27] Csernoch, M. (2010) Teaching word processing – the practice. Teaching
Mathematics and Computer Science, 8/2 (2010). pp. 247–262.

[28] Csernoch, M. (2012) Introducing Conditional Array Formulas in Spreadsheet
Classes. EDULEARN12 Proceedings. Barcelona, Spain. 2-4 July, 2012.
Publisher: IATED, pp. 7270–7279.

[29] Csernoch, M. (2014) Programming with Spreadsheet Functions: Sprego. In
Hungarian, Programozás táblázatkezelő függvényekkel – Sprego. Műszaki
Könyvkiadó, Budapest.

[30] Csernoch, M. and Balogh, L. (2010) Algorithms and Spreadsheet-management
– Talent Support In Education In The Field Of Informatics. In Hungarian,
Algoritmusok és táblázatkezelés – Tehetséggondozás a közoktatásban az
informatika területén. Association of Hungarian Talent Support
Organizations, in Hungarian, Magyar Tehetségsegítő Szervezetek Szövetsége,
Budapest. ISSN: 2062-5936
http://tehetseg.hu/sites/default/files/16_kotet_net_color.pdf, accessed 15-July-
2014.

28

Spreadsheets in Education (eJSiE), Vol. 8, Iss. 1 [2014], Art. 4

http://epublications.bond.edu.au/ejsie/vol8/iss1/4

[31] Csernoch, M. and Biró, P. (2013) The investigation of the effectiveness of
Bottom-up techniques in the spreadsheet education of students of
Informatics. In Hungarian Button-up technikák hatékonyságának vizsgálata
informatika szakos hallgatók táblázatkezelés-oktatásában. (Eds): Kozma T.
and Perjés I., New Research in Education Studies. ELTE Eötvös Publisher,
Budapest. pp. 369–392.

[32] Csernoch, M. and Biró, P. (2013) Teachers’ Assessment and Students’ Self-
Assessment on the Students’ Spreadsheet Knowledge. EDULEARN13
Proceedings 5th International Conference on Education and New Learning
Technologies July 1st-3rd, 2013 — Barcelona, Spain. Edited by L. Gómez
Chova, A. López Martínez, I. Candel Torres. International Association of
Technology, Education and Development. IATED. ISBN: 978-84-616-3822-2.
pp. 949–956.

[33] Csernoch, M. and Biró, P. (2014) Spreadsheet misconceptions, spreadsheet
errors. Oktatáskutatás határon innen és túl. HERA Évkönyvek I., ed. Juhász
Erika, Kozma Tamás, Publisher: Belvedere Meridionale, Szeged, (2014), 370–
395.

[34] Csernoch, M. and Biró, P. (2014) Digital Competency and Digital Literacy is at
Stake, ECER 2014 Conference, 1–5. September, 2014, Porto, Portugal.
http://www.eera-ecer.de/ecer-
programmes/conference/19/contribution/31885/, accessed 12-October-2014.

[35] Csernoch, M. Biró, P., Máth, J. and Abari, K. (2014) What do I know in
Informatics? In Hungarian, Mit tudok informatikából?. IF2014 Conference,
27–29 August, 2014, Debrecen, Hungary. ISBN 978-963-473-712-4, pp. 217-230.

[36] Csernoch, M. and Bujdosó, Gy. (2009) Quality text editing. Journal of Computer
Science and Control Systems. 2/2 pp. 5–10.

[37] Csernoch, M., Simon, K., Brósch, É., and Kiss, É. (2014) I Have Learned
Spreadsheet Management With Sprego. In Hungarian, Spregoval tanultam
táblázatkezelést. In: Zsakó László (szerk.) INFO Éra 2014. Zamárdi,
Magyarország, 2014.11.20-2014.11.22. Budapest: NJSZT, pp. 1–20. ISBN 978-
963-12-0627-2.
http://people.inf.elte.hu/szlavi/InfoDidact14/Manuscripts/CsM_SK_BE_KE.pd
f, accessed 15-December-2014.

