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Combinatorics of the Triangle Inequality: From Straws to Experimental
Mathematics for Teachers

Abstract
This article demonstrates the importance of skills in asking questions and the value of spreadsheets in seeking
answers in the spirit of experimental mathematics. This is accomplished through an activity with straws
recommended for lower elementary mathematics classrooms that was expanded to a combinatorial inquiry
into the triangle inequality. Whereas the article is a reflection on a mathematics content and methods course
taught by the author to elementary teacher candidates, combinatorial explorations motivated by an
unexpected question by one of the candidates can be recommended for mathematics education courses of
higher ranks. As a result of these explorations, a family of integer sequences (not included into the OEIS®) has
been introduced.
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1. Introduction 
One of the activities included in a curriculum guide by the Education Department 

of the state of New York [19], the context in which the author prepares teachers, 

recommends that students in grades 1 and 2 use straws to construct geometric 

figures. As presented, this hands-on activity is in support of the development of 

children’s mathematical thinking and reasoning skills. Typically, straws available 

for this exploration are all the same and a variety of plane figures – triangles, 

quadrilaterals, pentagons, etc., can be constructed out of the straws. When this 

activity is discussed within an elementary mathematics content and methods 

course, mathematically unsophisticated teacher candidates perceive such use of 

straws as a “really funny” way of demonstrating how a particular figure looks like 

and, thereby, their joy about mathematics might end after a figure is constructed. 

On the contrary, the task with straws has the potential to extend this amateurish 

sense of a learning experience to enable, in the spirit of the experimental 

mathematics approach [2, 7, 8, 23], the discovery of knowledge, which is unlikely 

to be found in any part of the entire school mathematics curriculum.  

What teacher candidates are supposed to learn in the modern university classroom 

is how to go beyond the seemingly mundane character of this (or similar) tasks 

they naively consider a “worthwhile exploration” simply due to its trendy hands-

on setting and the use of everyday objects as mathematical thinking tools. In 

support of this learning objective, the paper intends to share some teaching ideas 

about possible uses of the task in different mathematics teacher education courses 

that span the whole pre-college curriculum. The paper may be of interest to the 

teachers of elementary school mathematics as it stems from a hands-on activity of 

using straws in the context of basic geometry. It may also be of interest to 

secondary mathematics teachers often considered the mathematical knowledge 

holders by their elementary colleagues who strive to answer rather innocent 

questions frequently asked by young children in the modern classroom. That is 

why, both groups of teachers need to know what kind of questions young 

children, when being encouraged, might ask and where answering (or thinking 

about how to answer) these questions can lead in the technological paradigm.  

It should be noted that without using a spreadsheet, the teaching ideas of this 

paper would not likely come to fruition. The final result about the limiting 

behavior of certain number sequences associated with the original task, because of 

its quite unexpected mathematical simplicity in comparison with computationally 

complex (though elementary) learning context indicates that the opportunities for 

mathematical discovery by students and their teachers alike are rife. Furthermore, 

the final result demonstrates how the resulting elegance and even beauty of 
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conclusions of experimental mathematics may serve as a confirmation of the 

validity of intermediate explorations. Put another way, a spreadsheet will be used 

to demonstrate how the computational experiment approach to precollege 

mathematics curriculum can motivate and enhance mathematical reasoning skills 

of prospective teachers of mathematics, something that they, in turn, need to 

develop in their own students. Indeed, schoolteachers as the major players of the 

mathematics education enterprise are responsible for developing in their students 

“the ability to reason mathematically, an appreciation of the beauty and power of 

mathematics, and a sense of enjoyment and curiosity about the subject” [10, p1]. 

2. Motivating “discovery” of the triangle inequality through 

questioning 
As a reflection on the basic activity with straws, some simple questions can be 

asked first: How many straws are needed to construct a triangle, a square, a 

pentagon? Assuming that one typically uses three straws for triangle, four straws 

for square, five straws for pentagon, such queries follow the framework “single 

question – single answer”, not leaving much room for the development of 

mathematical reasoning. In order to overcome the limitations of this (traditional) 

framework, elementary teacher candidates should be encouraged to demonstrate 

multiple ways of constructing a particular geometric figure. Such kind of 

encouragement to think deeper about mathematics follows the idea of 

“recognizing in a result something that can be turned into a question” [15, p98]. 

