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Free fall in a vacuum and in the air – calculating limits using a real example
and demonstrating the limiting process to high school students using Excel

Abstract
The paper gives the result of an experiment in which 24 high school students in the final year (age 18-19)
calculated limits originated in reality and modelled the limiting process with an Excel application. The
students answered a questionnaire to find out if they found the lesson interesting, understood the
mathematics involved and if the models benefited the learning. The result is discussed.
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1 Introduction 

 

In the authors’ country, calculus is taught as early as high school in optional mathematical 

lessons, typically in the final year (age 18-19). Limits are essential to calculus, as e.g. the 

continuity, derivatives and integrals of functions are defined as limits. Students learn and 

exercise calculating limits, including l’Hospital’s rule; however, commonly almost nothing is 

said about what problem the limit originates from and what the result is good for. Galileo’s 

assertion that “The book of nature is written in the language of mathematics” can be doubted 

then by the question “Where is the nature in the task: calculate 















 xx

xx

x x ee

ee1
lim

0
”. Such “art 

for art's sake” tasks have a devastating impact on the motivation of high school students to 

continue studying STEM (Science, Technology, Engineering and Mathematics) disciplines at 

university. For example, a study carried out in the UK with more than 1,500 students of age 

14 to 18 revealed that 44% believed that STEM subjects were "uninteresting" [1].  

 

A way to make STEM disciplines more interesting to high school students is to teach them in 

an enriching manner solving a real problem to keep curiosity alive [2]. More emphasis has to 

be put on authenticity as real-world learning is critical in STEM subjects. For example 

Lawson [3, 4] analysed bungee jumping and free fall of a parachutist; Burt, Magnes, Schwarz 

and Hartke [5] discovered integration through recording the power of light that passes through 

the cut-out in a razor blade; Robinson and Jovanoski [6] analysed the problem of the ejection 

of a fighter pilot from an aircraft to determine the conditions under which the pilot may 

collide with the rear vertical stabilizer; Robinson [7] presented group projects in which the 

velocity of a skier, the effects of lift and drag on the length of drive of a golf ball and the size 

of parachute required to ensure a smooth landing were modelled with Matlab.  

Visualization is central to learning STEM. Uttal and O’Doherty [8] defined visualization as 

any type of physical representation designed to make an abstract concept visible. 

Visualization allows one to perceive, and to think about, relations among items that would be 

difficult to comprehend otherwise. Martinovic and Karadag [9] explored the potential of the 

interactive mathematics learning environments to support learners in the development of the 

concept of the limit through visualisation with positive impact. 

 

There is a wide range of phenomena that students are accustomed to, but gaining an insight 

requires inquiry and study. Free fall is a well-known everyday phenomenon scientifically 

studied since Galileo [10]. The solution in a vacuum is well-known [11]. The solution in the 

air if the air density is taken constant (holds up to about 500m) is also known [12, 13]. It is 

obvious that the solution in the air must reduce to the solution in a vacuum if the air density 

approaches zero. That is an example of a limiting process rooted in practice.  

 

The paper gives the result of an experiment in which 24 high school students in the final year 

(age 18 – 19) calculated limits associated with free fall in the air and modelled the limiting 

processes with an Excel application in a 90 minute optional mathematics lesson. Changing the 

parameters, the students could see that if the air density steadily decreased to zero, the speed 

and displacement graphs of free fall in the air approached and finally merged with the graphs 

in a vacuum, and if the motion took long enough time, the graphs in the air merged with the 

asymptotes. The aim was to enable the students to observe the limiting process through 

animation and to help them understand better the notion of limit. The advantage of the 

spreadsheet model was that it was not a black-box. The students answered a questionnaire to 

find out their opinion of the lesson. The result is discussed. 
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2 Free fall in a vacuum and in the air 

 

Let semi axis y+ be oriented downwards. Let a body start falling free at 0t s from 0y m. 

In a vacuum, the only force that acts is weight gmG  , where g is acceleration due to gravity 

and m is the body mass. The speed and displacement of the body are ("v" is for vacuum) [11] 

 gtv v , (1) 

 2

v
2

1
gty  . (2) 

The graphs are in Fig. 1 in red.  

 

 

Figure 1: Speed (left) and displacement (right) of a wooden sphere of density 700 kg/m3  

falling for 10 s in a vacuum (red) and in the air (blue) if the diameter is d = (m; bottom to top) 

0.01, 0.05, 0.2, 1. The green dashed line is the asymptote for d = 0.05 m 

 

In the air, the air resistance force (drag) acts. The amplitude is given by the formula [11] 

 2

aD
2

1
vCAF  , (3) 

where C is the drag coefficient dependent on the shape and speed of the body, A is the 

maximum cross-section area of the body perpendicular to the velocity, and 225.1a   kg/m3 

is the air density at sea level [14]. If the speed is smaller than 270 m/s, which is 80% of the 

speed of sound, then C is constant [15], and 4.0C  for a sphere [16]. The air density 

decreases with increasing altitude but it may be taken constant up to 500 m as the decrease is 

less than 5 %. The equation of motion is  

 
2

d

d
Kvg

t

v
 ,   00 v ,   00 y , (4) 

where 
m

CA
K

2

a . The solution is [13] 

  gKt
K

g
vtv

g

K

gK
t

Kvg

v
tanhatanh

1
d

d
2

















  , (5) 
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  
 

 gKt
K

yt
gKt

gKt

K
ytvy coshln

1
d

cosh

cosh1
d 



  . (6) 

