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Spreadsheet Implementation of Numerical and Analytical Solutions to
Some Classical Partial Differential Equations

Abstract
This paper presents the implementation of numerical and analytical solutions of some of the classical partial
differential equations using Excel spreadsheets. In particular, the heat equation, wave equation, and Laplace’s
equation are presented herein since these equations have well known analytical solutions. The numerical
solutions can be easily obtained once the differential equations are discretized via finite differences and then
using cell formulas to implement the resulting recursive algorithms and other iterative methods such as the
successive over-relaxation (SOR) method. The graphing capabilities of spreadsheets can be exploited to
enhance the visualization of the solutions to these equations. Furthermore, using Visual Basic for Applications
(VBA) can greatly facilitate the implementation of the analytical solutions to these equations, and in the
process, one obtains Fourier series approximations to functions governing initial and/or boundary conditions.

Keywords
Heat equation, wave equation, Laplace equation, partial differential equations, finite differences, successive
over-relaxation (SOR) method
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1. Introduction 

In science and engineering the dynamical behavior of systems in space 

and time is modeled by ordinary differential equations or partial 

differential equations.  Systems in which the variable of interest (e.g., 

temperature) depends on more than one independent variable (e.g., 

location and time) are mathematically modeled by partial differential 

equations (PDEs). The vast majority of PDEs require the use of computers 

for their numerical solution.  Only a handful of PDEs are amenable to 

analytical solutions through methods such as separation of variables, 

characteristics, or change of variables.  

This paper presents some of the classical PDEs that appear in 

numerous science and engineering applications.  More specifically, the 

heat equation, wave equation, and Laplace’s equation are presented 

herein.  These equations have well known analytical solutions which are 

obtainable through the method of separation of variables (Greenberg, 1998; 

Kreyszig, 2011; O’Neil, 2011). Moreover, because of linearity and 

homogeneity in the boundary conditions, the solutions to these equations 

naturally give rise to Fourier series.  

Electronic spreadsheets have been used to model many PDEs 

arising from science and engineering. For instance, Arganbright (1985) 

used VisiCalc to create an animated model of the two-dimensional heat 

flow on a plate by using circular references; Orvis (1997) discusses heat 

flow, along with a broad range of other science and engineering 

applications; Neuwirth and Arganbright (2004) present both one- and 

two-dimensional heat flow problems via animated discrete Excel models 

that display the flow through graphs and the spreadsheet grid display 

with conditional formatting.  

This paper presents the implementation of both numerical and 

analytical solutions of the heat equation, wave equation, and Laplace’s 

equation using Excel spreadsheets.  The presentation is inspired largely on 

online Excel tutorials used in classroom instruction at the University of 

British Columbia in Canada (Piccolo, n.d., a,b).  In this sense, the author 

does not claim a great deal of originality; nevertheless the author believes 

that this paper presents a new perspective insofar as it expands on the 

work of Piccolo (n.d., a,b) by accommodating slight generalizations 

1

Lau: Spreadsheet Solutions to Some Classical PDEs

Published by ePublications@bond, 2016



whenever feasible and, more important, using Visual Basic for 

Applications (VBA) to implement the analytical solutions and the Fourier 

series that represent initial and/or boundary conditions. The spreadsheet 

implementation of the solution to the Laplace equation presented in this 

paper draws from standard discretization models and uses the successive 

over-relaxation (SOR) method to iteratively find approximate solutions to 

the resulting system of linear algebraic equations (Gutierrez, 2009).  

The paper is organized as follows. Section 2 presents the one-

dimensional heat equation with two illustrative examples (a heat 

conducting bar with fixed temperatures at both ends, and a heat 

conducting bar with insulated ends); the numerical solution of the 

discretized heat equation is implemented using simple cell formulas, and 

the analytical solution is implemented using VBA. Following the same 

structure, Sections 3 presents the one-dimensional wave equation along 

with two examples (a string with clamped ends, and a string with zero-

derivative constraints at both ends). Section 4 discusses spreadsheet 

implementations of numerical and analytical solutions, including the SOR 

method, to the two-dimensional Laplace equation in Cartesian coordinates; 

a rectangular, heat conductive plate with Dirichlet boundary conditions is 

presented as an illustrative example. Finally, concluding remarks are 

given in Section 5. 

2. One-dimensional heat equation 

Case 1.  Heat conducting bar with fixed temperatures at both ends 

Consider a bar of length 𝐿  whose cross sectional area is negligible 

compared to its longitudinal dimension.  Then, the temperature 𝑢 of the 

bar at a distance 𝑥 from the left end of the bar (𝑥 = 0) and at time 𝑡 is 

governed by the heat equation (Greenberg, 1998; Kreyszig, 2011; O’Neil, 

2011)  

 𝜕𝑢

𝜕𝑡
 =  𝑐2

𝜕2𝑢

𝜕𝑥2
,            0 < 𝑥 < 𝐿,   𝑡 > 0 (1a) 

subject to the boundary conditions 
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 𝑢(0, 𝑡)  =  𝑈0     and     𝑢(𝐿, 𝑡)  =  𝑈𝐿 ,       ∀𝑡 > 0   (1b) 

and the initial condition 

 𝑢(𝑥, 0)  =  𝑓(𝑥),        0 < 𝑥 < 𝐿. (1c) 

In (1a)–(1c), 𝑐2 denotes the thermal diffusivity, 𝑈0 the temperature 

at the left end of the bar, 𝑈𝐿 the temperature at the right end of the bar, 

and 𝑓(𝑥) the initial temperature distribution along the bar.  In some sense, 

the heat equation being discussed here represents a slight generalization 

of the work done by Piccolo (n.d., a), where both ends of the bar are kept 

at zero temperature.   

Numerical solution of (1a)–(1c)  

The idea is to obtain a discretized version of the heat equation (1a). This 

can be achieved by approximating the partial derivatives with difference 

quotients and establishing the relationships between 𝑢  at (𝑥, 𝑡)  and its 

neighboring values a distance Δ𝑥 apart and at a time Δ𝑡 later (Piccolo, n.d., 

a).  In particular, the derivative with respect to time will be approximated 

with a forward difference, i.e.,  

 𝜕𝑢

𝜕𝑡
(𝑥, 𝑡)  ≈   

𝑢(𝑥, 𝑡 + ∆𝑡) − 𝑢(𝑥, 𝑡)

∆𝑡
 (2) 

and the derivative with respect to space will be approximated with a 

central difference, i.e.,   

 𝜕2𝑢

𝜕𝑥2
(𝑥, 𝑡) ≈  

𝑢(𝑥 + ∆𝑥, 𝑡) − 2𝑢(𝑥, 𝑡) + 𝑢(𝑥 − ∆𝑥, 𝑡)

∆𝑥2
.  (3) 

Substituting (2) and (3) into (1a), and rearranging terms, yields the 

heat equation in discretized form 

 𝑢(𝑥, 𝑡 + ∆𝑡) = 𝑢(𝑥, 𝑡) + 𝛾[𝑢(𝑥 + ∆𝑥, 𝑡) − 2𝑢(𝑥, 𝑡) + 𝑢(𝑥 − ∆𝑥, 𝑡)]   (4) 

where 𝛾 =  𝑐2 (
Δ𝑡

Δ𝑥2).  

To propose an algorithm suitable for computer implementation, the 

spatial interval and the time interval are subdivided into increments of 

size Δ𝑥  and Δ𝑡, respectively.  That is, each sample point in the spatial 

interval is obtained from 
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𝑥𝑛 = 𝑥𝑛−1 + ∆𝑥,        for  𝑛 = 1,2, … , 𝑁,  with  𝑥0 = 0  and  𝑥𝑁 = 𝐿 

and each sample time in the time interval [0,T] is obtained from  

𝑡𝑘 = 𝑡𝑘−1 + ∆𝑡,        for  𝑘 = 1,2, … , 𝑀,  with  𝑡0 = 0  and  𝑡𝑀 = 𝑇 

where 𝑇 is the length of the time interval of interest.   

With the spatial and time interval partitioning described above, 

and denoting the value of 𝑢  at the 𝑛th sample point 𝑥𝑛  and at the 𝑘th 

sample time 𝑡𝑘 as 𝑢(𝑥𝑛, 𝑡𝑘) = 𝑢𝑛
𝑘, and noting that   

𝑢(𝑥𝑛 + ∆𝑥, 𝑡𝑘) = 𝑢(𝑥𝑛+1, 𝑡𝑘) = 𝑢𝑛+1
𝑘 , 

𝑢(𝑥𝑛 − ∆𝑥, 𝑡𝑘) = 𝑢(𝑥𝑛−1, 𝑡𝑘) = 𝑢𝑛−1
𝑘 , 

𝑢(𝑥𝑛, 𝑡𝑘 + ∆𝑡) = 𝑢(𝑥𝑛, 𝑡𝑘+1) = 𝑢𝑛
𝑘+1 

the discretized heat equation in (4) can be rewritten in the more compact 

form  

 𝑢𝑛
𝑘+1 = 𝑢𝑛

𝑘 + 𝛾[𝑢𝑛+1
𝑘 − 2𝑢𝑛

𝑘 + 𝑢𝑛−1
𝑘 ].   (5) 

Equation (5) gives the approximate value of 𝑢 at point 𝑥𝑛  and at 

time 𝑡𝑘+1, which is calculated from the values of 𝑢 at three adjacent points 

𝑥𝑛+1, 𝑥𝑛, 𝑥𝑛−1 at the preceding sample time 𝑡𝑘.  