For example, after a triangle and a square have been constructed out of, 

respectively, three and four straws, this modest result may be turned into a 

question “posed in a routine way so as to obscure mathematical thinking” [15, 

p103]: Can one construct a square out of three straws and a triangle out of four 

straws? Whereas in response to the first part of the question one may return a smile 

(meaning, of course, not), its second part would most likely lead to head scratching 

followed by requesting a specific type of explanation [13].  

A mathematical concept that emerges from the activities with straws as a means 

of explaining the failed construction of a triangle out of four straws is the so-called 

triangle inequality – the sum of any two sides of a triangle is greater than the third 

side. Surprisingly, the triangle inequality is a concept that everybody intuitively 

possesses without even realizing it (just watch how people cut across the grass 

rather than walk along the pavement to get to a building faster). At the same time, 

the concept is profound for it is kind of counterintuitive that moving from three 

straws to four straws screws up one’s chances to construct a triangle. No wonder, 

four is the only integer greater than three that may not be decomposed into three 

like summands satisfying the triangle inequality. 
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3. An unexpected question seeking information 
In the modern classroom, not only teachers ask questions but students are 

encouraged to ask questions as well. A need for change in the classroom 

pedagogy, away from passive learning with the only one voice heard (that is, the 

teacher’s voice) was acknowledged in [24] where concern with “the underlying 

power relationship between teacher and child: the children seem to learn very 

quickly that their role at school is to answer, not to ask questions” (p279) was 

registered.  Two decades later, Slater [22] referred to this kind of learning as a 

hidden contract between students and teachers: when students ask questions 

(educationally challenging or not), it is often considered as an attempt to break the 

contract on their part. Nonetheless, some students do ask questions and expect 

teachers, following the teaching standards of the 21st century [3, 9, 10, 16–18] to 

answer them “fluently and with little time” [6, p43]. Most recently, expectations 

for schoolchildren in the United States included skills to “listen or read the 

arguments of others … and ask useful questions to clarify or improve the 

arguments” [9, p7]. Teacher candidates need to have experience with asking and 

answering a variety of mathematical questions because it is one of the main 

characteristic features of mathematics when students may quite naturally ask 

questions, either seeking information or requesting explanation [13], for which 

even veteran teachers do not have clear and easy answers.  

An example of such a question is as follows:  

How many triangles – equilateral, isosceles, scalene – can be constructed if the 

longest side comprises three straws?  

An elementary teacher candidate asked this question during the author’s 

presentation of the activity with straws and its extension into the triangle 

inequality. This unexpectedly wonderful question (its original wording was 

slightly different) was possible to answer experimentally by actually constructing 

four triangles and describing them through the following integer triples satisfying 

the triangle inequality: (3, 3, 3), (3, 2, 3), (3, 1, 3), and (2, 2, 3). It was also possible 

to abstract from straws to square tiles (a common manipulative for the elementary 

classroom) as precursors of units (out of which whole numbers are built) to 

represent the four triangles in the form of tri-towers as shown in Figure 1.  
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Figure 1. Abstracting from straws to square tiles. 

 

It is obvious that replacing three by four (or five, six, etc.) would make 

experimenting with straws (and even with square tiles) too cumbersome. 

Apparently, the number of triangles would increase as the number of straws used 

for the longest side increases. But some teacher candidates continued being 

curious: If indeed increased, then by how many? An answer to this question was 

not immediately available and thus it was postponed till the next class.  

4. Using a spreadsheet as a modeling tool 
In order to address teacher candidates’ curiosity, a spreadsheet was used to model 

the system of inequalities k ≤ m ≤ n, k + m > n where n is the given positive integer, 

while positive integers m and k may vary. Such a spreadsheet is shown in Figure 

2 where k and m are defined, respectively, in the ranges A3:A27 and B2:Z2; cell A2 

displays the total number of triangles with the longest side built out of the given 

number of straws (n, displayed both in the body of the spreadsheet and in cell A1, 

which is slider-controlled to allow for the variation of n). As shown in Figure 2, 

when n = 25 in cell A1, the body of the spreadsheet displays this value of n each 

time the corresponding triple (k, m, n) satisfies the triangle inequality. For example, 

the cells A14, O2, and O14 display the triple (12, 14, 25). In addition, the 

spreadsheet can be programmed to show (the range AB3:AC27) the relation 

between n and the corresponding number of such triangles, T(n). 
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Figure 2. There are 169 (A2) triangles with the largest side 25 (A1) linear units. 