[38] Csíkos, Cs. (2006) Metacognition. The pedagogy of knowledge referring to
knowledge. In Hungarian, Metakogníció – A tudásra vonatkozó tudás
pedagógiája. Műszaki Könyvkiadó, Budapest,.

[39] Database functions 2010. http://office.microsoft.com/en-us/excel-help/excel-
functions-by-category-HP010342656.aspx#BMdatabase_functions, accessed
15-December-2013.

[40] Digital literacy in education. (2011) UNESCO Institute for Information
Technologies. http://unesdoc.unesco.org/images/0021/002144/214485e.pdf,
accessed 15-December-2013.

29

Csernoch and Biró: Sprego Programming

Published by ePublications@bond, 2014

[41] EuSpRig, European Spreadsheet Risks Interest Group.
http://www.eusprig.org/, accessed 15-December-2013.

[42] Elliott, C. M. (2007) Tangible Functional Programming. ICFP’07, October 1–3,
2007, Freiburg, Germany. http://conal.net/papers/Eros/eros.pdf, accessed 15-
June-2014.

[43] Glaser, H., Hankin, C. and Till, D. (1984) Principles of functional
programming. London: Prentice Hall.

[44] Gove, M. (2012) Michael Gove speech at the BETT Show 2012. Published 13
January 2012. https://www.gov.uk/government/speeches/michael-gove-
speech-at-the-bett-show-2012, accessed 15-June-2014.

[45] Gove, M. (2014) Michael Gove speaks about computing and education
technology. Published 22 January 2014.
https://www.gov.uk/government/speeches/michael-gove-speaks-about-
computing-and-education-technology, accessed 15-June-2014.

[46] IF.
https://wiki.openoffice.org/wiki/Documentation/How_Tos/Calc:_IF_function,
accessed 1-June-2014.

[47] IF. https://help.libreoffice.org/Calc/Logical_Functions#IF, accessed 1-June-
2014.

[48] IF function. http://office.microsoft.com/en-us/excel-help/if-function-
HP010342586.aspx?CTT=5&origin=HA010342655, accessed 1-June-2014.

[49] Informatics education: Europe cannot afford to miss the boat. Report of the
joint Informatics Europe & ACM Europe Working Group on Informatics
Education April 2013.
http://germany.acm.org/upload/pdf/ACMandIEreport.pdf, accessed 15-June-
2014.

[50] Kruger, J. and Dunning, D. (1999) Unskilled and Unaware of It: How
Difficulties in Recognizing One's Own Incompetence Lead to Inflated Self-
Assessments. Journal of Personality and Social Psychology 77 (6): pp. 1121–34.

[51] Jorgensen, H. (2013) How not to Excel in economics
http://www.lowyinterpreter.org/post/2013/04/18/How-not-to-Excel-in-
economics.aspx, accessed 15-June-2014.

[52] Kadijevich, Dj. (2009) Simple spreadsheet modeling by first-year business
undergraduate students: Difficulties in the transition from real world
problem statement to mathematical model. In M. Blomhřj and S. Carreira
(Eds.), Mathematical applications and modeling in the teaching and learning
of mathematics: Proceedings the 11th International Congress on mathematical
Education, Mexico, pp. 241–248.

[53] Kadijevich, Dj. (2013) Learning about spreadsheet. In Kadijevich, Dj. M.,
Angeli, C., and Schulte, C. (Eds.). (2013). Improving Computer Science
Education. New York and London: Routledge, pp. 19–33.

30

Spreadsheets in Education (eJSiE), Vol. 8, Iss. 1 [2014], Art. 4

http://epublications.bond.edu.au/ejsie/vol8/iss1/4

[54] Kirschner, P.A., Sweller, J., Clark, R.E. (2006) Why Minimal Guidance During
Instruction Does Not Work: An Analysis of the Failure of Constructivist
Discovery, Problem-Based, Experiential, and Inquiry-Based Teaching.
Educational Psychologist, 41(2), pp. 75–86.