High school students in the authors’ country learn neither hyperbolic functions nor to solve 

differential equations. Therefore the following forms were used in the lessons ("a" is for air): 

 























gKtgKt

gKtgKt

K

g
v

ee

ee
a , (7) 

 












 




2

ee
ln

1
a

gKtgKt

K
y . (8) 

The graphs are shown in Fig. 1 in blue.  

 

3 Limits 

 

In a vacuum, 0aρ , thus 0K , and Eq. (7) and (8) reduce to Eq. (1) and (2). Hence, the 

following limits must hold 

 gt
K

g
vv

gKtgKt

gKtgKt

KK

























 ee

ee
limlim

0
va

0
, (9) 
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0
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0 2

1

2

ee
ln

1
limlim gt

K
yy

gKtgKt

KK














 





. (10) 

The weight of the body is constant but the drag increases with the speed. After some time, the 

two forces become equal.  From that point, the body moves on uniformly, that is, at a constant 

speed, which is the terminal speed tv  of the fall. The equation DFG   yields Kgv t . 

However, the body reaches this velocity in infinite time, because as the speed increases, the 

drag increases too, so the acceleration drops. Consequently, the speed increases slower, then 

the drag increases slower, and the acceleration drops less, and so on, until there is no speed 

increase after infinite time. Hence, the following limit must hold  

 
K

g

K

g
vv

gKtgKt

gKtgKt

tt

























 ee

ee
limlim ta . (11) 

The body moves on infinitely close to this speed, that is, virtually uniformly. Therefore, the 

graph ay  must merge with a slant line − the asymptote to the graph. The asymptote is the 

green dashed line in Fig. 1. The equation of the asymptote can be obtained by ignoring 
gKt

e  

in Eq. (8) as it is negligible if compared to 
gKt

e  at big t. The equation is 

 
K

t
K

g
y

2ln
 . (12) 
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It holds for the parameters k and q of the asymptote qkty   to the graph of function  tf  

that [17] 

 
 
t

tf
k

t 
 lim ,   kttfq

t



lim . (13) 

Hence, the following limits must hold 
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

 
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ee
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lim , (14) 
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g
t

K

gKtgKt

t

2ln

2

ee
ln

1
lim 



























 



. (15) 

4 Proofs (as with high school students) 

 

Eq. (9): 

 

























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




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
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
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KgKtgKt
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g
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K

g
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ee
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ee

ee
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. (16) 

 























 gKtgKt

gKtgKt

K gKt
gt

ee

ee1
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0
. 

Now, it is enough to show that the limit equals 1. Let gKtB  . If 0K , then 0B , and 

   1
2

1
2

2

1
eelim

ee

1
lim

ee
lim

ee

ee1
lim

0000

















 










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KBBB

BB

BBB

BB

B BB
. (17) 

l´Hospital’s rule was applied in the second step. 

 

Eq. (10): 

 

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
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
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2

1

2
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2
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1
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2

2

2
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B

gKtgKt

K
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K
. (18) 

Let us show that the limit equals 1: 
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2
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2
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002020





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


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
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


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 


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










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B
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B
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, (19) 

which results from Eq. (17). l´Hospital’s rule was applied in the second step. 
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Eq. (11): 

 

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
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
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Let us show that the limit equals 1: 
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2

2
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







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


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


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
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Eq. (14): 
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2
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Let us show that the limit equals 1: 

 
 

1
ee

ee
lim

2lneeln
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which results from Eq. (21). l´Hospital’s rule was applied. 

 

Eq. (15): 
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Let us show that the limit equals 0: 
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   01lne1lnlim 2  



B

B
 

 

5 Model 

 

The model is shown in Fig. 2. The inputs are in the white cells. The grey cells contain 

formulae. The body is a homogenous sphere. Parameters d and b  are the diameter and 

density. Density 700b  kg/m3 is for wood.  
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Figure 2: Speed (left) and displacement (right) of a sphere falling in a vacuum (red) 

and in the air (blue). The green dashed lines are the asymptotes. 

 

The graphs are of type XY line made over 101 points (100 steps, cell C9). The time is 

calculated in range B14:B114 from 0 to maxt  (cell C8) by step 100Δ maxtt   (cell C10). The 

speed and displacement in a vacuum are calculated in ranges C14:C114 and D14:D114 by 

Eq. (1) and (2). The speed and displacement in the air are calculated in ranges E14:E114 and 

F14:F114 by Eq. (7) and (8). The asymptotes are two-point graphs of type XY line. The 

points are calculated in ranges Z4:AA5 and Z9:AA10.  