The details of spreadsheet programming (not intended for elementary teacher 

candidates) are included in the appendix. Pedagogically speaking, one can 

introduce a ready-made spreadsheet to this group not focusing on the 

development of skills in programming the software (something that may be 

appropriate for secondary teacher candidates or within a special course on the use 

of spreadsheets in mathematics education). What is much more important for 

prospective elementary teachers is to develop skills in using numerical evidence 

as support system in thinking mathematically; that is, to have experience in 

recognizing common properties that the numbers (otherwise unavailable) possess 

and establishing connections among them in a general form, independent on the 

concreteness of the support system. In other words, numerical evidence that a 

spreadsheet (or any other software) generates “can be used to support the 

reification … [and] draw attention to what is being stressed, … to make the 

abstraction shift in which the generality becomes object” [14, pp6 – 7].  

5. Analysis of modeling data enables qualitative explanation 
Observing the chart of Figure 3 (replica of the range AB3:AC27 in Figure 2) one 

can note that every second number in the bottom row is either a perfect square or 

a product of consecutive integers. For example, consider the triple (16, 20, 25) from 

this row (alternatively, cells AC9, AC10, and AC11 in the spreadsheet of Figure 2). 
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We have 16 = 42, 20 = 4 ×5, 25 = 52 . How to explain that when the number 7, as a 

largest side, is replaced by the number 8, the number of triangles is increased by 

four? Modeling data provided by the spreadsheet not only facilitates explanation. 

The data creates a grade-appropriate opportunity for elementary teacher 

candidates to use decontextualized arithmetical activities such as partitioning of 

an integer in two summands [19] in application to geometry. One can see that the 

replacement of 7 by 8 adds eight new triangles with the side lengths satisfying the 

triangle inequality: (1, 8, 8), (2, 8, 8), ...,(8, 8, 8) . At the same time, some old 

triangles with the sum of the smaller sides equal to eight become extraneous (as, 

due to the triangle inequality, the sum has to be greater than eight). The number of 

such triangles is equal to the number of additive partitions of eight in two parts 

without regard to order and there are four ways of doing that: 

8 =1+ 7 = 2+ 6 + 3+ 5 = 4 + 4. That is, the number of new triangles is equal to eight 

itself and the number of triangles which become extraneous is equal to the number 

of unordered additive partitions of eight in two parts. This explains why the 

transition from the largest side 7 to that of 8 increases the number of triangles by 

the difference 8 – 4 = 4. Put another way, the increase in the number of triangles 

can be calculated as follows: 4 ×5 - 42 = 4(5 - 4) = 4 . Similar observations can be 

made in the case of other pairs of consecutive integers used as the largest side 

length. For example, the towers in the upper part of Figure 1 would disappear 

through the transition from 3-tile high tri-tower to that of 4-tile high because 1 + 3 

= 4 and 2 + 2 = 4. All this motivates generalization, something that goes beyond the 

elementary level and can be discussed (along with the details of spreadsheet 

programming) in a mathematics education course for secondary teacher 

candidates. This discussion may include the whole story about the straws in order 

to demonstrate the importance of the method of conceptual ascend in the teaching 

of mathematics reflected in the modern day tenet, “What students can learn at any 

particular grade level depends on what they have learned before” [9, p5]. To this 

end, the remaining part of the article extends elementary content and it 

demonstrates different problem-solving avenues that a grade-appropriate 

generalization entails.  

 

 

Figure 3. The relation between the largest side and the number of triangles. 
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6. Moving from straws to formulas improves computational 

efficiency of a spreadsheet  
Let T(n) be the total number of integer sided triangles the largest side length of 

which is equal to n linear units. The task is to find a recursive relationship between 

T(n + 1) and T(n). The transition from n to n + 1 adds n + 1 new triangles with the 

side lengths 

(n+1, n+1,1), (n+1, n+1, 2),...,(n+1, n+1, n+1). 