[55] Koriat, A. and Levy-Sadot, R. (2000) Conscious and Unconscious
Metacognition: A Rejoinder. Consciousness and Cognition. (9). pp. 193–202.

[56] Kwak, J. (2013) The Importance of Excel.
http://baselinescenario.com/2013/02/09/the-importance-of-excel, accessed 15-
June-2014.

[57] Lister, R., Adams, E.S., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M.,
McCartney, R., Moström, J.E., Sanders, K., Seppälä, O., Simon, B. and
Thomas, L. (2004) A multi-national study of reading and tracing skills in
novice programmers., SIGCSE Bull., 2004, vol. 36 (4), pp. 119–150.

[58] Lookup and reference functions 2010. http://office.microsoft.com/en-us/excel-
help/excel-functions-by-category-
HP010342656.aspx#BMlookup_and_reference_functions, accessed 15-June-
2014.

[59] Math and trigonometry functions 2010. http://office.microsoft.com/en-
us/excel-help/excel-functions-by-category-
HP010342656.aspx#BMmath_and_trigonometry_functions, accessed 15-June-
2014.

[60] Mayer, R. E. (1981) The Psychology of How Novices Learn Computer
Programming. ACM Computing Surveys, vol. 13 (1), pp. 121–141.

[61] Message, R. (2013) Programming for humans: a new paradigm for domain-
specific languages. Technical Report. UCAM-CL-TR-843. ISSN 1476-2986

[62] Nardi, B.A. and Miller, J.R. (1990) The spreadsheet interface: A basis for end-
user programming. In D. Diaper et al (Eds.), Human-Computer Interaction:
INTERACT '90, Amsterdam, 1990.
http://www.miramontes.com/writing/spreadsheet-eup/, accessed 15-June-
2014.

[63] Nielsen, J. (1993) Usability Engineering. Academic Press, Boston, MA.

[64] Panko, R.R. (2008) What We Know About Spreadsheet Errors. Journal of End
User Computing's. Special issue on Scaling Up End User Development. (10)2,
pp. 15–21.

[65] Payton-Jones, S.L, Blackwell, A. and Burnett, M. (2003) A User-Centred
Approach to Functions in Excel. International Conference on Functional
Programming. (ICFP’03), Uppsala, 2003.

[66] Powell, S.G., Baker, K.R. and Lawson, B. (2008) A critical review of the
literature on spreadsheet errors. Decision Support Systems, 46(1), pp. 128–138.

[67] Powell, S.G., Baker, K.R. and Lawson, B. (2009) Errors in operational
spreadsheets. Journal of Organizational and End-User Computing, 1(3), pp. 4–36.

31

Csernoch and Biró: Sprego Programming

Published by ePublications@bond, 2014

[68] Powell, S.G., Baker, K.R. and Lawson, B. (2009) Impact of errors in
operational spreadsheets. Decision Support Systems, 47(2), pp. 126–132.

[69] JPMorgan (2013) Report of JPMorgan Chase & Co. Management Task Force.
Regarding 2012. CIO Losses.
http://files.shareholder.com/downloads/ONE/2272984969x0x628656/4cb574a0
-0bf5-4728-9582-625e4519b5ab/Task_Force_Report.pdf, accessed 15-June-2014.

[70] Scaffidi, Ch., Shaw, M. and Myers, B. (2005) Estimating the Numbers of End
Users and End User Programmers. In Proceedings of the 2005 IEEE
Symposium on Visual Languages and Human-Centric Computing, pp. 207–
214.

[71] Sestoft, P. (2011) Spreadsheet technology. Version 0.12 of 2012-01-31. IT
University Technical Report ITU-TR-2011-142. IT University of Copenhagen,
December 2011.