An important consideration in the implementation of any 

algorithm for numerical computation is convergence.  To ensure the 

convergence of (5), the user must choose Δ𝑥 and Δ𝑡 sufficiently small for 

reasonable resolution and verify that the quantity 𝛾 = 𝑐2(Δ𝑡 Δ𝑥2⁄ )  be 

much less than unity.   

EXAMPLE 1.   Solve the heat equation  

𝜕𝑢

𝜕𝑡
 =  0.25

𝜕2𝑢

𝜕𝑥2
,            0 < 𝑥 < 1,   𝑡 > 0 

subject to the boundary conditions 

𝑢(0, 𝑡)  =  10      and      𝑢(1, 𝑡)  =  30,        ∀𝑡 > 0 

and the initial condition 

𝑢(𝑥, 0)  = 𝑓(𝑥) =  {
10 + 60𝑥,        0 < 𝑥 < 0.5;
50 − 20𝑥,        0.5 ≤ 𝑥 < 1.
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Here, 𝑐2 = 0.25, 𝐿 = 1, 𝑈0 = 10, and 𝑈𝐿 = 30.  Choosing Δ𝑥 = 0.05 

and Δ𝑡 = 0.005  will give 𝛾 = 0.5 < 1.  To obtain a numerical solution to 

this example using an Excel spreadsheet, follow these steps: 

1) Enter the values of 𝑐2, 𝑈0, 𝑈𝐿 , ∆𝑥, and ∆𝑡.  The value of 𝛾 can be 

computed with a cell formula according to 𝑐2(Δ𝑡 Δ𝑥2⁄ ).  The initial 

setup might look like the portion of the spreadsheet shown in 

Figure 1.  In this case, the value of 𝑐2 has been entered in cell H10, 

𝑈0  in D5, 𝑈𝐿  in G5, ∆𝑥  in B10, and ∆𝑡  in E10.  The value of 𝛾  is 

located in cell L10 and contains the formula =H10*(E10/B10^2).   

 

Figure 1:  Initial setup for the numerical solution of Example 1. 

2) Generate the sample points of the spatial interval.  Enter 0 (zero) in 

cell C13.  In cell D13, type the formula =C13+$B$10 (note the absolute 

reference to cell B10 that contains Δ𝑥).  Copy the formula in cell D13 

onto the cell range E13:W13.  The result might resemble that of 

Figure 2.  
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Figure 2:  Spreadsheet after constructing the space interval. 

3) Generate the sample times of the time interval.  Enter 0 (zero) in 

cell A15.  In cell A16, type the formula =A15+$E$10 (note the absolute 

reference to cell E10 that contains Δ𝑡).  Copy the formula in cell A16 

onto the cell range A17:A670.  The result might resemble that of 

Figure 3.  Only the first 20 rows are shown in the figure; cell A670 

will display 3.275.  The time 𝑡 = 3.275 simply means that the length 

𝑇 of the time interval of interest is 3.275 (the reason for this choice 

will become apparent in step 6).  

 

Figure 3:  Spreadsheet after constructing the time interval. 

4) Impose the boundary conditions located in cells D5 and G5.  This is 

accomplished by typing the formula =$D$5 (note the absolute 

reference) in cell C15 and copying it onto the cell range C16:C670; 

this accounts for the (fixed) temperature at the left end of the heat 

conducting bar.  Similarly, typing the formula =$G$5 in cell W15 
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and then copying it onto the cell range W16:W670 will account for 

the temperature at the right end of the bar.  After completing this 

step, the spreadsheet will look like Figure 4 (again, only the first 20 

rows are shown).   

 

Figure 4:  Spreadsheet after imposing the boundary conditions.  

5) Impose the initial condition 𝑢(𝑥, 0) = 𝑓(𝑥) .  To accomplish this, 

type the formula  =IF(D13<0.5,10+60*D13,50-20*D13) in cell D15, and 

copy it onto the cell range E15:V15.  The result is shown in Figure 5 

(only the first 20 rows are displayed).  

 

Figure 5:  Spreadsheet after imposing the initial condition.  
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6) Implement the discretized heat equation (5). To do this, type the 

formula =D15+$L$10*(E15-2*D15+C15) in cell D16 (note the absolute 

reference to cell L10 for the value of 𝛾).  Copy the formula onto the 

cell range D16:V670.  Figure 6 shows the final result (rows 18 

through 664 have been hidden to prevent the figure from being too 

unwieldy).  For the choice of 𝑡 = 3.275, it can be seen that the 

numerical solution has converged to two exact decimal places for 

all sample points in the 𝑥 interval. 

 

Figure 6:  Numerical solution to Example 1.  

The graphing capabilities of Excel can be used to visualize the 

solution just obtained.  For example, Figure 7 shows the temperature 

distribution along the heat conducting bar at three different instants, 

namely, 𝑡 = 0, 𝑡 = 0.25, and 𝑡 = 3.275.  The graph for 𝑡 = 0 corresponds to 

the initial condition 𝑢(𝑥, 0) = 𝑓(𝑥). The Fourier series representation of 

𝑓(𝑥)  will be discussed shortly in the analytical solution of the heat 

equation.  
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Figure 7:  Temperature distribution in heat conducting bar.  

Analytical solution of (1a)–(1c) 

The analytical solution of (1a)–(1c) is given by (Greenberg, 1998; Kreyszig, 

2011; O’Neil, 2011)  

  𝑢(𝑥, 𝑡) = 𝑣(𝑥) + 𝑤(𝑥, 𝑡)   (6a) 

where  

 𝑣(𝑥) =  𝑈0 +
𝑈𝐿 − 𝑈0

𝐿
𝑥, (6b) 

 
𝑤(𝑥, 𝑡) =  ∑ 𝐵𝑛 sin (

𝜋𝑛𝑥

𝐿
)

∞

𝑛=1

𝑒−𝜆𝑛
2 𝑡               (𝜆𝑛 =

𝜋𝑐𝑛

𝐿
), (6c) 

 
𝐵𝑛 =

2

𝐿
∫ [𝑓(𝑥) − 𝑣(𝑥)]𝑑𝑥

𝐿

0

. (6d) 

In (6a), 𝑣(𝑥)  represents the steady-state solution and 𝑤(𝑥, 𝑡)  the 

transient solution to the heat equation problem defined in (1a)–(1c).   

To implement the analytical solution (6a)–(6d) on an Excel 

spreadsheet, a user-defined function can be created using Visual Basic for 

Applications (VBA).   By doing so the user can greatly simplify the typing 

of cell formulas and streamline the presentation of the spreadsheet; 

otherwise, auxiliary worksheets would be required to compute the Fourier 

0
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coefficients 𝐵𝑛 and the series solution 𝑤(𝑥, 𝑡) with somewhat cumbersome 

cascading cell referencing.  

In what follows the key steps for implementing the analytical 

solution to the problem in Example 1 are given. 

1) Launch the Excel VBA editor (accessible from the Developer tab in 

the ribbon; if not visible, add it by customizing the ribbon from the 

Excel options of the File menu in Excel 2010 or later).  Create the 

user-defined function heateq1 by typing the code shown in Figure 8.  

The function requires two input parameters, x and t, which 

represent a sample point in the space interval and a sample time.  

The function computes the Fourier coefficients 𝐵𝑛 given in (6d) and 

the series 𝑤(𝑥, 𝑡)  in (6c); these quantities correspond to the 

variables Bn and S in the code.  For this example, the Fourier 

coefficients were computed manually from Equation (6d) to yield 

𝐵𝑛 =
160 sin(0.5𝜋𝑛)

𝜋2𝑛2 , 𝑛 = 1, 2, …   

 

Figure 8:  VBA code for the user-defined function heateq1. 

2) Retaining the same structure of the numerical solution shown in 

Figure 6, create a new table on another part of the worksheet, 

preferably maintaining the same row numbers and the values of ∆𝑥 

and ∆𝑡  used in the numerical solution for easy side-by-side 

comparison between solutions.  For instance, creating the table in 

the cell range Y13:AU670 will suffice (AA13:AU13 would contain the 

sample points 𝑥𝑛, Y15:Y670 would contain the sample times 𝑡𝑘, and 
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AA15 would be the first programmed cell).  To populate the table 

with sample values of the analytical solution, type the formula 

=$D$5+($G$5-$D$5)*AA$13+heateq1(AA$13,$Y15) in cell AA15.  Then 

copy the formula onto the cell range AA15:AU670.  The result is 

shown in Figure 9 (again, rows 18 through 664 have been hidden 

for easy viewing).   

 

Figure 9:  Analytical solution of Example 1. 

The analytical solution shown in Figure 9 agrees well with the 

numerical solution given in Figure 6.  However, comparing the rows 

corresponding to 𝑡 = 3.275 (row 670) in both figures, it can be said that the 

analytical solution converges more slowly than the numerical solution; a 

closer inspection of row 670 in Figure 9 reveals that not all temperatures at 

the sample points in the space interval have attained the same level of 

precision when rounded to two decimal places, as was the case in the 

numerical solution at this very same iteration step (𝑡 = 3.275).  

