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The Arbitrage Pricing Model: A Pedagogic Derivation and a Spreadsheet-
Based Illustration

Abstract

This paper derives, from a pedagogic perspective, the Arbitrage Pricing Model, which is an important asset
pricing model in modern finance. The derivation is based on the idea that, if a self-financed investment has no
risk exposures, the payoff from the investment can only be zero. Microsoft Excel plays an important pedagogic
role in this paper. The Excel illustration not only helps students recognize more fully the various nuances in
the model derivation, but also serves as a good starting point for students to explore on their own the
relevance of the noise issue in the model derivation.
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The Arbitrage Pricing Model: A Pedagogic Derivation
and a Spreadsheet-Based Illustration

1 Introduction

The Arbitrage Pricing Model of Ross (1976) is a major advancement in modern finance. The
model is also simply known as the APT, which stands for the Arbitrage Pricing Theory. The
objectives of this paper are two-fold. The first objective is to derive the APT from a pedagogic
perspective, by using only familiar mathematical tools, with the help of intuitive reasoning. The
second objective is to illustrate numerically the analytical steps in the model derivation by using
Microsoft Excel’™ ! Being a numerical rendition of the corresponding analytical materials, the
Excel illustration is intended to help students recognize more fully the nuances of the model
derivation and dispel any remaining mystery. (Readers who are already familiar with the model
and its significance in the finance literature may skip the remainder of this section.)

Originally intended as an alternative to the Capital Asset Pricing Model (CAPM) of Sharpe
(1964) and Lintner (1965), by considering multi-factor asset pricing instead, the APT has had
profound impacts on financial research. It has inspired many theoretical and empirical stud-
ies. The online posting by Professor Robert A. Korajczyk at Kellogg School of Management,
Northwestern University, U.S.A., has listed about 400 articles that are related to the APT and
multi-factor models in the finance literature, as of August 26, 2014.2

The APT has generated keen interest among investment practitioners as well. In an article in
Financial Analysts Journal, Roll and Ross (1984) have offered some practical perspectives on the
theory. That article was selected for the same journal’s 1995 special issue, 50 Years in Review,
as one of the top-four articles in the decade of 1975-1984. In view of its academic and practical
significance, the APT has been covered in standard finance textbooks at intermediate and
advanced levels, with or without including model derivations. For example, model derivations
can be found in Copeland, Weston, and Shastri (2005, Chapter 6), Elton, Gruber, Brown, and
Goetzmann (2014, Chapter 16), and Levy and Post (2005, Chapter 11), but not in Bodie, Kane,
and Marcus (2014, Chapter 10) and Hillier, Grinblatt, and Titman (2012, Chapter 6).

'For the remainder of this paper, whenever the name Excel or any of its computational tools is mentioned,
its trademark is implicitly acknowledged.
2The electronic link is http://www.kellogg.northwestern.edu/faculty /korajczy /htm/aptlist.htm .
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Central to the APT is a linear pricing relationship, known as the Arbitrage Pricing Line,
which relates the expected return of each security to some sensitivity measures, in response to
the corresponding economic factors. Derivations of the APT are based on an intuitive idea
that, if a self-financed investment has no risk exposures, the payoff from such an investment can
only be zero. Otherwise, there will be arbitrage profits to be exploited. It is the absence of
arbitrage profits that enables a pricing relationship of securities to be established. Traditionally,
to implement such an idea in an analytical setting, for the purpose of deriving an arbitrage-free
pricing relationship, requires some mathematical knowledge that is unfamiliar to typical finance
students. This alone is already a strong enough reason for some finance textbooks to omit any
model derivation, as students with inadequate mathematical preparedness will likely be unable
to appreciate the analytical nuances involved.

The analytical materials, as presented in Section 3, are confined to those directly pertaining
to the attainment of the Arbitrage Pricing Line. As the intended readers include also students,
the model derivation is presented in considerable detail for them to follow on their own. Omit-
ted from the coverage are issues peripheral to this specific task. For example, empirical issues
as to how relevant economic factors are identified are not covered; neither are statistical issues
pertaining to joint probability distributions of such factors. Further, in view of the extensive
textbook coverage of various basic properties and implications of the APT, including compar-
isons with those of the CAPM, there is no need to duplicate the same materials here. Interested
readers are referred to the above-mentioned textbooks for details.

The task to establish an arbitrage-free pricing relationship starts with a linear equation
— known as the return generating equation (or the return generating process) — for each of
the many risky securities considered. These equations are for capturing the sensitivities of
individual security returns to the underlying economic factors. The parameters representing
such sensitivities are known as factor loadings. The part of security return that each return
generating equation fails to capture is treated as random noise.

For the model derivation, there is a requirement that, in a portfolio investment setting, the
number of securities in the capital market be large enough for any linear combinations of the
random noise terms in the individual return generating equations to be attenuated effectively.
Indeed, effective attenuation of random noise is a crucial condition for the existence of self-

financed risk-free portfolios within the APT framework. The imposition of zero payoffs on such
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portfolios, in turn, facilitates the attainment of an arbitrage-free pricing relationship.

2 The Pedagogic Role of Excel

The Excel illustration is presented in Section 4. As the intended task is to illustrate the model
derivation, rather than testing the model empirically, the use of artificial data is preferable.
It is straightforward to use Excel to generate a large set of artificial data, for specifying the
individual return generating equations. Such artificial data are then used to determine the
remaining parameters in the derived Arbitrage Pricing Line. Here is a sketch of the Excel tools
and operations involved:

The Excel function RANDBETWEEN is used to produce artificial data for all factor loadings
in the return generating equation for each security. As this function returns a random integer
in a given range of values, Excel scroll bars are used to specify such a range for data-entry
convenience. A scaling factor is applied to the integers thus generated, so that the end results
are all real numbers in a range of values suitable for use as factor loadings.

Although how random noise in each return generating equation is distributed is peripheral
to the model derivation in this paper, to generate it for the purpose of a numerical illustration
still requires that a probability distribution be specified. Under the simplest assumption that
the noise has a uniform distribution with a zero mean, the use of the Excel function RANDBE-
TWEEN is adequate. Alternatively, under the assumption of a normal distribution, the noise
can be generated by nesting two Excel functions, NORMSINV and RAND. Here, NORMSINV
returns the inverse of the standard normal cumulative distribution, and RAND — which returns
a random number in the range of 0 and 1 — serves as the argument of the nested function. Un-
der either assumption, a scaling factor is required for each randomly generated number, for
specifying the severity of the noise.

In the process of deriving an arbitrage-free pricing relationship, two different types of port-
folios of securities are constructed. While one type involves self-financed investments, the other
type involves portfolios where investment funds are required instead. In the former case, each
portfolio is intended to respond to none of the economic factors. In the latter case, each portfo-
lio is intended to be responsive to a specific economic factor and nonresponsive to the remaining

ones.
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3 The use of Solver

Excel Solver is suitable for use to construct both types of portfolios.
here differs from that in typical computational settings, for which unique solutions are sought.
As it will soon be clear, there are infinitely many ways to construct each portfolio that satisfies
a given set of conditions within the APT framework. In view of such a feature, the allocation
of investment funds for each portfolio depends on the initial values used in the Solver search.
Interestingly, it is the lack of uniqueness in portfolio allocations that allows an arbitrage-free
pricing relationship to be derived with only familiar mathematical tools; this is indeed a crucial
feature in the derivation of the APT from a pedagogic perspective.

For computational convenience, two matrix tools in Excel are also used for constructing each
of the above-mentioned portfolios. Specifically, with pertinent numerical data stored in arrays,
the sum of products of the corresponding elements there can be computed directly by using the
Excel function MMULT for matrix multiplications. Nesting MMULT with the Excel function
TRANSPOSE — for matrix transposition — allows the matrices involved to have compatible
dimensions for multiplications.

There is an Excel file to accompany the numerical illustration in Section 4. This file can
readily be used by instructors to generate artificial data for various numerical exercises on the
derivation of the APT for students. A good exercise is to investigate numerically, within
the APT framework, whether there are any payoffs from self-financed portfolios that respond
to none of the economic factors. A crucial requirement for the model derivation is that the
number of risky securities in the capital market be large enough for the random noise terms
in the individual return generating equations to be attenuated effectively in portfolio settings.
The issue as to how large is large enough for the purpose of reaching a self-financed risk-free
portfolio depends primarily on the severity of random noise in each return generating equation.
The Excel illustration in Section 4 will serve as a good starting point for students to explore the
noise issue themselves. The work involved will help students recognize more fully its relevance

in the model derivation.