[72] Sine, R. (2014) Program or Perish: Why Everyone Should Learn to Code. Mar
13, 2014. http://www.coca-colacompany.com/stories/program-or-perish-why-
everyone-should-learn-to-code, accessed 15-June-2014.

[73] Statistical functions 2010. http://office.microsoft.com/en-us/excel-help/excel-
functions-by-category-HP010342656.aspx#BMstatistical_functions, accessed
15-June-2014.

[74] Soloway, E. (1993) Should we teach students to program? Communications of
the ACM. October 1993/Vol.36, No.10, pp. 21–24.

[75] Teo, T. and Tan, M. (1999) Spreadsheet Development and “What-if” Analysis:
Quantitative versus Qualitative Errors. Accounting Management and
Information Technologies, vol. 9, pp. 141–160.

[76] Tufte, E. R. (2004) The Cognitive Style of PowerPoint: Pitching Out Corrupts
Within. Graphics Press.

[77] Tort, F. (2010) Teaching Spreadsheets: Curriculum Design Principles. In S.
Thorne (Ed.), Proceedings of the EuSpRIG 2010 conference: Practical steps to
protect organisations from out-of-control spreadsheets, pp. 99–110.

[78] Tort, F., Blondel, F.M. and Bruillard É. (2008) Spreadsheet Knowledge and
Skills of French Secondary School Students. R.T. Mittermeir and M.M. Sysło
(Eds.): ISSEP 2008, LNCS 5090, 305–316, 2008. Springer-Verlag Berlin
Heidelberg.

[79] Van Deursen A. and Van Dijk J. (2012) CTRL ALT DELETE. Lost productivity
due to IT problems and inadequate computer skills in the workplace.
Enschede: Universiteit Twente.
http://www.ecdl.org/media/ControlAltDelete_LostProductivityLackofICTSkil
ls_UniverstiyofTwente1.pdf, accessed 15-June-2014.

[80] Wakeling, D. (2007) Spreadsheet functional programming. JFP 17(1), pp. 131–
143, 2007. Cambridge University Press.

32

Spreadsheets in Education (eJSiE), Vol. 8, Iss. 1 [2014], Art. 4

http://epublications.bond.edu.au/ejsie/vol8/iss1/4

[81] Walkenbach, J. and Wilcox, C. (2003) Putting basic array formulas to work.
http://office.microsoft.com/en-us/excel-help/putting-basic-array-formulas-to-
work-HA001087292. aspx?CTT=5&origin=HA001087290, accessed 15-June-
2014.

[82] Walkenbach, J. (2003) Excel2003 Formulas. John Wiley & Sons.

[83] Warren, P. (2004) Learning to program: spreadsheets, scripting and HCI, in
Proceedings of the Sixth Australasian Conference on Computing Education –
vol. 30, Darlinghurst, Australia, pp. 327–333.

[84] Wilcox, C. and Walkenbach, J. (2003) Introducing array formulas in Excel.
http://office.microsoft.com/en-us/excel-help/introducing-array-formulas-in-
excel-HA001087290. aspx, accessed 15-June-2014.

[85] Wing, J. M. (2006) Computational Thinking. March 2006/Vol. 49, No. 3
Communications of the ACM.

[86] Zsakó, L. (2006) Combinatorics – Competition – Excel. Teaching Mathematics
and Computer Science, 4/2 (2006), pp. 427–435.

7. Sources

[87] Matryoshka doll. http://esemenyhorizont.uw.hu/2009/letfilo/beta01.jpg,
accessed 1-June-2012.

[88] List of states and territories of the United States.
http://en.wikipedia.org/wiki/List_of_states_and_territories_of_the_United_St
ates, accessed 1-June-2014.

[89] The winning numbers of the Hungarian lottery.
http://www.szerencsejatek.hu/xls/otos.html, accessed 20-August-2014.