In addition, observe that the analytical solution (6a) implemented 

by the formula =$D$5+($G$5-$D$5)*AA$13+heateq1(AA$13,$Y15) in cell 

AA15 has two parts:  $D$5+($G$5-$D$5)*AA$13 implements the steady-state 

solution 𝑣(𝑥) in (6b), and heateq1(AA$13,$Y15) implements the transient 

solution 𝑤(𝑥, 𝑡)  in (6c) – these two contributions produce the desired 

analytical solution (6a).  Also notice that the boundary conditions did not 

have to be copied directly from cells D5 and G5 onto AA15:AA670 (for 𝑥 = 0) 

and AU15:AU670 (for 𝑥 = 1), as was the case in the numerical solution; 

likewise, the initial condition 𝑓(𝑥)  did not have to be programmed 

directly in the cell range AA15:AU15 (for 𝑡 = 0 ).  The reason that the 

boundary conditions and the initial condition were not entered directly 

11

Lau: Spreadsheet Solutions to Some Classical PDEs

Published by ePublications@bond, 2016



from the input data is due to the fact that these conditions are already 

incorporated in the analytical solution (6a)–(6d).  That is why a single 

formula in cell AA15 could be replicated to fill the entire table (AA15:AU670) 

with sample values of the analytical solution.  As Figure 9 shows, the 

boundary conditions are met exactly; the initial condition, however, is met 

approximately due to the truncation in the series (6c) when evaluated by 

the function heateq1.  Indeed, the values in the cell range AA15:AU15 of 

Figure 9 constitute a Fourier series approximation to the initial condition 

𝑓(𝑥) in the cell range C15:W15 of Figure 6; this comparison is illustrated in 

Figure 10 and it shows that the Fourier series approximates the initial 

condition very well.  

 

Figure 10:  Fourier series approximation to the initial condition 𝑓(𝑥) of Example 1.  

Caution.  A couple of remarks are in order:  

 Although the term analytical solution is used in the present 

discussion, it is not meant to imply exact.  As mentioned before, the 

series in (6c) had to be truncated to 25 terms (see the constant Nmax 

in the header of the code shown in Figure 8) for computer 

evaluation.  

 The temperatures in cells D5 and G5 can be changed by the user and 

the numerical solution can still be correct.  This would not be the 
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case in the analytical solution because the expressions that appear 

in the VBA code given in Figure 8 were programmed after manual 

computation of the Fourier coefficients 𝐵𝑛 given by Equation (6d).  

Thus, the formulas in the VBA code are somewhat ad hoc.  To make 

the code more flexible at handling other user-supplied 

temperatures would require a more parametric style of 

programming at the expense of readability; in this paper the author 

opted for clarity of exposition and simple coding.  

Case 2.  Heat conducting bar with insulated ends 

Instead of having fixed temperatures at both ends of the bar, now consider 

the bar with both ends perfectly insulated (no heat escapes to the external 

environment).  This situation is modeled by (Greenberg, 1998; Kreyszig, 

2011; O’Neil, 2011)  

 𝜕𝑢

𝜕𝑡
 =  𝑐2

𝜕2𝑢

𝜕𝑥2
,            0 < 𝑥 < 𝐿,   𝑡 > 0 (7a) 

subject to the boundary conditions 

 
𝜕𝑢

𝜕𝑥
(0, 𝑡)  =  0     and    

 𝜕𝑢

𝜕𝑥
(𝐿, 𝑡)  =  0,       ∀𝑡 > 0 (7b) 

and the initial condition 

 𝑢(𝑥, 0)  =  𝑓(𝑥),        0 < 𝑥 < 𝐿. (7c) 

Compared with Equations (1a)–(1c), the boundary conditions are 

changed in (7a)–(7c). The problem being presented here is a slight 

variation of the one proposed by Piccolo (n.d., a), where the left end of the 

bar is kept at zero temperature and the right end is insulated.   

Numerical solution of (7a)–(7c)    

Equation (5) is still the key formula for computing sample values of the 

solution to the heat equation problem (7a)–(7c).  At the boundaries, where 

𝑥0 = 0 and 𝑥𝑁 = 𝐿, evaluation of (5) produces the following equations:   

𝑢0
𝑘+1 = 𝑢0

𝑘 + 𝛾[𝑢1
𝑘 − 2𝑢0

𝑘 + 𝑢−1
𝑘 ] (8a) 

and  
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𝑢𝑁
𝑘+1 = 𝑢𝑁

𝑘 + 𝛾[𝑢𝑁+1
𝑘 − 2𝑢𝑁

𝑘 + 𝑢𝑁−1
𝑘 ]. (8b) 

Unfortunately, the preceding equations require estimates of 𝑢−1
𝑘  

and 𝑢𝑁+1
𝑘  which fall outside the domain of definition (i.e., 𝑥−1, 𝑥𝑁+1 ∉

 [0, 𝐿]).  To circumvent this difficulty, the values of 𝑢−1
𝑘  and 𝑢𝑁+1

𝑘  will be 

inferred from the derivatives (not actual temperatures) at the boundaries.  

These derivatives may be approximated by a forward difference or a 

central difference.  Approximating the derivatives by a central difference 

may prove to be more convenient for spreadsheet implementation as no 

extra columns would be required to insert the cell formulas for the 

boundaries.  More specifically, the derivatives at 𝑥0 = 0 and 𝑥𝑁 = 𝐿 will be 

approximated by the central differences  

𝜕𝑢

𝜕𝑥
(𝑥0, 𝑡𝑘) ≈

𝑢(𝑥0 + ∆𝑥, 𝑡𝑘) − 𝑢(𝑥0 − ∆𝑥, 𝑡𝑘)

2∆𝑥
=

𝑢(𝑥1, 𝑡𝑘) − 𝑢(𝑥−1, 𝑡𝑘)

2∆𝑥

=
𝑢1

𝑘 − 𝑢−1
𝑘

2∆𝑥
 

and  

𝜕𝑢

𝜕𝑥
(𝑥𝑁 , 𝑡𝑘) ≈

𝑢(𝑥𝑁 + ∆𝑥, 𝑡𝑘) − 𝑢(𝑥𝑁 − ∆𝑥, 𝑡𝑘)

2∆𝑥
=

𝑢(𝑥𝑁+1, 𝑡𝑘) − 𝑢(𝑥𝑁−1, 𝑡𝑘)

2∆𝑥

=
𝑢𝑁+1

𝑘 − 𝑢𝑁−1
𝑘

2∆𝑥
. 

Using the preceding central differences and taking into account the 

given boundary conditions, it can be deduced that  

𝜕𝑢

𝜕𝑥
(𝑥0, 𝑡𝑘) =

𝜕𝑢

𝜕𝑥
(0, 𝑡𝑘) = 0 ≈

𝑢1
𝑘 − 𝑢−1

𝑘

2∆𝑥
    →     𝑢−1

𝑘 = 𝑢1
𝑘 

and  

𝜕𝑢

𝜕𝑥
(𝑥𝑁 , 𝑡𝑘) =

𝜕𝑢

𝜕𝑥
(𝐿, 𝑡𝑘) = 0 ≈

𝑢𝑁+1
𝑘 − 𝑢𝑁−1

𝑘

2∆𝑥
     →      𝑢𝑁+1

𝑘 = 𝑢𝑁−1
𝑘 .  

Having determined that 𝑢−1
𝑘 = 𝑢1

𝑘 and 𝑢𝑁+1
𝑘 = 𝑢𝑁−1

𝑘 , Equations (8a) and 

(8b) can now be rewritten for the boundaries to obtain  

𝑢0
𝑘+1 = 𝑢0

𝑘 + 2𝛾[𝑢1
𝑘 − 𝑢0

𝑘] (9a) 

and  

𝑢𝑁
𝑘+1 = 𝑢𝑁

𝑘 + 2𝛾[𝑢𝑁−1
𝑘 − 𝑢𝑁

𝑘 ]. (9b) 
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With Equation (5) for the interior points of the space interval and 

(9a)–(9b) for the boundary points, together with the given initial condition, 

all elements are in place to construct a spreadsheet model for the 

numerical solution of (7a)–(7c), as illustrated by the following example.  

EXAMPLE 2.   Solve the heat equation  

𝜕𝑢

𝜕𝑡
 =  0.25

𝜕2𝑢

𝜕𝑥2
,            0 < 𝑥 < 1,   𝑡 > 0 

subject to the boundary conditions 

𝜕𝑢

𝜕𝑥
(0, 𝑡)  =  0      and      

𝜕𝑢

𝜕𝑥
(1, 𝑡)  =  0,        ∀𝑡 > 0 

and the initial condition 

𝑢(𝑥, 0)  = 𝑓(𝑥) =  {
10,        0 < 𝑥 < 0.5;
30,        0.5 ≤ 𝑥 < 1.

 

The basic steps for finding the numerical solution to this example 

using a spreadsheet are outlined below.  

1) Create a table with the space and time intervals.  For instance, the 

table can span the cell range A13:W1040 (see Figure 11; only the first 

20 rows are shown).  The range C13:W13 contains the sample points 

in 𝑥 with ∆𝑥 = 0.05; the range A15:A1040 contains the samples in 𝑡 

with ∆𝑡 = 0.004.  To enter the initial condition 𝑢(𝑥, 0) = 𝑓(𝑥), type 

=IF(C13<0.5,10,30) in cell C15 and then copy the formula onto 

D15:W15.   

To insert the boundary conditions into the spreadsheet, type 

=C15+2*$L$10*(D15-C15) in cell C16 to code Equation (9a), and in cell 

W16 type =W15+2*$L$10*(V15-W15) to code Equation (9b).  The 

initial setup is shown in Figure 11.  
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Figure 11:  Initial setup for the numerical solution of Example 2. 