3 Solver is a popular numerical tool for constrained optimization. It is one of the Microsoft Office Add-ins.
Users requiring help with its loading and basic operations can access Microsoft Office Excel Help by entering
“solver” as the keyword for the search there.

http://epublications.bond.edu.au/ejsie/vol9/iss1/4
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3 A Derivation of the Model

Like the CAPM, the APT is also a single-period model that requires the usual assumptions of
homogeneous expectations of investors and a frictionless capital market, where risk-free lending
and borrowing are at the same interest rate. In such a market, short sales of any risky securities
will generate beginning-of-period investment funds for other securities. Under these simplifying
assumptions, the starting point in the derivation of the APT is to capture the random return of
each risky security over the period by means of a linear equation, known as the return generating
equation.

For a market with n risky securities, the random return R; of any security i, for: = 1,2, ..., n,
is characterized as depending linearly on K common economic factors, each of which has been
mean-removed. The part of the security return that this linear equation is unable to capture
is treated as random noise. For analytical purposes, what each factor represents need not be
specified, and the number of economic factors involved can be any positive integer. A required
condition, however, is that n must be much greater than K. Why such a condition is required

for the model derivation will soon be clear.

3.1 The Return Generating Equation

For ease of exposition, let us start with the special case where K = 3. By labeling the three

mean-removed factors as Fy, Fy, and F3, the return generating equation for each security ¢ is
R; = a; + by F1 + biaFy + bizF3 + €. (1)

Here, a; is a coefficient. The remaining coefficients, b;1, b2, and b;3, commonly called factor
loadings, are intended to capture the sensitivities of the random return of security ¢ to the
individual factors, which are themselves random variables. The use of double subscripts for
these three coefficients, though cumbersome, is necessary; the first subscript is used to indicate
the security involved, and the second subscript, the factor involved. The random noise term e;,
which is characterized as having a zero expected value, is the part of the security return that
this linear relationship is unable to capture.

To facilitate an intuitive interpretation of a; in equation (1), let us describe briefly how each

of Fy, F5, and F3 has been reached. Mean removal for a random variable is to subtract its
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expected value from it. Originally, the three economic factors are F'y, F'5, and F'3, with the
corresponding expected values being E(F;), E(F3), and E(F3). Here, we have used E(-) to

denote the expected value of any random variable (-). As

F, = F,— E(F,), (2)
F, = F,— E(F,), (3)
and F; = F3— E(F5) (4)

are mean-removed random variables, their expected values — E(F}), E(F3), and E(F3) — are
all zeros.

By taking expected values of the two sides of equation (1), we can write

which directly leads to

E(R;) = a;. (6)
That is, the intercept term a; in the return generating equation for each security i is the expected
value of R;. This is because each random variable on the right hand side of equation (5) has
a zero expected value. In statistical notation, it is usually labeled as p;. Thus, the return

generating equation for each security ¢ can be restated as

R; = p; + bin By + bipFy + bz Fs + ;. (7)

3.2 A Self-financed Risk-free Investment

Under the assumption of homogeneous expectations, all investors accept equation (7) as being
valid and agree on the values of the coefficients involved, for ¢ = 1,2,...,n. The assumption
of frictionless short sales makes it possible for someone to invest in the n securities with a zero
cash outlay. Suppose that a dollar amount w; is allocated to security i. If w; is positive, the
corresponding investment in security ¢ is the dollar amount w;. If w; is negative instead, security
7 is held in a short position, and an immediate cash inflow, which is equal to the magnitude of
w;, is generated.

To achieve a self-financed investment, for which the net dollar amount invested in the n

securities is zero, the condition of

S wi=0, (8)

http://epublications.bond.edu.au/ejsie/vol9/iss1/4
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must be satisfied. Here, the use of a summation sign is for notational simplicity, with > 7 | w;
standing for the sum of the n individual terms, wq,ws,...,w,. This being the case of one
equation with many decision variables, there are infinitely many ways to assign wy, ws, ..., w,
to the n individual securities for the equation to be satisfied.

For each set of wy, ws, ..., w,, the random end-of-period payoff (in dollars) from the invest-
ment can be expressed as y ., w; R;, which is the sum of the n individual terms, w; Ry, waRs, . . .,

wypR,. Given equation (7), we can write the investment’s random end-of-period payoff as

Z;l wiR; = ijl Wifh; + (Z?Zl wibil) B+ (le wibi2) Fy
+ <Zj:1 wz’bz’?)) Fs + Z;l w;e;. (9)

Here, the use of each summation sign is analogous to that described previously.
In addition to the condition that equation (8) provides, let us impose three more conditions

in assigning wi, ws, . .., w, to the n individual securities. Specifically, under the conditions of

Zé_l wiby = 0, (10)
Zé_l wibiy = 0, (11)
and Zfll wibig = 0, (12)

the investment’s random end-of-period payoff will be unaffected by any of Fi, F5, and F3. Thus,
under such conditions, how these random variables are distributed is not a concern in the model
derivation.

Equations (8) and (10)-(12) represent four simultaneous linear equations with n variables,
which are wq, ws, ..., w,. Aslongasn > 5, there are infinitely many ways to assign wq, wo, . .., w,
to the n individual securities for these four equations to be satisfied. In the language of finance,
such a self-financed investment has no systematic risk that is associated with the three under-
lying economic factors.

Once the conditions in equations (10)-(12) are imposed, equation (9) becomes

Z;l wiR; = Z:;l Wifl; + Z;l w;€;. (13)

Each w;e; term in the second summation on the right hand side of equation (13) is part of the

random component of the end-of-period payoff from the self-financed investment. As each w; is
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not a random variable and each e;, which is random, has a zero expected value, the corresponding
w;e; term must have a zero expected value too. The sum ) | w;e;, which contains both positive
and negative terms to attenuate each other, represents the random component of the net payoft
from the self-financed investment. However, to cancel out all the positive and negative terms
in " wse; does require n to be very large. If n is large enough to make >  w;e; trivially

small, then equation (13) can be approximated very well by

Z:;l w;R; = ijl Wi ;. (14)

As > wip, is the dollar amount of the expected end-of-period payoff, an immediate im-
plication of equation (14) is that the end-of-period payoff is always as expected. That is, there
is no randomness in Y., w;R;. In a market where no arbitrage profits are available, a self-
financed investment without any risk must have a zero end-of-period payoff. This economic
feature is crucial in the model derivation.

Given that the analytical task here is to establish eventually a beginning-of-period pricing
relationship of securities based on available information only, the above economic feature is

better captured by
S wip =0, (15)

which states that no arbitrage profits are expected. The use of

instead is unsuitable for establishing the same pricing relationship. This is because Ry, Ra, . . .,

R,, are random variables.

3.3 An Economic Consequence and a Linear Pricing Relationship

It is important to recognize that, while equations (8) and (10)-(12) represent four specific con-
ditions in assigning the dollar amounts wq, ws, ..., w, to the n individual securities, equation
(15) shows an economic consequence of such conditions. To establish a pricing relationship to
connect p;, b;1, bo, and b, for i = 1,2, ... n, it is also important that we do not start with a set
of security return generating equations where arbitrage opportunities are readily available. To

see this, suppose that we have two securities, labeled as securities j and k, for which bj; = by,

http://epublications.bond.edu.au/ejsie/vol9/iss1/4
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bja = brz, and b;3 = bgz. In such a case, we must have p; = p,,. Having p; # p, instead will
indicate the presence of arbitrage opportunities.

Under the assumption of a frictionless capital market, if p; > p; for example, investors can
expect arbitrage profits by purchasing security j with proceeds from short selling security k. Of
course, though expected, arbitrage profits are not assured, because of the presence of random
noise in the return generating equations for the two securities. However, the greater the number
of such pairs of securities with matching factor loadings but different expected returns, the less
impact will be random noise on potential arbitrage profits.