8. Additional examples in Sprego

To handle strings the table of the states of US would serve as the best task (Fig.).
Column G contains data which should be separated and deleted. The mi2 and km2
should be separated and stored in two columns, while the numbers preceding the
mi2 should be deleted.

Task 10: Separate the km2 value from its original string (Figure 4).

The characteristics of the km2 numbers in Task 10:

• these numbers are in a pair of parentheses,

• they are on the right of the string.

The output values of the consecutive steps are presented in Table 14. The input
values of the problem are in the first column (peach background), while the output
values are in the last column (green background). The values presented in the
columns are the input values of the consecutive formula, indicated in the first row of
the next column.

33

Csernoch and Biró: Sprego Programming

Published by ePublications@bond, 2014

The algorithm of Task 10:

• Finding the position of the opening parenthesis (Formula 40).

• Finding the number of characters which should be cut out from the right side
of the original string (Formula 41).

• Cutting out the number and the closing parenthesis from the right
(Formula 42).

• Cutting out the left of this new string, which is one character shorter than the
previous string (Formula 43).

• Converting the text to number (Formula 44).

Table 14: The output values of the formulas solving Task 10

Total area in mi2 (km2) F40 F41 F42 F43 F44

700452420000000000052,420 (135,767) 27 8 135,767) 135,767 135,767

7005665384000000000665,384 (1,723,337) 28 10 1,723,337) 1,723,337 1,723,337

700412406000000000012,406 (32,131) 27 7 32,131) 32,131 32,131

700410554000000000010,554 (27,335) 27 7 27,335) 27,335 27,335

700498379000000000098,379 (254,800) 27 8 254,800) 254,800 254,800

700446054000000000046,054 (119,279) 27 8 119,279) 119,279 119,279

70039616000000000009,616 (24,905) 26 7 24,905) 24,905 24,905

700442775000000000042,775 (110,787) 27 8 110,787) 110,787 110,787

700471298000000000071,298 (184,661) 27 8 184,661) 184,661 184,661

700424230000000000024,230 (62,755) 27 7 62,755) 62,755 62,755

700465496000000000065,496 (169,634) 27 8 169,634) 169,634 169,634

700497813000000000097,813 (253,335) 27 8 253,335) 253,335 253,335

The coding of Task 10:

{=SEARCH("(",G2:G51)} (40)

{=LEN(G2:G51)-SEARCH("(",G2:G51)} (41)

{=RIGHT(G2:G51,LEN(G2:G51)-SEARCH("(",G2:G51))} (42)

{=LEFT(RIGHT(G2:G51,LEN(G2:G51)-SEARCH("(",G2:G51)),
LEN(RIGHT(G2:G51,LEN(G2:G51)-SEARCH("(",G2:G51)))-1)} (43)

{=LEFT(RIGHT(G2:G51,LEN(G2:G51)-SEARCH("(",G2:G51)),
LEN(RIGHT(G2:G51,LEN(G2:G51)-SEARCH("(",G2:G51)))-1)*1} (44)

Task 11: Separate the mi2 value from its original string (Figure 4).

The characteristics of Task 11:

• Numbers of different lengths (D),

• numbers start at the same position: 20 (S),

• mi2 is left of km2 (S)

34

Spreadsheets in Education (eJSiE), Vol. 8, Iss. 1 [2014], Art. 4

http://epublications.bond.edu.au/ejsie/vol8/iss1/4

The algorithm of Task 11:

• Removing the km2 from the right of the string (Formula 46).

• Finding the position of the opening parenthesis (Formula 45).

• Deciding on the number of characters in the extended mi2 string, number of
characters with the leading 19 characters (Formula 47).

• Deciding on the number of characters in the mi2 string, number of characters
without the leading 19 characters (Formula 48).

• Cutting out mi2 characters from the right side of string (Formula 46) with
formula (Formula 49).

• Converting the text to number (Formula 50).

The output values of the formulas of Task 11 are listed in Table 15.