2) Code Equation (5) for the interior points of the space interval.  To 

do this, type =D15+$L$10*(E15-2*D15+C15) in cell D16, and then copy 

it onto the cell range E16:V16.  This will generate the numerical 

approximation at the next sample time (values in range C16:W16).  

To propagate the solution in time, copy the cell range C16:W16 onto 

C17:W1040.  The final result is shown in Figure 12 (rows 18 through 

1034 have been hidden).   

 

Figure 12:  Numerical solution of Example 2.  

Observe that the numerical solution converges to a constant 

temperature of 𝑢 = 20.5 (see row 1040 of the spreadsheet in Figure 12).  As 

will be discussed shortly, the actual steady-state temperature is 𝑢𝑠𝑠 = 20.  

That is, for the chosen values of ∆𝑥 and ∆𝑡 there is a 2.5% approximation 

error in the steady-state temperature.  The reader can try to refine the 
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numerical solution by decreasing the values of ∆𝑥 and ∆𝑡, say ∆𝑥 = 0.02 

and ∆𝑡 = 0.0005 (recall that 𝛾 =  𝑐2(∆𝑡 ∆𝑥2⁄ ) must be much less than unity 

for convergence); for this new choice of ∆𝑥  and ∆𝑡 , the reader would 

obtain an approximate steady-state temperature of 𝑢 = 20.2  (a 1% 

approximation error at the expense of having a table with more than 50 

columns and 8,000 rows!).  

Figure 13 shows temperature distributions in the bar at three 

different times (strictly speaking, the blue line representing the initial 

temperature distribution 𝑢(𝑥, 0) = 𝑓(𝑥)  at 𝑡 = 0  should look like a 

piecewise constant function; however, because of the value of the spatial 

resolution ∆𝑥 = 0.05 and the graphical rendition of the XY Scatter line chart, 

the jump discontinuity at 𝑥 = 0.5 is not visible since Excel attempts to 

interpolate smooth lines between points). It can be clearly seen that as 

time progresses, the temperature in the bar reaches a uniform value (20.5 

in this example).  

 

Figure 13:  Temperature distribution in heat conducting bar of Example 2. 
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Analytical solution of (7a)–(7c) 

The analytical solution to the heat equation problem (7a)–(7c) is given by 

(Greenberg, 1998; Kreyszig, 2011; O’Neil, 2011)  

𝑢(𝑥, 𝑡) =  𝐴0 +  ∑ 𝐴𝑛 cos (
𝜋𝑛𝑥

𝐿
) 𝑒−𝜆𝑛

2 𝑡

∞

𝑛=1

              (𝜆𝑛 =  
𝜋𝑐𝑛

𝐿
), (10a) 

𝐴0 =
1

𝐿
∫ 𝑓(𝑥)𝑑𝑥

𝐿

0

, (10b) 

𝐴𝑛 =
2

𝐿
∫ 𝑓(𝑥) cos (

𝜋𝑛𝑥

𝐿
) 𝑑𝑥

𝐿

0

,          𝑛 = 1, 2, …  (10c) 

Evaluating the Fourier coefficients given by Equations (10b) and 

(10c) with the given 𝑓(𝑥) results in  

𝐴0 = 20         and         𝐴𝑛 =  − 
40 sin(0.5𝜋𝑛)

𝜋𝑛
,   𝑛 = 1, 2, …  

With these Fourier coefficients, one can proceed to program the 

analytical solution in the VBA editor of Excel as shown in Figure 14.  The 

figure shows the code for the user-defined function heateq2, which can be 

appended to the existing code shown in Figure 8.  

 

Figure 14:  VBA code for the user-defined function heateq2. 

Taking a cue from Figure 9, the analytical solution can be obtained 

as follows:  
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1) Lay out a table that spans the cell range Y13:AU1040.  Distribute the 

sample points 𝑥𝑛 along AA13:AU13, and the sample times 𝑡𝑘 along 

Y15:Y1040.   

2) In cell AA15 type =heateq2(AA$13,$Y15) and copy the formula onto 

AA15:AU1040.  The result is shown in Figure 15 (rows 18 through 

1034 have been hidden).  Although the solution is being referred to 

as “analytical”, the values displayed in the figure are just 

approximations as a result of the truncation of the series in 

Equation (10a) when coded in VBA.  

 

Figure 15:  Analytical solution of Example 2. 

Once again, notice that the initial condition 𝑢(𝑥, 0) = 𝑓(𝑥) was not 

programmed directly on the spreadsheet (the cell rage AA15:AU15 

corresponding to 𝑡 = 𝑡0 = 0).  The initial condition is already incorporated 

by the Fourier coefficients 𝐴0 and 𝐴𝑛, as shown by Equations (10b) and 

(10c). Doing so will allow the user to obtain a Fourier series 

approximation to 𝑓(𝑥), as illustrated in Figure 16.  It can be seen that the 

Gibbs phenomenon is more apparent (see the overshoot at the point of 

discontinuity 𝑥 = 0.5 in the blue curve; ideally, the red curve representing 

𝑓(𝑥) should look like a step function but the limitation of the graphical 

rendering of the XY scatter plot of Excel impedes the appropriate display of 

the jump discontinuity).  
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Figure 16:  Fourier series approximation to the initial condition 𝑓(𝑥) of Example 2. 

3. One-dimensional wave equation 

Case 1.  Taut string clamped at endpoints 

The transverse displacement of a stretched vibrating string, clamped at 

both ends, is governed by the wave equation (Greenberg, 1998; Kreyszig, 

2011; O’Neil, 2011)   

 𝜕2𝑢

𝜕𝑡2
 =  𝑐2

𝜕2𝑢

𝜕𝑥2
,            0 < 𝑥 < 𝐿,   𝑡 > 0 (11a) 

subject to the boundary conditions 

 𝑢(0, 𝑡)  =  0     and     𝑢(𝐿, 𝑡)  =  0,       ∀𝑡 > 0   (11b) 

and the initial conditions 

 𝑢(𝑥, 0)  =  𝑓(𝑥)       and     
𝜕𝑢

𝜕𝑡
(𝑥, 0) = 𝑔(𝑥),        0 < 𝑥 < 𝐿 (11c) 

where  
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𝑢 = (transverse) displacement,
𝑥 = distance from the left end of the string,
𝑡 = time,
𝑐 = wave velocity,
𝐿 = length of the string,

𝑓(𝑥) = initial displacement,
𝑔(𝑥) = initial velocity.

 

Numerical solution of (11a)–(11c)  

To obtain a numerical solution, the partial derivatives in Equation (11a) 

can be approximated by their central differences, namely,  

𝜕2𝑢

𝜕𝑡2
≈

𝑢(𝑥, 𝑡 + ∆𝑡) − 2𝑢(𝑥, 𝑡) + 𝑢(𝑥, 𝑡 − ∆𝑡)

∆𝑡2
 

and  

𝜕2𝑢

𝜕𝑥2
≈

𝑢(𝑥 + ∆𝑥, 𝑡) − 2𝑢(𝑥, 𝑡) + 𝑢(𝑥 − ∆𝑥, 𝑡)

∆𝑥2
. 

Substituting the preceding finite differences into Equation (11a) 

and rearranging terms will result in  

𝑢(𝑥, 𝑡 + ∆𝑡) = 2𝑢(𝑥, 𝑡) − 𝑢(𝑥, 𝑡 − ∆𝑡) + 𝜂[𝑢(𝑥 + ∆𝑥, 𝑡) − 2𝑢(𝑥, 𝑡) + 𝑢(𝑥 − ∆𝑥, 𝑡)] (12) 

where 𝜂 =  (
𝑐Δ𝑡

Δ𝑥
)

2

.  

Alternatively, rewriting Equation (12) in terms of sample points in 

space and time yields  

𝑢(𝑥𝑛 , 𝑡𝑘+1) = 2𝑢(𝑥𝑛 , 𝑡𝑘) − 𝑢(𝑥𝑛 , 𝑡𝑘−1) + 𝜂[𝑢(𝑥𝑛+1, 𝑡𝑘) − 2𝑢(𝑥𝑛 , 𝑡𝑘) + 𝑢(𝑥𝑛−1, 𝑡𝑘)]  

or, after rearranging terms,  

𝑢(𝑥𝑛 , 𝑡𝑘+1) = 𝜂𝑢(𝑥𝑛+1, 𝑡𝑘) + 2(1 − 𝜂)𝑢(𝑥𝑛 , 𝑡𝑘) + 𝜂𝑢(𝑥𝑛−1, 𝑡𝑘) − 𝑢(𝑥𝑛 , 𝑡𝑘−1). (13) 

Equation (13) gives approximate values to the solution of the wave 

equation (11a).  The boundary conditions in (11b) can be entered directly 

into a spreadsheet.  The same can be said of the initial displacement 𝑓(𝑥) 

in (11c) – this will give the first row of values corresponding to 𝑡0 = 0.  

The initial velocity 𝑔(𝑥) in (11c) requires approximation of the derivative 

at 𝑡 = 0.  Using a central difference to approximate this derivative, i.e., 

𝜕𝑢

𝜕𝑡
≈

𝑢(𝑥, 𝑡 + ∆𝑡) − 𝑢(𝑥, 𝑡 − ∆𝑡)

2∆𝑡
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which evaluated at 𝑡 = 0 will result in  

𝑢(𝑥, ∆𝑡) − 𝑢(𝑥, −∆𝑡)

2∆𝑡
= 𝑔(𝑥) 

or   

𝑢(𝑥, −∆𝑡) = 𝑢(𝑥, ∆𝑡) − 2∆𝑡𝑔(𝑥). 