This example raises the following question: In the derivation of the APT, do we start with
equation (7) where the values of y,, for i = 1,2,... n, are known in advance? The answer is
no. We must treat each i, there as a parameter that has yet to be determined. Given equation
(7), each p; is related to the corresponding factor loadings b;1, b2, and b;3 linearly. Thus, it is

reasonable for us to expect the relationship to be of the algebraic form
Hi = Ao + A1bir + Aabiz + Asbis, (17)

where Ag, A1, Ao, and A3 are parameters. These parameters, which are common for all n
securities, have yet to be determined.

Before proceeding to verify equation (17) and to determine g, A1, A2, and A3, let us review
the analytical steps in the model derivation so far, from an algebraic perspective. Given b;,
bi2, and b;3, for @ = 1,2, ..., n, there are infinitely many feasible results of wy, ws,...,w, from

solving equations (8) and (10)-(12). This is because there are more unknowns than the number

of available equations. Likewise, for each set of feasible wq, ws, ..., w,, there are also infinitely
many feasible results of py, o, . . ., it,, from solving equation (15). However, for the purpose of
establishing a meaningful pricing relationship, the solved iy, 5, ..., 1, must be unique. That
is, the solution must be independent of how wy, ws, ..., w, are assigned.

Given equations (8), (10)-(12), and (15), where each sum is zero, we can always write

Z:;l Witl; — Ao Z:;l wi — A Z:;l wibjy — Ao Zj:1 Wby — A3 Z;l wibz = 0, (18)

regardless of the values of the multiplicative constants Ay, A1, A2, and A3 for the individual sums.

Equation (18) is equivalent to

Zj:l w; (,uz — /\0 — /\1[%1 — )\2(),‘2 — /\3bi3) = 0 (19)
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What is crucial here is that there are infinitely many ways to assign wy,ws, ..., w, and that
equation (19) always holds regardless of how wy,ws, ..., w, are assigned. Thus, the linear
combination of the five terms, 11; — Ao — A1b;1 — Aabia — Asbys, as enclosed by the pair of parentheses
in equation (19), must itself be zero before it is multiplied by w;, for i = 1,2, ... n. This feature

allows us to see why equation (17) must hold.*

3.4 The Roles of the Risk-free Security and Some Specific Portfolios

For the purpose of establishing a meaningful pricing relationship of securities, the parameters
Ao; A1, A2, and A3 in equation (17) cannot be left unspecified. To find a set of meaningful values
of these parameters requires the availability of some additional information. From an algebraic
perspective, as there are four parameters in total to be determined, four known values of some
relevant variables are needed.

It is easy to determine A\g. All it takes is to apply equation (17) to a risk-free security. With

the risk-free security labeled as security f, equation (17) becomes
[Lf = )\0 + /\1bf1 + /\Qbfg + )\3bf3. (20)

As security f has zero sensitivity to any of Fy, F, and F3, implying that by = byo = byg = 0,
we must have

)\0 =Ty. (21)

Here, we have substituted 77, a commonly used symbol of the risk-free interest rate, for ji;.
Thus, if r is known, so is Ao.

To determine A\, A2, and A3 requires that the expected returns of three specific portfolios be
known. Let us use the determination of A\; as an illustration. For this task, let us construct a
portfolio, labeled as portfolio 1, by using the same risky securities in the market. The portfolio is

not self-financed; it requires investment funds. The portfolio is intended to have unit sensitivity

*Equation (17) can also be deduced by considering the following six vectors in an n-dimensional space:
w = (w1, w2, ..., wy), t = (1,1,...,1), by = (b11,b21,...,bp1), by = (b12,b22,...,bp2), b3 = (b13,b23,...,b,3),
and g = (py, fbg, .-+, ). According to equations (8), (10)-(12), and (15), vector w is orthogonal to the
five remaining vectors. Thus, these five vectors must be on the same hyperplane, satisfying the condition of
p = Aot + A1by + Aaby + Azbs, which is equivalent to equation (17). However, from a pedagogic perspective,
as concepts of hyperplanes are required, the alternative approach here may be too abstract for many finance
students.
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to F and zero sensitivity to each of the remaining economic factors. The details for constructing
such a portfolio are as follows:
Let x1, x5, ..., x, be the proportions of investment funds for securities 1, 2, . .., n, respectively,

satisfying the condition of
27_1 z; = 1. (22)

Here, each x; can be of either sign. If zero, the corresponding security is not selected for the
portfolio. These proportions of investment funds are commonly known as portfolio weights.
The random return of portfolio 1, labeled as R;, is the weighted average of Ry, Ro, ..., R,, with

the corresponding weights being x1, xs, ..., x,; that is,

Rl = Zj:l 1'le (23)

Combining equations (7) and (23) leads to

ho= Z:;l @i (p; + bin Fy 4 bio Fy + bz F3 + €;)
N Zizl Tifhi (Zizl xib“) Fi+ (Zi:1 xibm) F
+ (Zjil Izbz?)) F3 + Zj:l T;€;. (24)

Under the additional conditions of

Zil by = 1, (25)
Zé_l zibiz = 0, (26)
and ZT‘L—I .I'ibig = O, (27)

equation (24) reduces to

R, = Z:;l xip; + i+ ijl Ti€;. (28)
Thus, portfolio 1 has unit sensitivity to F} and zero sensitivity to each of the remaining two
economic factors.

As the expected values of the random variables F; and ey, es, ..., e, on the right hand side of
equation (28) are all zeros, the expected value of Ry, labeled as 1, is > wp;. Notice that g,

and f1; are not the same; while the former is the expected return of security 1, the latter is the

expected return of the portfolio that has unit sensitivity to F; and zero sensitivity to each of the
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remaining two economic factors. Just like the construction of self-financed risk-free portfolios,
there are also infinitely many combinations of xy, zs, ..., z, for equations (22) and (25)-(27) to
be satisfied. However, regardless of how investment funds are allocated for the construction of
portfolio 1, the expected portfolio return is considered to be known for the purpose of model
derivation.

The portfolio construction here differs from the construction of self-financed risk-free portfo-
lios considered earlier in that the number of securities involved here need not be large enough for
the noise terms in the individual return generating equations to be attenuated effectively. This
is because, in contrast to the condition in equation (14) for self-financed risk-free portfolios,
there is no need for R; and p; — which are Som xR and > wipu,, respectively — to be
essentially the same here. Indeed, the portfolio construction here can be based on any subset
of the n securities consisting of at least five securities.

Given equation (17), we can write

H’l = Zi:l l‘,(’r‘f + Albil + )\2bi2 + >\3bi3)
= rp+ A\ Zi:l Tibi1 + Ao Zi:l Tibia + A3 Zi:l x;bis. (29)

Under the conditions in equations (22) and (25)-(27) for the allocation of investment funds,
equation (29) reduces to

fy =75+ A1 (30)

or, equivalently,
AL = iy — Ty (31)

In the latter expression, A; can be interpreted as an excess return, which is the expected return
of of portfolio 1 in excess of the risk-free interest rate. If ry and y; are known, so is A;.

We now extend the above illustration to determining A, for k£ = 1, 2, and 3. For each k, we
form a portfolio £ that has unit sensitivity to Fj and zero sensitivity to any of the remaining

factors. Portfolio k is intended to satisfy the conditions of

Z”.l_l xr, = 17 (32)
ZT.L_I ziby, = 1, (33)
and Z: ziby, = 0, for h # k. (34)
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Here, h # k covers all cases of h = 1, 2, and 3, except for h = k. In the case of k = 3, for
example, h # k covers both h =1 and h = 2.

Let p1;, be the expected return of portfolio k. Just like the previously mentioned difference
between the symbols p;, and p,, while p;, without the underscore for the subscript £ is the
expected return of security k, p,, is the expected return of portfolio k instead. The above

conditions for portfolio construction, when combined with equations (7) and (17), will lead to

/\k = ,uE — T’f, (35)

which allows each A;, to be determined if 1, and r; are known, for k£ = 1,2, and 3. Each A, can
be interpreted as an excess return, which is the expected return of of portfolio k£ in excess of the
risk-free interest rate.

With Ao, A1, A2, and A3 determined, the model derivation is complete, for the special case
where there are three economic factors in the return generating equation for each of the n

securities. The result,

pi =75+ (g —1p)bin + (g — 75)bi + (g — 75)biz, fori=1,2,...,n, (36)

is the Arbitrage Pricing Line. This is an equilibrium pricing relationship; it relates the expected
return of each security ¢ to the sensitivities of its random return to the three underlying economic

factors, which are random variables themselves.