 

6 Lesson and survey 

 

The experiment was carried out with 24 high school students in the final year (age 18 – 19) in 

a 90 minute optional Mathematics Seminar lesson. The aim of the lesson was to present limits 

with a real background, visualize the limiting process, and practise calculating limits, 

including l’Hospital’s rule. The lesson was taught by the first author (“teacher”). The room 

was equipped with a teacher’s computer and projector but not with student computers; 

however, some students had their own laptops. The students were familiar with the 

trigonometric, exponential and logarithmic function and their derivatives, with the limit laws 

and l’Hospital’s rule but not with calculating asymptotes.  

 

The teacher started the lesson with a discussion on free fall in a vacuum and in the air, largely 

applying the method of questioning [18]. The students recalled equations (1), (2) and (3), 

which they learned in first year physics. The teacher invited the students to think about the 

effect of the density of the air on the motion. The students found that if the air density 

dropped steadily to zero, then the difference to the motion in a vacuum would be smaller and 

smaller, that is, the graphs in the air would approach the graphs in a vacuum and merge with 

them finally. The teacher wrote Eq. (1), (2), (7) – (10) on the whiteboard. He projected the 

model in Fig. 2 and explained how to use it and how it was created. Then he emailed the 

Excel model to each student. He called up students to experiment with parameters C, a , b  

and d on the teacher’s computer and invited the class to observe the limiting process. The 

students found that if parameter K dropped, then the graphs in the air approached and finally 

merged with the graphs in a vacuum. The drop was possible to achieve by (1) decreasing 

parameter C, that is, by making the sphere smoother, (2) decreasing a , that is, making the air 

thinner, (3) increasing b , that is, making the sphere heavier at the same size, and (4) 

increasing diameter d, that is making the sphere bigger. The last finding was a surprise as the 

students supposed that if the sphere was bigger, then the air resistance would be bigger and 
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the graphs in the air would get further from the graphs in a vacuum. The teacher challenged 

them to take the mass of the sphere into account, which resulted in the finding that if diameter 

d was doubled, area A and consequently the drag would increase four times but the volume 

and consequently the mass would increase eight times, therefore K would drop to half. Then, 

two students proved Eq. (9) and (10) with the help of the class and teacher’s questioning. 

 

The teacher invited the students to think about the speed of a body falling in the air. The 

students recalled that some bodies fall uniformly after some time, e.g. a parachutist with open 

canopy, from which they deduced that the speed and the displacement have to be a constant 

and a linear function then. The teacher added Eq. (11) on the whiteboard and called-up a 

student to model the limiting process. Then he called up another student to prove the equation. 

The student applied l´Hospital’s rule twice, which surprisingly gave Eq. (11) again. The case 

illustrated that routine approaches may not lead to the goal. Then, the class found the solution 

with the help of teacher’s questioning. Equations (14) and (15) were not proved as there was 

not enough time to familiarise the students with the formulae for calculating asymptotes. 

Finally, the teacher asked the students if they knew what inscriptions sinh, cosh and tanh 

stand for, e.g. on the Windows calculator. Nobody knew. The teacher introduced the formulas 

for hyperbolic sine, cosine and tangent, and rewrote Eq. (7) and (8) as Eq. (5) and (6).  

 

At the end of the lesson, the students answered the following questionnaire. The result is in 

Table 1 and Fig. 3. Answers 1 and 2 in questions A – D are positive ones.  

 

A) The lesson was (1 = very; 2 = quite; 3 = little; 4 = not) interesting. 

B) The model helps to understand the notion of limit  

(1 = a lot; 2 = quite a lot; 3 = little; 4 = not at all). 

C) I understood (1 = all; 2 = majority; 3 = little; 4 = nothing) of the proofs. 

D) I learned (1 = a lot; 2 = quite a lot; 3 = little; 4 = nothing) in mathematics. 

E) I am a boy (1 = yes; 2 = no). 

 
Table 1: Number of answers 

 all all % boys % girls % positive %  

 
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 all boys girls 

A 9 12 3 0 38 50 13 0 43 57 0 0 35 47 18 0 88 100 82 

B 19 5 0 0 79 21 0 0 71 29 0 0 82 18 0 0 100 100 100 

C 18 6 0 0 75 25 0 0 57 43 0 0 82 18 0 0 100 100 100 

D 6 15 3 0 25 63 13 0 43 57 0 0 18 65 18 0 88 100 82 

E 7 17   29 71   100 0   0 100      

 

 
Figure 3: Number of answers of all, boys and girls in % 
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7 Summary and conclusions 

 

The paper gave the result of an experiment in which 24 high school students calculated limits 

with real background and modelled the limiting process with an Excel application. The first 

three of the following five equalities that spring from free fall in the air were proved: 
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B
. The students answered a questionnaire. The result is that 88% found 

the lesson very or quite interesting, 100% found the model a lot or quite a lot helpful to 

understand the notion of limit, 100% understood all or majority of the proofs, and 88% had 

the feeling that they learned a lot or quite a lot in mathematics. The result shows that even 

calculating limits can be interesting to high school students if the limits are not fabricated but 

have a real background and the limiting process is visualised with a non black-box 

application. 
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