In the preceding equation ∆𝑡 = 𝑡1 , while −∆𝑡 = 𝑡−1 . The sample 

time 𝑡−1 may be regarded as a fictitious time occurring exactly one step ∆𝑡 

prior to 𝑡0 = 0 .  Thus, in terms of space-time samples, the preceding 

equation can be written in the alternative form   

𝑢(𝑥𝑛, 𝑡−1) = 𝑢(𝑥𝑛, 𝑡1) − 2∆𝑡𝑔(𝑥𝑛). (14) 

Equation (13) is also valid when 𝑡0 = 0 (i.e., 𝑘 = 0) resulting in   

𝑢(𝑥𝑛, 𝑡1) = 𝜂𝑢(𝑥𝑛+1, 0) + 2(1 − 𝜂)𝑢(𝑥𝑛, 0) + 𝜂𝑢(𝑥𝑛−1, 0) − 𝑢(𝑥𝑛, 𝑡−1) (15) 

and taking into account (14), after rearranging terms, Equation (15) 

becomes 

𝑢(𝑥𝑛, 𝑡1) =
𝜂

2
𝑢(𝑥𝑛+1, 0) + (1 − 𝜂)𝑢(𝑥𝑛, 0) +

𝜂

2
𝑢(𝑥𝑛−1, 0) + ∆𝑡𝑔(𝑥𝑛). (16) 

Equation (16) produces the second row of values for 𝑡1 = Δ𝑡  by 

incorporating the initial velocity 𝑔(𝑥) from (11c).  With the discretized 

equations (13) and (16) in place, the following example outlines the steps 

for constructing a spreadsheet model for the numerical solution of (11a)–

(11c).  

EXAMPLE 3.   Solve the wave equation  

 𝜕2𝑢

𝜕𝑡2
 =  4

𝜕2𝑢

𝜕𝑥2
,            0 < 𝑥 < 1,   𝑡 > 0  

subject to the boundary conditions 

 𝑢(0, 𝑡)  =  0     and     𝑢(1, 𝑡)  =  0,       ∀𝑡 > 0    

and the initial conditions 

𝑢(𝑥, 0) = 𝑓(𝑥) =  0.1 − 0.2|𝑥 − 0.5|  and  
𝜕𝑢

𝜕𝑡
(𝑥, 0) = 𝑔(𝑥) = 𝑥(1 − 𝑥), 0 < 𝑥 < 1. 

To construct the spreadsheet model, perform the following steps: 
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1) Lay out a table on the cell range A13:W421 with the samples of the 

space interval in C13:W13 and the time interval in A15:A421 (see 

Figure 17).  Enter the boundary conditions by typing 0 (zero) in 

C15:C421 for 𝑥 = 0, and 0 (zero) in W15:W421 for 𝑥 = 1.  For the 

initial displacement 𝑓(𝑥), type the formula =0.1-0.2*ABS(D13-0.5) in 

cell D15 and copy it onto the cell range E15:V15 (the first row for 

𝑡0 = 0 is now completed).  To account for the initial velocity 𝑔(𝑥), 

code Equation (16) by typing the formula =($L$10/2)*E15+(1-

$L$10)*D15+($L$10/2)*C15+$E$10*D13*(1-D13) in cell D16 and then 

copying it onto E16:V16 (the second row for 𝑡1 = ∆𝑡 = 0.01 is now 

completed). After completing all of these preliminary steps, the 

initial setup should look like the one shown in Figure 17 (only the 

first 20 rows are displayed).   

 

Figure 17:  Initial setup for the numerical solution of Example 3.  

2) To fill in the rest of the table, code Equation (13) by typing the 

formula =$L$10*E16+2*(1-$L$10)*D16+$L$10*C16-D15 in cell D17, 

and then copying it onto the cell range D17:V421.  The end result is 

shown in Figure 18 (rows 18 through 415 have been hidden).   
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Figure 18:  Numerical solution of Example 3.  

Figure 19 shows the transverse displacement of the vibrating string 

at three different times. The oscillatory nature of the string displacement 

can be discerned from the figure.  

 

Figure 19:  Transverse displacement for the vibrating string of Example 3.   

Analytical solution of (11a)–(11c) 

The analytical solution to the wave equation (11a)–(11c) is given by 

(Greenberg, 1998; Kreyszig, 2011; O’Neil, 2011)  
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𝑢(𝑥, 𝑡) = ∑[𝐵𝑛 cos(𝜆𝑛𝑡) + 𝐵𝑛
∗ sin(𝜆𝑛𝑡)] sin (

𝜋𝑛𝑥

𝐿
)

∞

𝑛=1

              (𝜆𝑛 =
𝜋𝑐𝑛

𝐿
) (17a) 

𝐵𝑛 =
2

𝐿
∫ 𝑓(𝑥) sin (

𝜋𝑛𝑥

𝐿
)

𝐿

0

𝑑𝑥,            𝑛 = 1, 2, …  (17b) 

𝐵𝑛
∗ =

2

𝜋𝑐𝑛
∫ 𝑔(𝑥) sin (

𝜋𝑛𝑥

𝐿
)

𝐿

0

𝑑𝑥,            𝑛 = 1, 2, … (17c) 

The bulk of the work is to determine the Fourier coefficients 𝐵𝑛 and 

𝐵𝑛
∗  in accordance to Equations (17b) and (17c).  For the given initial 

conditions, namely, 𝑓(𝑥) = 0.1 − 0.2|𝑥 − 0.5|  and 𝑔(𝑥) = 𝑥(1 − 𝑥),  it is 

straightforward to find that  

𝐵𝑛 =  
0.8(−1)𝑛+1

𝜋2(2𝑛 − 1)2
        and        𝐵𝑛

∗ =
4

𝜋4(2𝑛 − 1)4
,      𝑛 = 1, 2, …  

 and that the series solution given by Equation (17a) is  

              𝑢(𝑥, 𝑡) = ∑ [
0.8(−1)𝑛+1

𝜋2(2𝑛 − 1)2
cos(2𝜋(2𝑛 − 1)𝑡)

∞

𝑛=1

+
4

𝜋4(2𝑛 − 1)4
sin(2𝜋(2𝑛 − 1)𝑡)] sin(𝜋(2𝑛 − 1)𝑥)         

The preceding equations will be used to write a VBA code for 

implementing the analytical solution of Example 3.  Figure 20 shows the 

VBA code for the user-defined function waveeq1.  

 

Figure 20:  VBA code for user-defined function waveeq1.  
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With the user-defined function in hand, one can proceed to 

construct a spreadsheet model for the analytical solution to the vibrating 

string problem of Example 3.  For instance, one can create a table that 

occupies the cell range Y13:AU421 (see Figure 21).  Then, distribute the 

sample points of the space interval along AA13:AU13 and the sample times 

along Y15:Y421.  Finally, type the formula =waveeq1(AA$13,$Y15) in cell 

AA15 and copy it onto AA15:AU421.  Figure 21 shows the end result (rows 

18 through 415 have been hidden).   

 

Figure 21:  Analytical solution of Example 3.  

Notice that neither of the boundary conditions (zero) nor the initial 

conditions has been hard coded on the spreadsheet; these conditions are 

already accounted for by the series solution in Equation (17a).  It can be 

seen from Figure 21 that the entries in column AU are in the order of 10−16, 

which may be regarded as zero for the boundary condition at 𝑥 = 1.  The 

rest of the values in the table agree very well with those found in the 

numerical solution shown in Figure 18.  

The analytical solution also provides Fourier series approximations 

to the initial conditions, as illustrated in Figure 22.  
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Figure 22:  Fourier series approximations to the initial conditions 

 𝑓(𝑥) and 𝑔(𝑥) of Example 3.  

The initial displacement 𝑓(𝑥)  is very well approximated by its 

Fourier series. The initial velocity 𝑔(𝑥) , however, shows small 

discrepancies between the actual function and its Fourier series, especially 

about the midpoint 𝑥 = 0.5 where the derivative changes sign (the values 

for the green curve were obtained by approximating the derivative by a 

forward difference).  A better approximation to 𝑔(𝑥) would have resulted 

if the user implemented the Fourier series directly, namely,   

𝑔(𝑥) = ∑ 𝐵𝑛
∗𝜆𝑛sin (

𝜋𝑛𝑥

𝐿
)

∞

𝑛=1

              (𝜆𝑛 =
𝜋𝑐𝑛

𝐿
) (18) 

which was not pursued here as this would have required additional 

programming of more formulas in the spreadsheet or another VBA macro.  

The author opted for exploiting the available data in Figure 21 to find a 

quick, but reasonable Fourier series approximation to 𝑔(𝑥).   