At the same time, several triangles included in the count T(n) disappear through 

this transition. For example, one such triangle has the side lengths (n, n, 1). Indeed, 

when the first element is replaced by n + 1, the triple (n + 1, n, 1) becomes 

extraneous because the triangle inequality is not satisfied. Likewise, all other 

triples with the sum of the second and the third elements equal to n + 1 become 

extraneous. There are INT((n + 1)/2) such triples. Therefore, the total gain in the 

number of triangles occurring through the transition from n to n + 1 is equal to 

T (n+1)-T (n) = n+1- INT (
n+1

2
) from where a difference equation that defines a 

recursive relation between T(n + 1) and T(n) results 

T (n+1) = T (n)+ n+1- INT (
n+1

2
),T (1) = 1.    (1) 

Relation (1), a generalized computational tool, when verified within a spreadsheet 

yields the same numbers that are displayed in the bottom row of the chart of 

Figure 3. Better still, using relation (1) does not require two-dimensional 

spreadsheet modeling. However, it is due to a computationally inefficient 

approach of using the triangle inequality in modeling the sequence T(n) that much 

more efficient model in the form of relation (1) has been developed. Furthermore, 

one can use relation (1) to develop a closed formula for the sequence T(n). Because 

of the presence of the greatest integer function, the cases of n even and odd need 

to be considered separately as INT (
2k +1

2
) = k  and INT (

2k + 2

2
) = k +1. It follows 

from (1) that  
T (2k) =1+ 2 + ...+ 2k - 2(1+ 2 + ...+ k -1)- k = k(k +1) 

and  

T (2k +1) =1+ 2 + ...+ (2k +1)- 2(1+ 2 + ...+ k) = (k +1)2 . 

These formulas (the derivation of which is not difficult and, thereby, is skipped for 

the sake of brevity) confirm the results presented in the chart of Figure 2, and, 
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besides offering an alternative to computing T(n), provide a closed solution to the 

general form of the questions asked by an elementary teacher candidate. 

7. Combinatorial geometry with colored straws 
What if we have straws in different colors? Such straws, though not commonly 

available, may still be used in the classroom to make mathematics even more “akin 

to that of playing games … [seen by educators as] the spontaneous way in which 

children acquire much of their mastery over the environment” [12, pp80–81]. With 

this in mind, consider the case of two colors. How many different triangles can be 

constructed out of straws in two colors if none of the sides comprises more than 

three straws? As was shown above, when straws are the same size and color, there 

exist four triangles, namely, 

(3, 3, 3), (3, 3, 2), (3, 3, 1), and (3, 2, 2). 

How many triangles with the side lengths (3, 3, 3) can be made of the straws in 

two colors? When we have three straws in two colors, each straw (the unit of 

length) can be chosen in two ways and thus, by the rule of product [1], there are 23 

different types of 3-straw sides. (For example, with white (W) and pink (P) straws 

the eight types are: WWW, WWP, WPW, WPP, PWW, PWP, PPW, PPP). In order 

to construct an equilateral triangle with 3-straw sides, one has to select three 

objects out of eight types allowing for the repetition of objects (e.g., when two or 

three sides are the same). Each such selection can be represented as a number with 

three ones (the number of objects selected) and seven zeroes (serving as separators 

among eight types – in the above list commas are the separators); the number of 

permutations of the digits in the number 1110000000 is equal to 
(3+ 7)!

3! 7!
= 120 . For 

example, the number 1110000000 (a permutation of ten digits) means that only one 

type (WWW) of a 3-straw side is used in the construction of a triangle and the 

number 1000000011 (another permutation of ten digits) means that one side of a 

triangle is the WWW type and its other two sides are both the PPP type. Additional 

information on the development of combinatorial formulas introduced in this 

section can be found in [25] and, for a more elaborate treatment used by the author 

in a mathematics content course for elementary teacher candidates, in [1].  

In general, E(n, p) – the number of equilateral triangles with the side length n 

constructed out of straws in p colors – is equal to 

(3+ pn -1)!