Table 15: The output values of the formulas solving Task 11

Total area in mi2 (km2) F45 F46 F47 F48 F49 F50

700452420000000000052,420 (135,767) 27 700452420000000000052,420 25 6 52,420 52,420

7005665384000000000665,384 (1,723,337) 28 7005665384000000000665,384 26 7 665,384 665,384

700412406000000000012,406 (32,131) 27 700412406000000000012,406 25 6 12,406 12,406

700410554000000000010,554 (27,335) 27 700410554000000000010,554 25 6 10,554 10,554

700498379000000000098,379 (254,800) 27 700498379000000000098,379 25 6 98,379 98,379

700446054000000000046,054 (119,279) 27 700446054000000000046,054 25 6 46,054 46,054

70039616000000000009,616 (24,905) 26 70039616000000000009,616 24 5 9,616 9,616

700442775000000000042,775 (110,787) 27 700442775000000000042,775 25 6 42,775 42,775

700471298000000000071,298 (184,661) 27 700471298000000000071,298 25 6 71,298 71,298

700424230000000000024,230 (62,755) 27 700424230000000000024,230 25 6 24,230 24,230

700465496000000000065,496 (169,634) 27 700465496000000000065,496 25 6 65,496 65,496

700497813000000000097,813 (253,335) 27 700497813000000000097,813 25 6 97,813 97,813

The coding of Task 11:

{=SEARCH("(",G2:G51)} (45)

{=LEFT(G2:G51,SEARCH("(",G2:G51)-2)} (46)

{LEN(LEFT(G2:G51,SEARCH("(",G2:G51)-2))} (47)

{LEN(LEFT(G2:G51,SEARCH("(",G2:G51)-2))-19)} (48)

{=RIGHT(LEFT(G2:G51,SEARCH("(",G2:G51)-2),
LEN(LEFT(G2:G51,SEARCH("(",G2:G51)-2))-19)} (49)

{=RIGHT(LEFT(G2:G51,SEARCH("(",G2:G51)-2),
LEN(LEFT(G2:G51,SEARCH("(",G2:G51)-2))-19)*1} (50)

The following task is based on Figure 6, the table of the lottery numbers and prizes.

35

Csernoch and Biró: Sprego Programming

Published by ePublications@bond, 2014

Task 12: Type the number of the matching balls into R2. Give the total prize for R2 matches
(Figure 6).

Task 12 is the generalization of Task 4. The difference between them is that in Task 4
the number of the matches was a constant, as were the columns of the number of
winners and the prizes. In Task 12, based on the number typed in R2 we have to
calculate the number of the columns.

The characteristics of Task 12:

• The numbers of the winners are in even columns.

• The prizes are in the odd columns.

• With the increase of the matching balls the columns decrease.

• The first column with the numbers of the winners is column 4 (D), and with
the prizes is column 5 (E).

Considering all these, from the number given in R2 we have to calculate the columns.

Since every second column counts and the even and the odd columns should be
separated, the number in R2 has to be multiplied by 2 (Formula 51).

R2×2 (51)

There is a negative linear proportionality between the matching numbers and
columns, so there should be subtractions (Formula 52).

10−R2×2 (52)

The columns of the winners start at 4, so a translation has to be carried out
(Formula 53).

14−R2×2 (53)

The algorithm of Task 12:

• Pointing to the column of the numbers from cell A1

• Pointing to the column of the prizes from cell A1.

• Calculating the sum product of the two columns.

For an easier debugging we can crop the table to five rows.

The coding of Task 12:

{=OFFSET(A1,1,13-R2*2,5,1)} (54)

{=OFFSET(A1,1,14-R2*2,5,1)} (55)

{=SUM(OFFSET(A1,1,13-R2*2,5,1)*OFFSET(A1,1,14-R2*2,5,1))} (56)

We can check the validity of the number given in R2.