Case 2.  String with freely sliding ends  

Consider a rigid string with its two ends allowed to freely slide in the 

vertical direction such that the slope of the displacement curve is 

constrained to be zero.  This situation is modeled by 
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 𝜕2𝑢

𝜕𝑡2
 =  𝑐2

𝜕2𝑢

𝜕𝑥2
,            0 < 𝑥 < 𝐿,   𝑡 > 0 (19a) 

subject to the boundary conditions 

 
𝜕𝑢

𝜕𝑥
(0, 𝑡)  =  0     and     

𝜕𝑢

𝜕𝑥
(𝐿, 𝑡)  =  0,       ∀𝑡 > 0 (19b) 

and the initial conditions 

 𝑢(𝑥, 0)  =  𝑓(𝑥)       and     
𝜕𝑢

𝜕𝑡
(𝑥, 0) = 𝑔(𝑥),        0 < 𝑥 < 𝐿. (19c) 

Numerical solution of (19a)–(19c) 

The recursive equation (13) remains valid at interior space-time nodal 

points; the initial displacement 𝑓(𝑥)  can be coded directly on a 

spreadsheet, while the initial velocity 𝑔(𝑥)  can be incorporated via 

Equation (16).  As for the boundary conditions only the spatial derivatives 

at the endpoints are known (but not the values).  To deduce formulas for 

the derivatives at the boundaries, substitute 𝑥0 = 0  and 𝑥𝑁 = 𝐿  in 

Equation (13) to obtain approximate values of the string displacement at 

the endpoints, i.e., 

𝑢(0, 𝑡𝑘+1) = 𝜂𝑢(𝑥1, 𝑡𝑘) + 2(1 − 𝜂)𝑢(0, 𝑡𝑘) + 𝜂𝑢(𝑥−1, 𝑡𝑘) − 𝑢(0, 𝑡𝑘−1) (20a) 

and  

𝑢(𝐿, 𝑡𝑘+1) = 𝜂𝑢(𝑥𝑁+1, 𝑡𝑘) + 2(1 − 𝜂)𝑢(𝐿, 𝑡𝑘) + 𝜂𝑢(𝑥𝑁−1, 𝑡𝑘) − 𝑢(𝐿, 𝑡𝑘−1). (20b) 

Notice that 𝑥−1  in (20a) and 𝑥𝑁+1  in (20b) are outside the space 

interval. To circumvent this difficulty consider central difference 

approximations to the spatial derivatives at the boundaries, namely,  

0 =
𝜕𝑢

𝜕𝑥
(0, 𝑡) ≈

𝑢(𝑥1, 𝑡) − 𝑢(𝑥−1, 𝑡)

2∆𝑥
       →     𝑢(𝑥−1, 𝑡) = 𝑢(𝑥1, 𝑡) (21a) 

and  

0 =
𝜕𝑢

𝜕𝑥
(𝐿, 𝑡) ≈

𝑢(𝑥𝑁+1, 𝑡) − 𝑢(𝑥𝑁−1, 𝑡)

2∆𝑥
       →     𝑢(𝑥𝑁+1, 𝑡) = 𝑢(𝑥𝑁−1, 𝑡) (21b) 

which hold for any value of time 𝑡 and, in particular, 𝑡 = 𝑡𝑘.  Substituting 

(21a) and (21b) into (20a) and (20b), respectively, will result in  

𝑢(0, 𝑡𝑘+1) = 2𝜂𝑢(𝑥1, 𝑡𝑘) + 2(1 − 𝜂)𝑢(0, 𝑡𝑘) − 𝑢(0, 𝑡𝑘−1) (22a) 
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and  

𝑢(𝐿, 𝑡𝑘+1) = 2𝜂𝑢(𝑥𝑁−1, 𝑡𝑘) + 2(1 − 𝜂)𝑢(𝐿, 𝑡𝑘) − 𝑢(𝐿, 𝑡𝑘−1). (22b) 

Equations (22a) and (22b) give approximate values to the string 

displacement at the endpoints by enforcing the zero slope condition at the 

boundaries as required by (19b). Only one more detail needs to be 

addressed and it is how to reconcile the initial velocity constraint in 

Equation (16) and the zero slope constraint at the boundaries. More 

specifically, if one lets 𝑥𝑛 = 𝑥0 = 0 or 𝑥𝑛 = 𝑥𝑁 = 𝐿 in (16) then the sample 

points 𝑥−1 and 𝑥𝑁+1 will appear, but taking into account (21a) and (21b) 

the equations for the initial velocity at the boundaries will take the form  

𝑢(0, 𝑡1) = 𝜂𝑢(𝑥1, 0) + (1 − 𝜂)𝑢(0,0) + ∆𝑡𝑔(0), (23a) 

𝑢(𝐿, 𝑡1) = 𝜂𝑢(𝑥𝑁−1, 0) + (1 − 𝜂)𝑢(𝐿, 0) + ∆𝑡𝑔(𝐿). (23b) 

Notice that Equations (16), (23a), and (23b) give the values of the 

displacement at 𝑡 = 𝑡1  (i.e., the second row of the solution table).  

Equations (13), (16), (22a), (22b), (23a), and (23b) form a complete set from 

which a spreadsheet model can now be constructed as shown by the 

following example.  

EXAMPLE 4.   Solve the wave equation  

 𝜕2𝑢

𝜕𝑡2
 =  4

𝜕2𝑢

𝜕𝑥2
,            0 < 𝑥 < 1,   𝑡 > 0  

subject to the boundary conditions 

 
𝜕𝑢

𝜕𝑥
(0, 𝑡)  =  0     and     

𝜕𝑢

𝜕𝑥
(1, 𝑡)  =  0,       ∀𝑡 > 0  

and the initial conditions 

𝑢(𝑥, 0) = 𝑓(𝑥) =  0.2 cos(2𝜋𝑥)   and   
𝜕𝑢

𝜕𝑡
(𝑥, 0) = 𝑔(𝑥) = 0.5, 0 < 𝑥 < 1. 

Follow these steps to find the numerical solution to this example.  

1) Lay out a table on the cell range A13:W180 with the samples of the 

space interval in C13:W13 and the time interval in A15:A180 (see 

Figure 23). Enter the initial displacement 𝑓(𝑥)  by typing the 

formula =0.2*COS(2*PI()*C13) in cell C15 and then copying it onto 
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the cell range D15:W15.  To incorporate the initial velocity 𝑔(𝑥) at 

interior points of the space interval, code Equation (16) by typing 

the formula =($L$10/2)*E15+(1-$L$10)*D15+($L$10/2)*C15+$E$10*0.5 

in cell D16 and then copying it onto the cell range E16:V16. To 

account for the initial velocity 𝑔(𝑥) at the boundaries (𝑥 = 0 and 

𝑥 = 1), code Equation (23a) by typing the formula =$L$10*D15+(1-

$L$10)*C15+$E$10*0.5 in cell C16, and (23b) by typing the formula 

=$L$10*V15+(1-$L$10)*W15+$E$10*0.5 in cell W16.  The second row 

for 𝑡1 = ∆𝑡 = 0.01 is now completed and the initial setup should 

look like the one shown in Figure 23 (only the first 20 rows are 

displayed).   

 

Figure 23:  Initial setup for the numerical solution of Example 4.  

2) To fill in the rest of the table, code Equation (13) by typing the 

formula =$L$10*E16+2*(1-$L$10)*D16+$L$10*C16-D15 in cell D17, 

and then copying it onto the cell range E17:V17.  To implement the 

zero slope constraint at the boundaries, code Equation (22a) by 

entering the formula =2*$L$10*D16+2*(1-$L$10)*C16-C15 in cell C17, 

and (22b) by entering =2*$L$10*V16+2*(1-$L$10)*W16-W15 in cell 

W17. Finally, select the cell range C17:W17 and copy the contents to 

C18:W180. The end result is shown in Figure 24 (rows 18 through 

174 have been hidden). 
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Figure 24:  Numerical solution of Example 4.  

The transverse displacement of the vibrating string at three 

different times is shown in Figure 25. The displacement curves show that 

the string drifts upwards because of the initial upward push (𝑔(𝑥) = 0.5 

for 0 < 𝑥 < 1); also observe that because of the inflexibility of the string at 

the endpoints (zero slope constraint at the boundaries), the string tends to 

adopt a flat profile as time progresses.  

 

Figure 25:  Transverse displacement for the vibrating string of Example 4.  
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Analytical solution of (19a)–(19c) 

The analytical solution to the wave equation problem (19a)–(19c) can be 

obtained by the method of separation of variables (Greenberg, 1998; 

Kreyszig, 2011; O’Neil, 2011).  The solution can be shown to be   

𝑢(𝑥, 𝑡) =  𝐴0 + 𝐴0
∗ 𝑡 + ∑[𝐴𝑛 cos(𝜆𝑛𝑡) + 𝐴𝑛

∗ sin(𝜆𝑛𝑡)] cos (
𝜋𝑛𝑥

𝐿
)

∞

𝑛=1

           (𝜆𝑛 =  
𝜋𝑐𝑛

𝐿
), (24a) 

𝐴0 =
1

𝐿
∫ 𝑓(𝑥)𝑑𝑥

𝐿

0

, (24b) 

𝐴0
∗ =

1

𝐿
∫ 𝑔(𝑥)𝑑𝑥

𝐿

0

, (24c) 

𝐴𝑛 =
2

𝐿
∫ 𝑓(𝑥) cos (

𝜋𝑛𝑥

𝐿
) 𝑑𝑥

𝐿

0

,          𝑛 = 1, 2, …  (24d) 

𝐴𝑛
∗ =

2

𝜋𝑐𝑛
∫ 𝑔(𝑥) cos (

𝜋𝑛𝑥

𝐿
) 𝑑𝑥

𝐿

0

,          𝑛 = 1, 2, …  (24e) 

In this example, 𝑐 = 2, 𝐿 = 1, 𝑓(𝑥) = 0.2 cos(2𝜋𝑥),  𝑔(𝑥) = 0.5.  Thus, 

evaluating the Fourier coefficients in Equations (24b)–(24e) yields 𝐴0 =

0, 𝐴0
∗ = 0.5, 𝐴2 = 0.2, 𝐴𝑛 = 0 (𝑛 ≠ 2), 𝐴𝑛

∗ = 0 (𝑛 = 1, 2, … ) and, from (24a), 

the transverse displacement is given by   

𝑢(𝑥, 𝑡) = 0.5𝑡 + 0.2 cos(2𝜋𝑥) cos(4𝜋𝑡), (25) 

which is simple enough to code directly as a cell formula.  Hence, if the 

solution is to occupy the cell range Y13:AU180 (see Figure 26), then one 

would type the formula =0.5*$Y15+0.2*COS(2*PI()*AA$13)*COS(4*PI()*$Y15) 

in cell AA15 and then copy it onto AA15:AU180, producing the final table 

shown in Figure 26 (rows 18 through 174 have been hidden).  