3.5 Some Analytical Materials in Matrix Notation

To facilitate some Excel-based computations and the explanations of the results in Section 4,

we first write equation (17) equivalently as
i — Ao = Arbir + Asbiz + Asbis, (37)

where Ao, \1, Ao, and A3 are unspecified parameters. This being a representative equation where
7 can be any of 1,2,...,n, there are really n equations. In matrix notation, the n equations

can be combined into

(/h - )\o) bii bz bis \
- A b b b 1

o =0l || bbb | ] (38)
: : : : As

(:U’n - )\0) bnl bn2 bn3
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This matrix equation allows us to compute 1y — Ao, fig — Ao, - - -, i1, — Ao for a given set of factor
loadings and given values of A1, Ay, and A3, by using basic matrix tools in Excel.

While the factor loadings are constant in the model derivation, the computed values of
[y o, - - - [4, according to equation (38) depend on the values provided for g, A1, Az, and As.
At the stage of the model derivation that confirms the validity of equation (17) and, equivalently,
equation (38), parameters \g, A1, Ay, and A3 are still arbitrary. However, the lack of uniqueness
in the computed values of ji, pty, . . ., t,, notwithstanding, the sum > | w;p, is always zero.

For equation (38) to be a meaningful security pricing relationship, Ag, A1, A2, and A3 cannot
be left unspecified. By letting Ao = 7y and Ay = py, — 1y, for k =1, 2, and 3, as established in

the preceding subsection, we can write equation (38) as

(g —7y) bir bz b3 (g —77)

(pg —1y) ba1 Doy a3 177
. = : : : (Mg - Tf) . (39)
: : : : o,

(Mn - Tf) bnl bn2 bn3 (M§ f)

Equation (38), where Ao, A1, A2, and A3 are arbitrary, encompasses equation (39) as a special
case. Thus, as the computed sum > 7", w;u; is zero according to the former equation, it must

also be zero according to the latter equation.

3.6 Extension to the General Case

We now extend the model derivation to a general case, where there are K underlying economic
factors instead. To derive the corresponding Arbitrage Pricing Line, we start with the following

return generating equation:
Ri = (Ii—f—bilFl +bz‘2F2 + - +szFK —|—€Z‘, for i = 1,27‘..,7L, (40)

where the K factors, Fi, Fs, ..., Fk, have been mean-removed. As before, each a; can be
interpreted as the expected return of security ¢+ and labeled as p;. Under the K + 1 conditions
of Y70 jw; =0, >0 wiby =0, Y wibis =0, ..., > wibijx = 0, the absence of arbitrage
profits ensures also that » ., w;u; = 0. To achieve a self-financed risk-free investment, for which
equation (14) holds, n must be much greater than K, so that the magnitude of > " | w;e; can

be considered to be trivially small. The idea is that, when more economic factors are involved,
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more conditions must be satisfied to achieve a self-financed risk-free investment. Thus, a greater
K requires a greater n for the noise terms to be attenuated effectively.
As there are infinitely many ways to assign wq, wo, . .., w, to the individual securities for the

above conditions to hold, (i, b1, bia, . .., bjx for each security ¢ are connected by
H;, = )\0 + )\1bi1 + )\Qbiz + -+ )\szK (41)

Once Mg, A1, Ao, ..., A\x are determined, by considering the risk-free security and K specific

portfolios, the corresponding Arbitrage Pricing Line is
pi =15+ (g —1p)bis + (g — 75 )big + -+ + (g — 75)bikc, fori=1,2,...,n. (42)

Here, each p,, for k =1,2,..., K, is the expected return of a portfolio that has unit sensitivity
to factor k and zero sensitivity to each of the remaining factors. In matrix notation, equations

(41) and (42) can be written as

(1t — Ao) bin bz -+ bk A
B e a
(Hn - >\o) bpi bna -+ bpk Ak
and
(py — Tf) biy bz - bix (HJ; - Tf)
—r b b .- b —r
(1o ' f) _ ?1 ?2 | 2.K (Mg . f) 7 (44)
(,Un - Tf) bt bna -0 bk (/15 - 7nf)
respectively.

4 An Excel Illustration

The model derivation in Section 3, though requiring only familiar mathematical tools, is quite
lengthy, as compared to analytical materials on many other topics in the standard finance
curriculum.  The Excel illustration in this section goes beyond showing the computations
involved. It is also intended to help students recognize more fully the nuances of the analytical
task. To make the Excel file accompanying this paper readily accessible to more readers, it has

been saved as an Excel 1997-2003 workbook (which has an extension of .xls).
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The long journey to derive the Arbitrage Pricing Line starts with specifying the return
generating equation for each security. As the choice of the number of economic factors is
not expected to affect students’ understanding of the model derivation, the Excel illustration
is confined to a three-factor case, for ease of exposition. A crucial requirement in the model
derivation, however, is that the number of securities in the market must be large enough for
the noise terms in the return generating equations to be attenuated effectively in a portfolio
context. For the Excel illustration, n is tentatively set at 100.

Once the security return generation equations for all 100 securities are specified, the next step
is the construction of a self-financed portfolio that responds to none of the three factors. Under
the assumption that n = 100 is large enough for the noise terms to be attenuated effectively,
the self-financed portfolio is deemed risk-free. The absence of arbitrage profits ensures a zero
payoff for such a portfolio. It also establishes a linear relationship between p; and the factor
loadings b;1, bj, and b, for ¢ = 1,2,...,100. This is equation (17), where the parameters Ao,
A1, Ao, and A3 can have any values.

For the linear relationship to be meaningful in the context of security pricing, however, the
four parameters there must be specified. This is where the risk-free security and three specific
portfolios with unit and zero factor sensitivities are needed. They provide values of 7y, 111, po,
and (13 to make the eventual security pricing relationship meaningful.

As part of the Excel illustration, the validity of the assumption that n = 100 is large enough
for reaching a self-financed risk-free portfolio is examined. The Excel file has been set up in such
a way that the number of securities, the severity of random noise, and various other relevant
numerical data, can easily be changed. Such flexibility will make it easier for students to explore

the noise issue as exercises. Here are the details of the Excel illustration:

4.1 Specification of Each Return Generating Equation

Figure 1 displays the worksheet named “RetGenEq.” It shows how the individual return gener-
ating equations are specified, for the case where K = 3 and n = 100. With column A providing
the security label, columns B-D (starting from row 13) display the factor loadings b;1, b;2, and b;3,
fori=1,2,...,100, which are randomly generated under some uniform distributions. For con-
ciseness in presenting a vast amount of illustrative data, rows 40-110, where the factor loadings

and some other data for ¢ = 28,29,...,98 are stored, are not displayed in Figure 1. Likewise,
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A B | ¢ | b E | fF | @ H