3! pn -1( )!
=

(pn + 2)!

6 pn -1( )!
=
pn (pn +1)(pn + 2)

6
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as the number of permutations of digits in the number 11100…0 with three ones 

(the number of sides in a triangle) and pn -1 zeroes (serving as separators among 

pn  types of multicolored sides constructed out of n straws  in p colors). That is,  

E(n, p) =
pn(pn +1)(pn + 2)

6
.      (2) 

In particular, when p = 2 and n = 3 we have 
23(23 +1)(23 + 2)

6
=

8 ×9 ×10

6
= 120  

triangles.  

How many triangles with the side lengths (3, 3, 2) can be made of the straws in 

two colors? Firstly, there are 22 different types of 2-straw sides. Secondly, for equal 

sides, we have to select two objects out of 23 types, something that can be done in 
(2 + 7)!

2! 7!
= 36  ways – the number of permutations in the (9-digit) number 110000000 

with two ones (the number of equal sides) and seven zeroes. For each such 

selection of a pair of 3-straw sides there are 22 selections of a 2-straw side. By the 

rule of product, there are 36 ×4 =144  isosceles triangles with the side lengths (3, 3, 

2) constructed out of straws in two colors.  

In general, I1(n, p) – the number of isosceles triangles with the side lengths (n, n, 

m), n > m, constructed out of straws in p colors – is equal to  

(2 + pn -1)!

2! pn -1( )!
× pm =

(pn +1)!

2 pn -1( )!
pm =

pn+m(pn +1)

2
.  

That is, 

I1(n, p) =
pn+m (pn +1)

2
.      (3) 

In particular, when p = 2, n = 3, and m = 2 we have 
25(23 +1)

2
=

32 ×9

2
= 144  triangles. 

Likewise, when p = 2, n = 3, and m = 1 we have 
24 (23 +1)

2
=

16 ×9

2
= 72  triangles with 

the side lengths (3, 3, 1) constructed out of straws in two colors.  

How many triangles with the side lengths (3, 2, 2) can be made of the straws in 

two colors? That is, we have an isosceles triangle which base is the longest side. 

This time, we have to select two objects out of 22 types, something that can be done 

in 
(2 + 3)!

2! 3!
= 10  ways – the number of permutations of digits in the (5-digit) number 

11000. For each such selection, there are 23 types of 3-straw sides. Therefore, by the 
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rule of product, there are 80 ( =10 ×8) isosceles triangles with the side lengths (3, 2, 

2) constructed out of straws in two colors. Once again, with white (W) and pink 

(P) colors, the types of equal sides are WW, WP, PW, and PP, so that the 

permutation 10001 denotes an isosceles triangle with the lateral sides of the WW 

and PP types (the base of which can be chosen from the eight types listed above).  

In general, I2(n, p) – the number of isosceles triangles with the side lengths (n, m, 

m), n > m, constructed out of straws in p colors – is equal to 

(2 + pm -1)!

2! pm -1( )!
× pn =

(pm +1)!

2 pm -1( )!
pn =

pn+m (pm +1)

2
.  

That is, 

I2(n, p) =
pn+m(pm +1)

2
.      (4) 

In particular, when p = 2, n = 3, and m = 2 we have 
25(22 +1)

2
=

32 ×5

2
= 80  triangles 

with the side lengths (3, 2, 2) constructed out of straws in two colors.  

The case when the longest side comprises three straws does not allow one to 

construct a scalene triangle. With this in mind, consider the general case of 

constructing scalene triangles of side lengths (n, m, k) out of straws in p colors. 

Each of the sides can be constructed, respectively, in pn , pm , and pk  ways. By the 

rule of product, the number of such scalene triangles is equal to  

S(n, p) = pn+m+k .       (5) 

8. Experimental mathematics as a method with ancient roots 
The spreadsheet of Figure 4, the programming of which is based on formulas (2) – 

(5), shows (cell AC5) the total of 416 (=120 + 144 + 80 + 72) triangles found above 

for n = 3 and p = 2. Unlike the sequence 1, 2, 4, 6, 9, … (Figure 3) included into the 