 

Figure 26:  Analytical solution of Example 4.  
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Because of the choice of initial displacement for this example there 

is no difference between 𝑓(𝑥) and its Fourier series approximation, as it 

can be seen by substituting 𝑡 = 0 in Equation (25).  However, the initial 

velocity 𝑔(𝑥) = 0.5 and its Fourier series approximation will exhibit some 

differences as shown in Figure 27.  

 

Figure 27:  Fourier series approximation to the initial condition 𝑔(𝑥) = 0.5 of Example 4.  

4. Two-dimensional Laplace equation 

This section presents the problem of determining the steady-state 

temperature in a thin, thermally conductive rectangular plate of length 𝑎 

and width 𝑏, with the edges of the plate having temperature distributions 

𝑓(𝑥), 𝑔(𝑥), 𝑟(𝑦), and 𝑠(𝑦) impressed upon them, as shown in Figure 28. 

𝑦      

𝑏 
 𝑔(𝑥)    

     
𝑟(𝑦)  •(𝑥, 𝑦)  𝑠(𝑦)  

     
𝑥 

0  𝑓(𝑥) 𝑎 

Figure 28:  Thermally conductive rectangular plate showing dimensions and 

boundary conditions.  
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The steady-state temperature 𝑢  at an interior point (𝑥, 𝑦)  of the 

rectangular plate is governed by the two-dimensional Laplace equation 

(Greenberg, 1998; Kreyszig, 2011; O’Neil, 2011) 

𝜕2𝑢

𝜕𝑥2
 +  

𝜕2𝑢

𝜕𝑦2
 =  0,          0 < 𝑥 < 𝑎, 0 < 𝑦 < 𝑏 (26a) 

subject to the boundary conditions   

𝑢(𝑥, 0)  =  𝑓(𝑥),            0 < 𝑥 < 𝑎, (26b) 

𝑢(𝑥, 𝑏)  =  𝑔(𝑥),            0 < 𝑥 < 𝑎, (26c) 

𝑢(0, 𝑦)  =  𝑟(𝑦),             0 < 𝑦 < 𝑏, (26d) 

𝑢(𝑎, 𝑦)  =  𝑠(𝑦),             0 < 𝑦 < 𝑏. (26e) 

Numerical solution of (26a)–(26e) 

To discretize the Laplace equation (26a), the 𝑥  and 𝑦  intervals are 

subdivided to create a rectangular mesh of points 𝑥𝑖 = 𝑖∆𝑥 (𝑖 = 0,1, … , 𝑁) 

and 𝑦𝑗 = 𝑗∆𝑦 (𝑗 = 0,1, … , 𝑀), as illustrated in Figure 29. Observe that 𝑥𝑁 =

𝑁∆𝑥 = 𝑎  and 𝑦𝑀 = 𝑀∆𝑦 = 𝑏 .  Nodes with coordinates of the form 

(𝑥0, 𝑦𝑗), (𝑥𝑁 , 𝑦𝑗), (𝑥𝑖, 𝑦0), and (𝑥𝑖, 𝑦𝑀)  are boundary nodes, while the rest 

are interior nodes.  

𝑗 = 𝑀 
           

     
 

…
  

 
(𝑥𝑖 , 𝑦𝑗) 

  
  

𝑗 = 1 
 

∆y 

     ∆x 
   

  

𝑗 = 0 
 

           
 𝑖 = 0 𝑖 = 1 … 𝑖 = 𝑁 

Figure 29:  Rectangular mesh of points. 

The derivatives at an interior nodal location (𝑥𝑖, 𝑦𝑗)  in Equation 

(26a) can be approximated by central differences to obtain 

𝑢(𝑥𝑖+1, 𝑦𝑗) − 2𝑢(𝑥𝑖 , 𝑦𝑗) + 𝑢(𝑥𝑖−1, 𝑦𝑗)

∆𝑥2
+

𝑢(𝑥𝑖 , 𝑦𝑗+1) − 2𝑢(𝑥𝑖 , 𝑦𝑗) + 𝑢(𝑥𝑖 , 𝑦𝑗−1)

∆𝑦2
= 0. (27) 
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If the temperature at (𝑥𝑖, 𝑦𝑗)  is denoted by 𝑢(𝑥𝑖 , 𝑦𝑗) = 𝑢𝑖,𝑗 , and 

assuming equal increments ∆𝑥 = ∆𝑦 = ℎ , then the preceding equation 

becomes  

𝑢𝑖−1,𝑗 + 𝑢𝑖,𝑗−1 − 4𝑢𝑖,𝑗 + 𝑢𝑖+1,𝑗 + 𝑢𝑖,𝑗+1 = 0. (28a) 

For the boundary nodes, the equations are  

𝑢𝑖,0 = 𝑓(𝑥𝑖),         𝑖 = 1, 2, … , 𝑁 − 1, (28b) 

𝑢𝑖,𝑀 = 𝑔(𝑥𝑖),         𝑖 = 1, 2, … , 𝑁 − 1, (28c) 

𝑢0,𝑗 = 𝑟(𝑦𝑗),         𝑗 = 1, 2, … , 𝑀 − 1, (28d) 

𝑢𝑁,𝑗 = 𝑠(𝑦𝑗),         𝑗 = 1, 2, … , 𝑀 − 1. (28e) 

Equations (28a)–(28e) yield a system of (𝑁 − 1)(𝑀 − 1)  linear 

algebraic equations whose solution provides the approximate values of 

the temperatures at the interior nodes. The system of equations is sparse.  

If 𝑁  and 𝑀  are small, the system can be solved directly by Gaussian 

elimination or matrix inversion. If 𝑁 and 𝑀 are large, iterative techniques 

such as Jacobi, Gauss-Seidel, or relaxation methods are employed.  In this 

paper, an iterative technique referred to as successive over-relaxation (SOR) 

method is illustrated.  

Before introducing the SOR method, it is instructive to display the 

system of linear equations (28a) in the matrix form Ax = b, where  

A = [

𝑴 −𝑰
−𝑰 𝑴 −𝑰

−𝑰 ⋱ −𝑰
−𝑰 𝑴

]

[(𝑁−1)(𝑀−1)]×[(𝑁−1)(𝑀−1)]

,  

 

(29a) 

M = [

4 −1
−1 4 −1

−1 ⋱ −1
−1 4

]

(𝑁−1)×(𝑁−1)

,          I =

[

1
1

⋱
1

]

(𝑁−1)×(𝑁−1)

,  

 

(29b) 

x𝑇 = [𝑢1,1 𝑢2,1 ⋯ 𝑢𝑁−1,1| 𝑢1,2 𝑢2,2 ⋯ 𝑢𝑁−1,2| ⋯ |𝑢1,𝑀−1 𝑢2,𝑀−1 ⋯ 𝑢𝑁−1,𝑀−1],  (29c) 
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b𝑇 = [b̃1
𝑇 b̃2

𝑇 ⋯ b̃𝑀−2
𝑇 b̃𝑀−1

𝑇 ],  (29d) 

b̃1
𝑇 = [𝑢0,1 + 𝑢1,0 𝑢2,0 𝑢3,0 ⋯ 𝑢𝑁−2,0 𝑢𝑁−1,0 + 𝑢𝑁,1], (29e) 

b̃𝑗
𝑇 = [𝑢0,𝑗 0 ⋯ 0 𝑢𝑁,𝑗]        (𝑗 = 2, 3, … , 𝑀 − 2),  (29f) 

b̃𝑀−1
𝑇 = [𝑢0,𝑀−1 + 𝑢1,𝑀 𝑢2,𝑀 𝑢3,𝑀 ⋯ 𝑢𝑁−2,𝑀 𝑢𝑁,𝑀−1 + 𝑢𝑁−1,𝑀].  (29g) 

As can be seen from Equation (29a), the coefficient matrix A  is 

banded.  If 𝑁 and 𝑀 are not too large, 𝐀 and 𝐛 can be easily constructed 

according to (29a)–(29g) and the temperatures at the interior nodes of the 

mesh grid obtained as x = 𝐀−1b using the matrix functions MMULT and 

MINVERSE of Excel.  If 𝑁 and 𝑀 are too large then the SOR method can be 

employed. The SOR method represents an improvement over the Gauss-

Seidel method and can be formulated as (Gutierrez, 2009)  

𝑢𝑖,𝑗
(𝑘+1)

= 𝑢𝑖,𝑗
(𝑘)

+ 𝜔
𝑢𝑖−1,𝑗

(𝑘+1)
+ 𝑢𝑖,𝑗−1

(𝑘+1)
− 4𝑢𝑖,𝑗

(𝑘)
+ 𝑢𝑖+1,𝑗

(𝑘)
+ 𝑢𝑖,𝑗+1

(𝑘)

4
,     𝑘 = 0,1, … (30) 

which follows from Equation (28a).  In Equation (30), the superscripts 

denote the iteration number, and values with zero superscript correspond 

to the initial guesses; the quantity 𝜔 is the over-relaxation parameter and 

is such that 1 < 𝜔 < 2 (when 𝜔 = 1  the SOR reduces to Gauss-Seidel). 