{=IF(AND(R2>=2,R2<=5),SUM(OFFSET(A1,1,13-R2*2,5,1)*OFFSET(A1,1,14-
R2*2,5,1)),"wrong number")} (57)

To be sure that the number in R2 is a whole number in the [2, 5] interval, we can
select it randomly Task 13.

36

Spreadsheets in Education (eJSiE), Vol. 8, Iss. 1 [2014], Art. 4

http://epublications.bond.edu.au/ejsie/vol8/iss1/4

Task 13: Create a random whole number in the [2, 5] interval.

This is a quite familiar task in programming. The only point in question is the
interval of the random number in the programming language. This should be
checked first, since the output interval of the random selection will differentiate the
algorithms to a certain extent.

Both Excel and Calc create a random number in the [0, 1) interval. With geometric
translations – dilation (Formula 59) and translation (Formula 61) – we can convert it
into the [2, 5] interval.

The characteristics of Task 13:

• a whole number,

• in the [2; 5] interval.

The algorithm of Task 13:

• Creating a random number in the [0, 1) interval (Formula 58).

• Dilation of the interval [0, 1) → [0, 4) (Formula 59).

• Creating whole numbers [0, 4) → [0, 3] (Formula 60).

• Translation of the interval [0, 3] → [2, 5] (Formula 61).

With this algorithm there is no need for the specific built-in function,
RANDBETWEEN(). Beyond that with the algorithm of creating whole random numbers
in an interval students would see example of geometric transformations and practice
how to handle inclusive and exclusive intervals. In addition to all of these
advantages, students can be prepared for a problem quite frequent in high level
programming.

The coding of Task 13:

=RAND() (58)

=RAND()*4 (59)

=INT(RAND()*4) (60)

=INT(RAND()*4)+2 (61)

If we create the number of the matching balls as a random number there is no need
for the validation of the number in R2. To decide on the mode of input in R2 is
always the user’s responsibility; both (61) with the random number and (57) with
typing the number can be used.

We can select random numbers in an interval with previously unknown starting and
ending values (Task 14).

Task 14: Create a random whole number in the [G2, H2] interval.

Task 14 is the generalization of Task 13.

37

Csernoch and Biró: Sprego Programming

Published by ePublications@bond, 2014

The characteristics of Task 14:

• a whole number,

• in the [G2; H2] interval.

The algorithm of Task 14:

• Calculating the number of whole numbers in the [G2; H2] interval
(Formula 62)

• Creating a random number in the [0; 1) interval (Formula 63).

• Dilation of the interval: [0; 1) → [0; H2-G2+1) (Formula 64).

• Creating whole numbers: [0; H2-G2+1) → [0; H2-G2] (Formula 65).

• Translation of the interval: [0; H2-G2] → [G2; H2] (Formula 66).

• Handling the “smaller-greater number” problem (Formula 67).

The coding of Task 14:

=H2-G2+1 (62)

=RAND() (63)

=RAND()*(H2-G2+1) (64)

=INT(RAND()*(H2-G2+1)) (65)

=INT(RAND()*(H2-G2+1))+G2 (66)

Similar to Task 8, we have to handle the problem of the variables of the smaller and
the greater numbers. Formula 66 should be extended with the selection of the smaller
and the greater numbers, and these numbers should be used instead of the values of
G2 and H2 (Formula 67).

=INT(RAND()*(MAX(G2,H2)-MIN(G2,H2)+1))+MIN(G2,H2) (67)

38

Spreadsheets in Education (eJSiE), Vol. 8, Iss. 1 [2014], Art. 4

http://epublications.bond.edu.au/ejsie/vol8/iss1/4

	Spreadsheets in Education (eJSiE)
	2-7-2015

	Sprego Programming
	Maria Csernoch
	Piroska Biró
	Recommended Citation

	Sprego Programming
	Abstract
	Keywords
	Distribution License
	Cover Page Footnote

	Microsoft Word - 425846-convertdoc.input.413730.yjylA.docx