1 Mean and spread Spread Worksheet
2 600/ 4 H 3000/ 4 » name:

3 1200 4| » RetGenEq
4 Mean and spread For scalin

5 s00 4] | » 2000 EDED

6 1000 4 >

7 Mean and spread For scaling
8 400 4 > 6000| 4 >

9 800 4 >

10 Column sums

11 -148.2 0.231
12 [Security i [bil bi2 bi3 ei(Uniform) ei(Normal) |wi Xi

13 1 1.063 -0.155 0.21 0.02978 -0.018753 43.2 0.076
14 2 1.018 1.186 0.858| -0.01452 -0.003826 -46.8 -0.058
15 3 1.034 0.166 0.183 0.00965 -0.000151 58.8 0.067
16 4 1.763 1.004 1.096( -0.01075 0.0320166 -1.8 -0.02
17 5 0.972 0.541 0.845| -0.02981 0.0040394 22.2 0.042
18 6 -0.441 0.739 0.377 0.01762 -0.020315 -49.8 -0.093
19 7 1.169 0.781 0.277| -0.00197 -0.013353 39 -0.012
20 8 1.159 0.93 -0.129| -0.01918 0.0262519 -33 0.066
21 9 1.604 1.408 -0.25 -0.0233 -0.022516 0.6 -0.002
22 10 1.12 -0.272 -0.3 0.02277 -0.004919 46.2 0.033
23 11 1.07 0.277 0.92 0.00851 0.030072 47.4 -0.051
24 12 1.665 0.362 0.589| -0.00133 0.0099648 48.6 -0.006
25 13 1.292 0.134 0.772] -0.00198 0.0185176 40.2 0.088
26 14 0.325 0.644 1.148( -0.00391 -0.018543 -53.4 -0.047
27 15 1.128 0.917 1.198 0.02016 -0.013754 -56.4 0.017
28 16 -0.124 1.444 -0.264| -0.02583 -0.005054 -22.8 -0.017
29 17 1.216 -0.26 0.953| -0.01156 0.0087699 4.2 0.001
30 18 -0.586 0.239 -0.224| -0.02497 0.0087259 -9.6 -0.001
31 19 0.108 0.671 0.261 -0.0216 0.0241653 -31.8 -0.031
32 20 1.506 0.57 0.385| -0.01678 -0.005384 -38.4 -0.082
33 21 0.96 1.359 -0.079| -0.02615 -0.028311 52.8 0.09
34 22 0.056 1.194 -0.09 0.0252 -0.025957 -34.2 0.021
35 23 1.056 1.073 0.964 0.00145 0.0160453 -54 -0.032
36 24 1.776 0.755 -0.007| -0.02801 -0.016818 4.8 0.055
37 25 1.183 1.034 0.519 0.01702 0.0398574 -29.4 0.011
38 26 1.011 -0.08 1.15| -0.02404 -0.006899 46.8 -0.002
39 27 0.089 0.519 0.584 0.02971 -0.014527 59.4 0.031
111 99 0.721 0.859 0.681| -0.00053 -0.010966 16.8 0.002
112 100 0.384 1.136 0.309| -0.02463 -0.008136 9 -0.052

Figure 1 Numerical Specification of Return Generating Equations and Generation
of Initial Values for Solver Searches.
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the corresponding rows in all subsequent figures are also not displayed. However, these hidden
data are still used in the computations involved.

The range of the factor loadings in each column is based on the values of the two cells in the
same column, which are linked to the adjacent scroll bars.? Each b;; in B13:B112 is generated
over the range of (m + s)/1000, where m and s are the selected values from the two scroll
bars labeled as “Mean and spread.” With the two scroll bars set to cover integer values of
0 — 1000 for m and 0 — 2000 for s, the linked cell values of m = 600 in B2 and s = 1200 in B3
correspond to (m — s)/1000 = —0.60 and (m + s)/1000 = 1.80. Thus, the uniform distribution
for generating each b;; randomly is over the range of —0.60 to 1.80, and each cell formula in
B13:B112 is =RANDBETWEEN (B$2-B$3,B$2+B$3)/1000.

The selection of m and s to generate b;; and b;3, for ¢+ = 1,2,...,100, in C13:C112 and
D13:D112, respectively, also involves scroll bars of analogous features, except for the linked
cells. Thus, each b;; in C13:C112 and each b;3 in D13:D112 can be generated in the same
manner. The corresponding cell formulas are =RANDBETWEEN(C$5-C$6,C$5+C$6)/1000
and =RANDBETWEEN(D$8-D$9,D$8+D$9)/1000. In the illustration here, m = 500 and
s = 1000, as displayed in C5 and C6, respectively, are for specifying each b;5; m = 400 and
s = 800, as displayed in D8 and D9, respectively, are for specifying each b;3.

The factor loadings b;1, b2, and b3, for ¢ = 1,2,...,100, which are part of the input pa-
rameters in the Excel illustration, could be entered manually to B13:D112 instead. However,
to generate these 300 numbers randomly with the help of scroll bars and the Excel function
RANDBETWEEN does reduce the burden in data entry for the current illustration. The ap-
proach here also provides great flexibility in generating new sets of input parameters for any
subsequent student exercises to explore the nuances in the model derivation.

To complete the specification of the return generation equation for each security requires
that a zero-mean noise term be generated as well. Columns E and F (starting from row 13)
display the results from two different approaches to specify e;, for : = 1,2,...,100. Given
the extensive use of the Excel function RANDBETWEEN elsewhere in Figure 1, the approach

involving a zero-mean uniform distribution is self-explanatory. Each cell formula for E13:E112

®A scroll bar can be generated by selecting Insert, then Form Controls, under the Developer tab. The
minimum and maximum values, the incremental change, and the cell link are based on user input. Changes to
any of these settings are straightforward.
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is =RANDBETWEEN(-E$2,E$2)/100000, where E$2 is linked to its adjacent scroll bar for
covering integer values of 0 — 4000. The greater the selected value from the scroll bar, the more
severe is the noise.

The alternative approach to generate a zero-mean noise term involving the use of the Ex-
cel function NORMSINV requires an explanation. The function NORMSINV provides the
inverse of the standard normal cumulative distribution. The standard normal distribution,
by definition, is a normal distribution with a zero mean and a unit standard deviation. As
an example involving such a distribution, let us consider cumulative probabilities of 2.5% and
97.5%. The corresponding departures from the zero mean, in terms of the numbers of unit
standard deviations, are —1.9600 and 1.9600. Thus, cell formulas =NORMSINV(0.025) and
=NORMSINV(0.975) return —1.9600 and 1.9600, respectively. That is, a 2.5% tail area on
either side of a normal distribution corresponds to a departure of 1.9600 standard deviations
from the mean.

The argument RAND() of the function NORMSINYV provides a random number in the range
of 0 to 1, which covers all cumulative probabilities. The formula =F$5*NORMSINV(RAND())
/100000 for each cell in F13:F112 generates a zero-mean noise term in the corresponding security
return. The multiplicative factor F$5/100000, which represents the standard deviation of the
normally distributed noise, is for specifying its severity. The greater the corresponding cell
value, the more severe is the noise. For the illustration here, E2 and F5 are set at 3000 and
2000, respectively. In the former case, each randomly generated e; is set to be within the range
of +0.03 (or, equivalently, +3%); in the latter case, the standard deviation of the zero-mean
normal distribution is set at 0.02 (or, equivalently, 2%).

Notice that the random numbers from the Excel functions RANDBETWEEN and RAND
are automatically regenerated, whenever a computation takes place somewhere in the Excel file.
Thus, to keep any set of randomly generated numbers constant for subsequent use, the corre-
sponding cell contents will have to be pasted as their values. This can easily be accomplished
by making a duplicate copy of the same worksheet, where all cell contents are subsequently

replaced by the corresponding values.
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4.2 Construction of Self-financed Risk-free Portfolios

The worksheet for Figure 1 also uses the Excel function RANDBETWEEN to generate some
preliminary values of w; and z;, for ¢ = 1,2,...,100. The cell formula to generate each w; in
G13:G112 is =G$8*RANDBETWEEN(-100,100)/10000. The scroll bar that is linked to G8 is
set to cover integer values of 0 — 10000. As w; represents the dollar amount that is assigned to
security ¢, for the construction of a self-financed risk-free portfolio, the value in G8 serves as a
scaling factor to adjust the invested amount. The cell formula to generate each x; in column H
(starting from H13) is =RANDBETWEEN(-100,100)/1000.

The values of w; and x; as displayed in Figure 1 are intended for use as initial values in Solver
searches in subsequent steps. Asindicated in G11 and H11 under the heading of “Column sums,”
such initial values do not satisfy the conditions of 2102 w; = 0 and 2102 r = 1. However, these
violations are not a concern; any values of the 100 decision variables in each case are suitable
for initiating a Solver search for which there are infinitely many solutions.

All input parameters in subsequent figures are shaded in yellow. The worksheet, named
“W,” as displayed in Figure 2 is intended for two major tasks. Under the assumption that
n = 100 is adequate for attenuating the noise terms effectively, the first task is to construct
self-financed risk-free portfolios based on the set of factor loadings as displayed in B13:D112.
This is the same set of randomly generated data already displayed Figure 1. The four columns
of numbers in G13:J112 under the headings of “wi, wi*bil, wi*bi2,” and “wi*bi3” in row 12 are
Solver results of w;, w;b;1, w;b;o, and w;b;3, for e =1,2,...,100.

As there are infinitely many ways to construct portfolios satisfying equations (8) and (10)-
(12), where n = 100, the initial values of w;, for i = 26,27,...,100, are retained in the Solver
search. That is, only 25 values of w;, for : = 1,2, ...,25, as displayed in G13:G37 need changes.
For this task, a scroll bar linked to G6 is set to cover integer values of 0 — 200. With G5 being
the negative of the selected value in G6, a range of permissible values for these 25 values of
w; is established. In the illustration here, the selected range is from —100 to 100. In the
Solver search, the target cell $G$10 is set equal to 0, by changing $G$13:$G$37, subject to the
constraints of $G$13:3G$37<=$G$6, $G$13:$G$37>=3G$5, $H$10=0, $1$10=0, and $J$10=0.