OEIS® (The On-line Encyclopedia of Integer Sequences, https://oeis.org/), already 

the sequence 4, 40, 416, 3808, 33472, … – the total number of triangles the longest 

side of which comprises respectively, 1, 2, 3, 4, 5, … straws in two colors – does 

not match anything in the table. Likewise, the sequence 10, 300, 9405, 271701, 

7586055, … (that the spreadsheet of Figure 4 generates for p = 3) – the total number 

of triangles the longest side of which comprises, respectively 1, 2, 3, 4, 5, … straws 

in three colors – does not match anything in the table as well. Nonetheless, the last 

two sequences, along with the sequence T(n) defined by formula (1), exhibit a 

similar behavior: if one forms (just as in the case of Fibonacci numbers) the ratios 

of two consecutive terms of the sequence, the ratios, as n increases, appear to 
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converge to the third power of the number of colors. In general, the following 

technology-motivated proposition can be formulated. 

Let f(n, p) denote the number of triangles – equilateral, isosceles, scalene – 

constructed out of equal straws in p colors when the longest side comprises n straws. Then  

lim
n®¥

f (n+1, p)

f (n, p)
= p3.       (6) 

To prove relation (6), one has to recognize that in order to find f(n, p) for any given 

values of p and n, formulas (2) – (5) have to be used and the summation of 

geometric series with the terms pi  when i varies from 1 to n yields an algebraic 

expression with the leading term p3n. One can see that whereas such demonstration 

of relation (6) is not complicated (once the computational algorithm has been 

constructed), it seems unlikely that, without computer-motivated query into the 

number of triangles constructed out of multicolored straws for which formulas (2) 

– (5) have been developed, this relation would come into existence.  

This approach of enabling mathematical explorations through the use of 

technology has ancient roots as evidenced from a letter by Archimedes to 

Eratosthenes: “Certain things first became clear to me by a mechanical method, 

although they had to be demonstrated by geometry afterwards because their 

investigation by the said mechanical method did not furnish an actual 

demonstration. But it is of course easier, when the method has previously given 

us some knowledge of the questions, to supply the proof than it is to find it without 

any previous knowledge” [5, p13]. Indeed, without a “mechanical method” that 

included a hands-on activity with multi colored straws followed by a spreadsheet-

based computational experiment, an amazingly simple property of sequences (not 

even included into the OEIS®) that can be explained to a layperson may not come 

to light. In the modern terms, through such an explanation teacher candidates 

learn what it might mean for their students to develop “the ability to contextualize 

… [that is] to probe into the referents for the symbols involved” [9, p6, italics in 

the original]. In particular, through the process of contextualizing one can explain 

a computationally discerned property of the faster convergence of the ratios in (6) 

with the increase of p – the larger the number of colors, the larger is the number of 

triangles that can be constructed for the same value of n. That is, due to the 

inequality pn+1 < (p+1)n , the number of triangles, as p ≥ 2 increases, grows 

(exponentially) faster than with the increase of n ≥ 3.  
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Figure 4. The case of two colors yields the sequence 4, 40, 416, 3808, 33472, … . 

9. Concluding remarks 
This article has demonstrated how experimental mathematics for teachers 

supported by a spreadsheet can be integrated with hands-on activities 

recommended as means of developing young children’s mathematical reasoning 

and thinking skills. Such skills include the keenness of asking mathematical 

questions that are aimed at changing the traditional educational milieu of the past. 

Although it is sometimes argued, “in the real world, most of the time, an answer 

is easier than defining the question” [11, p163], in order to be adequately prepared 

to deal with the real world, one must be given opportunities to satisfy natural 

curiosity by asking questions regardless what kind of answer they entail. In order 

to develop those skills in the pre-college classroom, such cognitive milieu must 

become a tradition in a teacher education classroom. When extended in a 

computer environment, the suggested activities can support content and method 

courses for prospective elementary as well as secondary mathematics teachers. By 

changing the traditional classroom culture of discouraging (or, at least, not 

encouraging) students to ask questions [22, 24], one can come across a challenging 

mathematical context for which the experimental mathematics approach is 

justified. Put another way, a task of constructing triangles out of straws, as the 

genesis of the discovery of new integer sequences, represents an example of 

hidden mathematics curriculum of teacher education [2]. 