Also observe that because the interior nodes are visited from left to right 

and from bottom to top, the most recent 𝑘 + 1st iterates for 𝑢𝑖−1,𝑗
(𝑘+1)

 and 

𝑢𝑖,𝑗−1
(𝑘+1)

 would be available to compute the next iterate for 𝑢𝑖,𝑗
(𝑘)

.   

The following example shows how to implement the SOR method 

for solving a Laplace equation numerically.  

EXAMPLE 5.   Solve the Laplace equation  

𝜕2𝑢

𝜕𝑥2
 + 

𝜕2𝑢

𝜕𝑦2
 =  0,          0 < 𝑥 < 1, 0 < 𝑦 < 1 

subject to the boundary conditions 

𝑢(𝑥, 0)  =  1,            0 < 𝑥 < 1, 

𝑢(𝑥, 1)  =  3,            0 < 𝑥 < 1, 

𝑢(0, 𝑦)  =  4,            0 < 𝑦 < 1, 

𝑢(1, 𝑦)  =  2,            0 < 𝑦 < 1. 

To solve the Laplace equation numerically, follow these steps:  
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1) Divide the 𝑥 and 𝑦 intervals in steps of size, say ∆𝑥 = ∆𝑦 = 0.05 (for 

a total of 𝑁×𝑀 = 19×19 = 361  unknown temperatures at the 

interior nodes in the mesh grid). Write the corresponding 

coordinates of the (𝑥, 𝑦) points thus generated and their associated 

(𝑖, 𝑗)  indices for ease of reference. Also enter the boundary 

conditions, using cell formulas if necessary (in case the boundary 

conditions are given as functions of 𝑥 or 𝑦).  The initial setup may 

resemble Figure 30.  

 

Figure 30:  Initial setup for the numerical solution of Example 5.  

2) On another section of the spreadsheet, implement the SOR 

algorithm given in Equation (30) as follows:  

a) Create a column with labels that identify the temperatures at 

interior nodes. For example, write the temperatures 𝑢1,1, 𝑢2,1, …,  

𝑢19,1, … , 𝑢1,19, 𝑢2,19, … , 𝑢19,19 (listing nodal temperatures from left 

to right and from bottom to top) so as to occupy the cell range 

A50:A410 as shown in Figure 31 (only the top section of the table 

is shown in the figure).  
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Figure 31:  Portion of spreadsheet showing iterations in SOR method.  

b) Create a table that contains the iterations resulting from the 

application of the SOR method.  Start by entering the initial 

guesses 𝑢𝑖,𝑗
(0)

 in the cell range C50:C410.  In this case, Figure 31 

shows all initial guesses of 2.5 (the average of the four 

temperatures at the boundaries of the square plate), but they 

could have taken on any values and not necessarily equal to one 

another for the SOR to converge.  

c) Implement the SOR method as given in Equation (30). For 

example, in cell D50 (first iterate of 𝑢1,1)  type the formula 

=C50+$H$45*($C$34+$D$35-4*C50+C51+C69)/4, in cell D51 type 

=C51+$H$45*(D50+$E$35-4*C51+C52+C70)/4 and so on.  The user 

can copy and paste these formulas and edit them accordingly so 

as to make the appropriate cell references.  Observe that the 

formulas make reference to the over-relation parameter 𝜔 = 1.6 

stored in cell H45.   

d) Add as many columns as needed to continue the SOR iterative 

process until successive iterations are within a prescribed 

precision level.  Optionally, the user can create an additional 

column, say U50:U410, that shows the difference between the 

last two iterations to ascertain convergence.   
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3) Copy the values from the last iteration of the SOR in the cell range 

S50:S410 to fill the cell range D16:V34 with the internal nodal 

temperatures.  The final result will resemble Figure 32.  The 

temperature at the corners of the plate were manually adjusted to 

be the average of their closest neighboring nodal temperatures; for 

instance, the temperature at (𝑥, 𝑦) = (0,0) in cell C35 was adjusted 

with the formula =(C34+D35)/2 and so on.    

 

Figure 32:  Numerical solution of Example 5.   

The temperature distribution in the square plate can be graphically 

displayed as a filled contour plot as shown in Figure 33.  
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Figure 33:  Temperature distribution in heat conducting plate of Example 5.  

Analytical solution of (26a)–(26e) 

The analytical solution to the Laplace equation (26a) subject to the 

boundary conditions (26b)–(26e) can be obtained by the method of 

separation of variables and superposition (Greenberg, 1998; Kreyszig, 

2011; O’Neil, 2011)  and can be shown to be  

𝑢(𝑥, 𝑦) = ∑ {[𝐴𝑛 sinh (
𝜋𝑛(𝑏 − 𝑦)

𝑎
) + 𝐵𝑛sinh (

𝜋𝑛𝑦

𝑎
)] sin (

𝜋𝑛𝑥

𝑎
)

∞

𝑛=1

                     

+ [𝐶𝑛 sinh (
𝜋𝑛(𝑎 − 𝑥)

𝑏
) + 𝐷𝑛sinh (

𝜋𝑛𝑥

𝑏
)] sin (

𝜋𝑛𝑦

𝑏
)}, 

(31a) 

𝐴𝑛 =
2

𝑎 sinh(𝜋𝑏𝑛 𝑎⁄ )
∫ 𝑓(𝑥) sin (

𝜋𝑛𝑥

𝑎
)

𝑎

0

𝑑𝑥, 𝑛 = 1, 2, …  (31b) 

𝐵𝑛 =
2

𝑎 sinh(𝜋𝑏𝑛 𝑎⁄ )
∫ 𝑔(𝑥) sin (

𝜋𝑛𝑥

𝑎
)

𝑎

0

𝑑𝑥,           𝑛 = 1, 2, …  (31c) 

𝐶𝑛 =
2

𝑏 sinh(𝜋𝑎𝑛 𝑏⁄ )
∫ 𝑟(𝑦) sin (

𝜋𝑛𝑦

𝑏
)

𝑏

0

𝑑𝑦, 𝑛 = 1, 2, … (31d) 
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𝐷𝑛 =
2

𝑏 sinh(𝜋𝑎𝑛 𝑏⁄ )
∫ 𝑠(𝑦) sin (

𝜋𝑛𝑦

𝑏
)

𝑏

0

𝑑𝑦, 𝑛 = 1, 2, … (31e) 

In this example, 𝑎 = 1, 𝑏 = 1, 𝑓(𝑥) = 1, 𝑔(𝑥) = 3, 𝑟(𝑦) = 4,  and 

𝑠(𝑦) = 2. Thus, it can readily be found that the Fourier coefficients are 

𝐴𝑛 =
2(1−cos(𝜋𝑛))

𝜋𝑛 sinh(𝜋𝑛)
, 𝐵𝑛 =

6(1−cos(𝜋𝑛))

𝜋𝑛 sinh(𝜋𝑛)
, 𝐶𝑛 =

8(1−cos(𝜋𝑛))

𝜋𝑛 sinh(𝜋𝑛)
,  and 𝐷𝑛 =

4(1−cos(𝜋𝑛))

𝜋𝑛 sinh(𝜋𝑛)
.  

With these coefficients in hand, one can code Equation (31a) to evaluate 

the temperature at an interior point (𝑥, 𝑦).  The user-defined function 

lapleq in Figure 34 serves this purpose.  

 

Figure 34:  VBA user-defined function lapleq for solving Laplace’s equation.  

With the function thus defined, the analytical solution may be 

implemented in another section of the spreadsheet, say AA15:AU35.  One 

can then enter the formula  =lapleq(AB$13,$Y15) in cell AB15 and copy it 

onto the cell range AA15:AU35.  As with the numerical solution, the 

temperature at the corners of the plate are manually adjusted to match the 

average of their closest neighboring nodal temperatures; for instance, the 

temperature at (𝑥, 𝑦) = (0,0) in cell AA35 was adjusted with the formula 

=(AA34+AB35)/2 and so on.  The final result is shown in Figure 35.  
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Figure 35:  Analytical solution of Example 5.  

Notice how the analytical solution exhibits the Gibbs phenomenon 

at the boundaries, which are manifested by the fluctuating values about 

the constant temperatures at the edges of the plate.  The temperatures at 

the interior nodes displayed in Figure 35 compare fairly well with those 

obtained numerically in Figure 32; the maximum discrepancy between 

both sets of values is about 0.44 occurring at the left edge of the square 

plate due to the Gibbs phenomenon.  

5. Conclusions 

This paper presented some of the classical partial differential equations 

(viz., the heat equation, wave equation, and Laplace’s equation) with 

illustrative examples that make use of Excel spreadsheets for the 

implementation of the numerical and analytical solutions to these 

equations.  The basis for the numerical solutions is the discretization of the 

equations which result in recursive algorithms that can be coded with 

spreadsheet cell formulas.  The equations for which analytical solutions 

are known were implemented using VBA.  Of particular interest is the 

successive over-relaxation (SOR) method used in the numerical solution to 

the Laplace equation.  The graphing capabilities of Excel were exploited to 

enhance the visualization of the solutions to these equations by displaying 

their behavior as functions and Fourier series approximations to initial 

and/or boundary conditions.  
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