The Solver results of Zf}g w;, Z:O? w;bit, le(i w;bio, and 21102 w;b;3 are as displayed in

(G10:J10. They are all zeros, subject to minor rounding errors. The use of scientific notation in
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A B C D E | F G H | J K
1 rf rf (%) Worksheet name: W
2 0.04 4 4 >
3
4 mul - rf mu2-rf mu3-rf Range
5 URRDIRINIIK] Y -100
6 11 7 3 (%) 100 4 >
7 0.11 0.07 0.03
8
9 mul mu2 mu3 Column sums
10 0.15 0.11 0.07 3.9E-14 2.5E-14 5.5E-14 6.4E-14 2.5E-14
11
12 |Seci|bil bi2 bi3 mui-rf mui wi wi*bil wi*bi2 wi*bi3  wi*mui
13 1] 1.063 -0.155 0.21 0.11238 0.15238f 50.935 54.144 -7.895 10.696 7.7615
14 2| 1.018 1.186 0.858 0.22074 0.26074| -42.731 -43.501 -50.679 -36.664 -11.142
15 3] 1.034 0.166 0.183 0.13085 0.17085| 63.632 65.796 10.563 11.645 10.872
16 4 1.763 1.004 1.096 0.29709 0.33709| -17.032 -30.028 -17.1 -18.667 -5.7414
17 5/ 0972 0.541 0.845 0.17014 0.21014| 41.028 39.879 22.196 34.669 8.6216
18 6] -0.441 0.739 0.377 0.01453 0.05453| 8.1848 -3.6095 6.0486 3.0857 0.4463
19 71 1.169 0.781 0.277 0.19157 0.23157| 28.464 33.275 22.231 7.8846 6.5915
20 8[ 1.159 0.93 -0.129 0.18872 0.22872| -57.995 -67.216 -53.935 7.4813 -13.265
21 9 1.604 1.408 -0.25 0.2675 0.3075|-55.653 -89.267 -78.359 13.913 -17.113
22| 10 1.12 -0.272 -0.3 0.09516 0.13516| -35.388 -39.635 9.6255 10.616 -4.783
23| 11 1.07 0.277 0.92 0.16469 0.20469( 69.903 74.797 19.363 64.311 14.309
241 12| 1.665 0.362 0.589 0.22616 0.26616| 35.809 59.622 12.963 21.092 9.531
25| 13| 1.292 0.134 0.772 0.17466 0.21466| 52.422 67.73 7.0246 40.47 11.253
26| 14| 0.325 0.644 1.148 0.11527 0.15527| -1.8724 -0.6085 -1.2058 -2.1495 -0.2907
27| 15| 1.128 0.917 1.198 0.22421 0.26421| -54.394 -61.356 -49.879 -65.164 -14.371
28 16( -0.124 1.444 -0.264 0.07952 0.11952| 95.754 -11.874 138.27 -25.279 11.445
29| 17| 1.216 -0.26 0.953 0.14415 0.18415| 32.852 39.948 -8.5415 31.308 6.0497
30| 18] -0.586 0.239 -0.224 -0.0545 -0.0145| 47.061 -27.578 11.248 -10.542 -0.68
31 19/ 0.108 0.671 0.261 0.06668 0.10668| 2.1368 0.2308 1.4338 0.5577 0.228
32| 20| 1.506 0.57 0.385 0.21711 0.25711| -55.006 -82.839 -31.353 -21.177 -14.143
33 21 0.96 1.359 -0.079 0.19836 0.23836| 28.423 27.286 38.627 -2.2454  6.775
34| 22| 0.056 1.194 -0.09 0.08704 0.12704| -19.14 -1.0718 -22.853 1.7226 -2.4315
35( 23] 1.056 1.073 0.964 0.22019 0.26019| -46.053 -48.632 -49.415 -44.395 -11.983
36| 24| 1.776 0.755 -0.007 0.248  0.288| -37.861 -67.241 -28.585 0.265 -10.904
37| 25| 1.183 1.034 0.519 0.21808 0.25808| -38.682 -45.761 -39.997 -20.076 -9.9831
38| 26 1.011 -0.08 1.15 0.14011 0.18011 46.8 47.315 -3.744 53.82 8.4291
39( 27| 0.089 0.519 0.584 0.06364 0.10364 59.4 5.2866 30.829 34.69 6.1562
111 99 0.721 0.859 0.681 0.15987 0.19987 16.8 12.113 14.431 11.441 3.3578
112| 100f 0.384 1.136 0.309 0.13103 0.17103 9 3.456 10.224 2.781 1.5393

Figure 2 Construction of Self-financed Risk-free Portfolios.
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displaying these numbers is for showing the precision involved. For example, the number 3.90E-
14 in G10 is 0.00...0390, where 3 is preceded by 13 zeros after the decimal point. (Hereafter,
whenever a statement is made about a cell’s computed value being zero, it is implicit that the
value is subject to minor rounding errors.) This fact confirms the success of the Solver search.
It is easy to verify numerically that, for the same set of factor loadings, repeated Solver searches
with different initial values of w; will lead to different search results. Regardless of the search
results, the column sums in G10:J10 will always be zeros.

The second task of the worksheet for Figure 2 is to verify that, regardless of the Solver search
results, there are always no arbitrage profits. To verify numerically that Zjﬂ? w;,; 18 always
zero, some known values of 7y, ji;, iy, and pi3 — or, equivalently, Ao, A1+ Ao, A2+ Ao, and A3+ Ag
in view of equations (21) and (35) — are required. The four scroll bars in columns B-D are
for generating these values. Specifically, the scroll bar linked to C2, which is for 1007y, is set
to cover integer values of 0 — 10. In the illustration here, the selected ry in B2 via the formula
=C2/100 is 0.04 (or, equivalently, 4%). The three scroll bars for use to provide 100 times the
values of pi; — 1y, g — ry, and puz — ry are analogous; they are all set to cover integer values of
0 —20. The selected values of y; — g, pg — 1y, and pz — 1y, as displayed in B7:D7, are 0.11,
0.07, and 0.03 (or, equivalently, 11%, 7%, and 3%), respectively. The corresponding values of
[y, Mg, and gz, as displayed in B10:D10, are 0.15, 0.11, and 0.07 (or, equivalently, 15%, 11%,
and 7%), respectively.

In view of equation (39), the values of p; —r¢, for i = 1,2,...,100, can be computed directly
via basic matrix operations. In Figure 2, the computed results are displayed in E13:E112. The
matrix operations, which require the “Shift, Ctrl, and Enter” keys to be pressed simultaneously
for the selected block E13:E112, are via the formula =MMULT(B13:D112,TRANSPOSE(B7:D7)
). This formula nests two matrix functions in Excel. The function TRANSPOSE is used to
transform the 1 x 3 matrix in B7:D7 into a 3 x 1 matrix, so that it can be pre-multiplied by the
100 x 3 matrix in B13:D112. The values of y,, for i = 1,2,...,100, as displayed in F13:F112,
are deduced by adding back the value of r; to each cell in E13:E112.

With each p,; determined, the corresponding value of w;p,; and hence the sum Zjﬁ‘} wip,; can
easily be computed. The sum as displayed in K10 is zero. For the same set of factor loadings
in B13:D112, there are two ways to check the robustness of the result in K10. One way is to

perform the Solver searches repeatedly, with different initial values of wy, ws, ..., wigy for each
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search. A simpler way is to vary the values of r¢, 1y, iy, and p3, via the four scroll bars involved.
FEither way, any changes in the displayed values in column K will be readily noticeable.

From an algebraic standpoint, the set of values of ¢, u; — 7¢, pg — 71y, and pg — ry, as
stored in B2 and B7:D7, can be viewed as one of the infinitely many ways to assign values of
Aos A1, A2, and A3 for use in equation (38). Each set of these parameter values corresponds to
a set of computed values of jiq, fig, ..., f119o in F13:F112. Regardless of what arbitrary values
of these four parameters are used and how unrealistic some computed values of i, tts, ..., L4100

100

may appear, the sum » . w;u,; in K10 is always zero. The robustness of such a result is not

surprising, as a non-zero sum in K10 would indicate arbitrage profits.