The article demonstrated how numerical data and its proper analytic 

interpretation enable both types of questions – those seeking quantitative 

information and those requesting qualitative explanation – to be formulated and 

resolved. Indeed, comparing computer-generated integer triples the largest 

element of which is equal to n to those with n + 1 being the largest, makes it 

possible to explain qualitatively what happens with the corresponding triangles 

when n is increased by one. By the same token, a teaching idea of abstracting 
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straws to square tiles as a precursor to numbers provides an alternative avenue for 

contextualizing the meaning of the triangle inequality. 

By probing the triangle inequality with straws and using a spreadsheet to support 

the emerging inquiry, one can appreciate the notion that mathematics has evolved 

from concrete activities to abstract concepts through argument and computation 

[4]. In the digital era, a mathematical argument can emerge from the results of 

experimental mathematics. That is why having some kind of confirmation of the 

validity of the argument is of importance. In particular, such a confirmation may 

come from the elegance of conclusions of a mathematical experiment. When 

dealing with triangles, the number 3 may be considered a universal characteristic 

across all possible types of triangles, one of which is defined by the number of 

colors, p, diversifying their visual perception. Therefore, having p3 as the attractor 

of the ratios of two consecutive terms of the sequence that counts the number of 

the corresponding triangles within a spreadsheet may serve as an informal 

confirmation of the correctness of the mathematical argument the underlie the 

computational experiment.  

Experimental mathematics accommodates students of various interests and 

abilities by providing opportunities for mathematical explorations of different 

levels of complexity and encouraging computational experimentation in the spirit 

of scientific and engineering concept learning [21]. Towards this end, other 

situations dealing with triangle construction out of straws can be explored. For 

example, one can consider all kinds of triangles in which none of the sides 

comprises more than a given number of straws. Trying to use mathematics as an 

applied tool, one can also look for real life applications of the results beyond a 

whimsical application [20] to the construction of multi colored triangular frames. 

It is through connecting technology-enabled mathematical results to real life that 

experimental mathematics experienced by teacher candidates could affect the way 

that STEM (science, technology, engineering, and mathematics) disciplines are 

learned in school. 
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10. Appendix: Spreadsheet programming details 

1. The case of identical straws 
Cell A1 is slider controlled; B2: = 1, C2: =IF(B2<$A1, 1+B2, " ") – replicated to cell 

Z2; A3: = 1, A4: =IF(A3<A$1,1+A3," ") – replicated to cell A27; 

B3: =IF(OR(B$2=" ",$A3=" ")," ",IF(AND(B$2>=$A3, $A$1>=B$2, $A$1<B$2+$A3), 

$A$1," ")) – replicated to cell Z27; the range [AB3:AB27] is filled with natural 

numbers;  

AC3: =IF($A$1=0," ", IF($A$1=AB3,$A$2,AC3)) – replicated to cell A27, because 

this formula includes a circular reference, one has to make it work and  in the 

calculation dialog box to set at, say, 100 the number of times Excel iterates the 

formula. 

2. The case of multi colored straws 
Cells A1 and AA1 are slider controlled and given the names n and p, respectively; 

numbers in the ranges B2:Z2 and A3:A27 are given the names m and k, 

respectively; B3: =IF(OR(m=" ",k=" ")," ",IF(AND(m>=k,n>=m,n<m+k), IF(p=1, n, 

IF(AND (m=n,m=k),  (p^n+2)*(p^n+1)*(p^n)/6, IF(AND(m=n,m>k), 

(p^(n+k))*(p^n+1)/2,  

IF(AND(n>m,m=k), (p^(n+m))*(p^m+1)/2, IF(AND(n>m, m>k),p^(n+m+k))))))," ")) 

– replicated to cell Z27; the range [AB3:AB27] is filled with consecutive natural 

numbers;  

AC3: =IF(n=0," ", IF(n=AB3,SUM(B3:Z27),AC3)) – replicated to cell A27, because 

this formula includes  circular reference, one has to make it work and in the 

calculation dialog box to set the number of times Excel iterates the formula at, say, 

100. Thus, as the value of n changes, the numbers in the range AC3:AC27 show the 

total number of triangles the longest side of which comprises n straws available in 

p colors.   
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