4.3 Construction of Portfolios with Unit and Zero Factor Sensitivi-
ties

The next step in the numerical illustration is to show how portfolios 1, 2, and 3 are constructed.
Figure 3 is based on three separate worksheets for such a task, named “Portl, Port2,” and
“Port3.” The Solver search in each of the three worksheets is based on the same set of factor
loadings from B13:D112 of the worksheet for Figure 2. These factor loadings and the cells
in B2, B7:D7, and B10:D10, which contain the same values of 7y, 1y, piy, and g in Figure 2,
are duplicated in each of the three worksheets at the corresponding cell locations. So are the
computed values of p; — r¢ and p,;, for 2 =1,2,...,100, in E13:F112.

The three worksheets are set up in the same way, except for some differences in the Solver
part. The first page of Figure 3, which is about the construction of portfolio 1, shows all rele-
vant columns of the worksheet named “Portl.” Columns G-K contain results that are specific to
portfolio 1. To construct portfolio 1 with Solver, the target cell $G$10 is set equal to 1, by chang-
ing $G$13:3G$37, subject to the constraints of $G$13:3G337<=3G35, $G$13:3G$37>=3G%4,
$H$10=1, $1$10=0, and $J$10=0. The Solver settings for portfolios 2 and 3 are the same,
except for the last three constraints. Specifically, for portfolio 2, the last three constraints
are $H$10=0, $1$10=1, and $J$10=0; for portfolio 3, the last three constraints are $H$10=0,
$I$10=0, and $J$10=1 instead.

The second page of Figure 3 shows the results in columns G-K of the two worksheets that
are specific to portfolios 2 and 3. The results in columns G-K of the worksheets for portfolios 2

and 3 are duplicated in columns L-P and columns Q-U, respectively, by means of some linking

Published by ePublications@bond, 2016

23



Spreadsheets in Education (eJSiE), Vol. 9, Iss. 1 [2016], Art. 4

A B C D E F G H I J K
1 Rf G H | J K
2 0.04
3 Range Worksheet name: Portl
4 -0.5
5 0.5
6 mul-rf mu2-rf mu3-rf
7 0.11 0.07 0.03
8
9 mul mu2 mu3 Column sums mul
10 0.15 0.11 0.07 1.00000 1.00000 8.7E-15 2.0E-14 0.15000
11
12 |Seci|bil bi2 bi3 mui-rf mui Xi xi*bil  xi*bi2  xi*bi3  xi*mui
13 1| 1.063 -0.155 0.21 0.11238 0.15238| 0.22478 0.23894 -0.0348 0.0472 0.03425
14 2 1.018 1.186 0.858 0.22074 0.26074| -0.0613 -0.0624 -0.0727 -0.0526 -0.016
15 3 1.034 0.166 0.183 0.13085 0.17085| 0.17393 0.17985 0.02887 0.03183 0.02972
16 4 1.763 1.004 1.096 0.29709 0.33709( -0.0039 -0.0069 -0.0039 -0.0043 -0.0013
17 5 0.972 0541 0.845 0.17014 0.21014| 0.12229 0.11887 0.06616 0.10334 0.0257
18 6 -0.441 0.739 0.377 0.01453 0.05453| -0.031 0.01368 -0.0229 -0.0117 -0.0017
19 7 1.169 0.781 0.277 0.19157 0.23157| 0.01638 0.01915 0.01279 0.00454 0.00379
20 8| 1.159 0.93 -0.129 0.18872 0.22872] 0.06253 0.07247 0.05815 -0.0081 0.0143
21 9 1.604  1.408 -0.25 0.2675 0.3075| -0.0779 -0.125 -0.1097 0.01948 -0.024
22| 10 1.12 -0.272 -0.3 0.09516 0.13516| 0.17996 0.20156 -0.0489 -0.054 0.02432
23| 11 1.07 0.277 0.92 0.16469 0.20469( 0.06422 0.06871 0.01779 0.05908 0.01314
24 12 1.665 0.362 0.589 0.22616 0.26616( 0.07858 0.13084 0.02845 0.04628 0.02091
25( 13| 1.292 0.134 0.772 0.17466 0.21466( 0.21357 0.27594 0.02862 0.16488 0.04585
26| 14 0.325 0.644 1.148 0.11527 0.15527(0.03958 0.01286 0.02549 0.04544 0.00615
27| 15 1.128 0.917 1.198 0.22421 0.26421f -0.1979 -0.2232 -0.1814 -0.237 -0.0523
28 16| -0.124 1.444 -0.264 0.07952 0.11952( -0.0204 0.00253 -0.0294 0.00538 -0.0024
29 17| 1.216 -0.26  0.953 0.14415 0.18415| 0.18432| 0.22413 -0.0479 0.17566 0.03394
30| 18] -0.586 0.239 -0.224 -0.0545 -0.0145 0.1089 -0.0638 0.02603 -0.0244 -0.0016
31| 19|/ 0.108 0.671 0.261 0.06668 0.10668| 0.02758 0.00298 0.01851 0.0072 0.00294
32| 20| 1.506 0.57 0.385 0.21711 0.25711| -0.0282 -0.0425 -0.0161 -0.0109 -0.0073
33] 21 0.96 1.359 -0.079 0.19836 0.23836| 0.03581 0.03437 0.04866 -0.0028 0.00853
341 221 0.056 1.194 -0.09 0.08704 0.12704| 0.00182 0.0001 0.00217 -0.0002 0.00023
351 23] 1.056 1.073 0.964 0.22019 0.26019| -0.018 -0.019 -0.0193 -0.0173 -0.0047
36| 24| 1.776 0.755 -0.007 0.248 0.288| -0.2258 -0.4011 -0.1705 0.00158 -0.065
371 25| 1.183 1.034 0.519 0.21808 0.25808| 0.01411 0.01669 0.01458 0.00732 0.00364
38| 26| 1.011 -0.08 1.15 0.14011 0.18011] -0.002 -0.002 0.00016 -0.0023 -0.0004
39| 27| 0.089 0.519 0.584 0.06364 0.10364 0.031 0.00276 0.01609 0.0181 0.00321
1111 99 0.721 0.859 0.681 0.15987 0.19987 0.002 0.00144 0.00172 0.00136 0.0004
112| 100 0.384 1.136 0.309 0.13103 0.17103| -0.052 -0.02 -0.0591 -0.0161 -0.0089

Figure 3 Construction of Portfolios with Unit and Zero Factor Sensitivities.
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A L M N 0] P Q R S T u
1 H | J K G H | J K
2
3 Range Worksheet name: Port2 Range Worksheet name: Port3
4 -0.5 -0.5
5 0.5 0.5
6
7
8
9 Column sums mu2 Column sums mu3
10 1.00000 4.8E-09 1.00000 -9.6E-09 0.11000( 1.00000 -3.2E-09 -7.5E-09 1.00000 0.07000
11
12 |Seci|xi xi*bil  xi*bi2  xi*bi3  xi*mui [xi xi*bil  xi*bi2  xi*bi3  xi*mui
13 1] 0.00615 0.00654 -0.001 0.00129 0.00094| 0.15209 0.16168 -0.0236 0.03194 0.02318
14 2| -0.0383 -0.039 -0.0455 -0.0329 -0.01] -0.0951 -0.0968 -0.1128 -0.0816 -0.0248
15 3[/ 0.06728 0.06957 0.01117 0.01231 0.0115[0.17641 0.1824 0.02928 0.03228 0.03014
16 4| -0.0132| -0.0233 -0.0133 -0.0145 -0.0045] -0.1079 -0.1903 -0.1084 -0.1183 -0.0364
17 5[ -0.0188 -0.0183 -0.0102 -0.0159 -0.0039| 0.12146 0.11806 0.06571 0.10263 0.02552
18 6(0.13224 -0.0583 0.09773 0.04986 0.00721|0.04841 -0.0213 0.03577 0.01825 0.00264
19 7| -0.0541 -0.0632 -0.0422 -0.015 -0.0125f 0.0455 0.05319 0.03553 0.0126 0.01054
20 8[ 0.04236 0.04909 0.03939 -0.0055 0.00969( -0.0821 -0.0952 -0.0764 0.01059 -0.0188
21 9/ 0.01411 0.02263 0.01987 -0.0035 0.00434| -0.2301 -0.369 -0.3239 0.05752 -0.0707
22| 10/ 0.15608 0.17481 -0.0425 -0.0468 0.0211}0.06711 0.07517 -0.0183 -0.0201 0.00907
23| 11} 0.02176 0.02328 0.00603 0.02002 0.00445| 0.15366 0.16442 0.04256 0.14137 0.03145
24| 12] 0.06461 0.10758 0.02339 0.03806 0.0172| 0.15587 0.25952 0.05642 0.09181 0.04149
25| 13| -0.024 -0.031 -0.0032 -0.0185 -0.0052|0.21676 0.28006 0.02905 0.16734 0.04653
26| 14]0.23704 0.07704 0.15265 0.27212 0.03681| 0.21158 0.06876 0.13625 0.24289 0.03285
27| 15| -0.0695 -0.0784 -0.0637 -0.0832 -0.0184| -0.0486 -0.0548 -0.0445 -0.0582 -0.0128
28 | 16| 0.37166 -0.0461 0.53668 -0.0981 0.04442|0.14271 -0.0177 0.20607 -0.0377 0.01706
29 17| -0.0196 -0.0239 0.00511 -0.0187 -0.0036| 0.2625 0.3192 -0.0683 0.25016 0.04834
30 18] 0.34334 -0.2012 0.08206 -0.0769 -0.005| 0.15981 -0.0937 0.0382 -0.0358 -0.0023
31| 19} 0.23457 0.02533 0.15739 0.06122 0.02502| 0.07507 0.00811 0.05037 0.01959 0.00801
32 20| -0.0419 -0.0632 -0.0239 -0.0161 -0.0108| 0.12227 0.18414 0.0697 0.04708 0.03144
33 21} -0.0373 -0.0358 -0.0507 0.00295 -0.0089| -0.1617 -0.1553 -0.2198 0.01278 -0.0386
34 22]0.13758 0.0077 0.16428 -0.0124 0.01748| 0.04446 0.00249 0.05309 -0.004 0.00565
35| 23] 0.14088 0.14877 0.15116 0.13581 0.03666| 0.06705 0.0708 0.07194 0.06464 0.01745
36 24| -0.2299 -0.4083 -0.1736 0.00161 -0.0662| -0.4828 -0.8575 -0.3645 0.00338 -0.1391
37 25/ 0.01705 0.02017 0.01763 0.00885 0.0044| 0.0916 0.10836 0.09471 0.04754 0.02364
38 26| -0.092 -0.093 0.00736 -0.1058 -0.0166| 0.056 0.05662 -0.0045 0.0644 0.01009
39 27| -0.055 -0.0049 -0.0285 -0.0321 -0.0057| 0.036 0.0032 0.01868 0.02102 0.00373
111] 99| -0.083 -0.0598 -0.0713 -0.0565 -0.0166 0.06 0.04326 0.05154 0.04086 0.01199

112| 100 -0.035 -0.0134 -0.0398 -0.0108 -0.006 0.085 0.03264 0.09656 0.02627 0.01454

Figure 3 Construction of Portfolios with Unit and Zero Factor Sensitivities (continued).
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formulas. For example, on the second page of Figure 3, the formula for L13 is =Port2!G13,
which duplicates the content of G13 in the worksheet named “Port2,” and the formula for Q13
is =Port3!(G13, which duplicates the content of G13 in the worksheet named “Port3.”

For ease of exposition when describing the results and the computations involved in Figure 3,
only the column headings in the three original worksheets are mentioned below. For clarity, the
original column headings, G-K, are also displayed in G1:U1 of Figure 3. Each page of Figure 3
has two panels, which are separated by a vertical line. Each of the panels for portfolio-specific
results shows the corresponding original worksheet name as well.

Three different sets of randomly generated x;, for ¢+ = 1,2,...,100, are used as the initial
values for the three Solver searches. Changes to these values in each Solver search are confined
toi =1,2,...,25 only. To avoid extreme outcomes in allocations of investment funds, the
Solver result for each of these 25 values of z; is confined to be in the range of —0.5 to 0.5, as
indicated in G4:G5 for each portfolio.

As shown in G10:J10 for each portfolio, the conditions for constructing portfolios 1, 2, and
3 are all satisfied. Specifically, portfolio £ has unit sensitivity to factor £ and zero sensitivity
to each of the remaining factors, for k£ = 1, 2, and 3. Based on each set of Fxcel search results
of z; in G13:G112, the values of x;u; are stored in K13:K112. As confirmed in K10, the sum
Zjﬂﬂ x;p; always matches the expected return of the corresponding portfolio. This result is
robust, regardless of what initial values of z; are used in the Solver searches.

Notice that, unlike the Solver searches for the construction of self-financed risk-free portfolios,
where all 100 securities are involved, the Solver searches here can be based on any subset of
the 100 securities. The only requirement is that each search must be based on five or more
securities. The three worksheets for Figure 3 are set up in such a way that each Solver search
can accommodate 26 < n < 100. This can easily be achieved by using zeros for some or all

initial values in G38:GG112, where x4, 727, . .., L1090 are stored.

4.4 The Noise Issue

A crucial condition in the derivation of the APT is that the number of securities in the market
must be large enough for the noise in the return generating equations for individual securities
to be attenuated effectively in a portfolio context. However, the analytical materials in the

model derivation cannot provide, and are not meant to provide, any guidance as to how large
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n must be for this condition to hold. Intuitively, the more severe is the noise e; in the return
generating equation for each security 4, a larger n is required for the sum )" | w;e; in equation
(13) to become trivially small.

As mentioned earlier, each randomly generated e; for the Excel illustration here either is in
the range of +0.03 for a uniform distribution or has a standard deviation of 0.02 for a zero-mean
normal distribution. For such distributions, whether n = 100 is large enough to attenuate the
noise effectively is assessed in the worksheet (named “Noise”) for Figure 4. For this task,
columns A-F of Figure 4 duplicate the corresponding data in Figure 2. Columns G-I of Figure
4 duplicate (in G13:1112) the same values of wy,ws, ..., wig in G13:G112 of Figure 2 and the
same two sets of ey, eq, ..., e100 in E13:F112 of Figure 1. In Figure 4, computed values of
wie, Waes, . .., Wigoe100 are displayed in J13:K112. The corresponding column sums, with each
being > " | w;e;, are displayed in J4:K4.

When compared to the sums Z _ Wi, Zzli? w;b;1, Zg{i w;bya, le (iwl i3, and Zl L Wil in
G10:K10 of Figure 2, which are all zeros (subject to rounding errors), each sum E¢=1 w;e; in
J4:K4 of Figure 4 is far from being a zero. Repeated computations with different Solver results
of wy,ws, ..., wie and different sets of random noise (from the same distributions) still result
in each sum Z _, w;e; being non-zero. Thus, for the set of numerical data in the illustration,
n = 100 does not seem to be adequate for attenuating the noise effectively.

As the model derivation hinges on the success of noise attenuation in a portfolio context, the
issue as to how many securities are really needed for a self-financed portfolio to become risk-free
deserves to be addressed. The Excel illustration here can serve as a good starting point for
students to examine the noise issue more closely. Using the same Excel file accompanying this
paper, students can explore on their own the impact of varying the severity of random noise in
the return generating equations on the required number of securities in the market. Such an

exercise will help them appreciate more fully the relevance of the noise issue in the derivation

of the APT.

5 Concluding Remarks

What underlies the derivation of the APT is a simple idea. Specifically, a risk-free investment

that requires no cash outlays must have zero payoffs; otherwise, arbitrage profits would be
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A B C D E F G H I J K
1 Rf Worksheet name: Noise
2 0.04
3 Column sums
4 3.9E-14 -0.0925 -0.2164 6.21775 -4.6639
5
6 mul-rf mu2-rf mu3-rf
7 0.11 0.07 0.03
8
9 mul mu2 mu3
10 0.15 0.11 0.07
11 Uniform Normal Uniform Normal
12 [Seci |bil bi2 bi3 mui-rf mui Wi ei ei wi*ei wi*ei
13 1| 1.063 -0.155 0.21 0.11238 0.15238| 50.935 0.02978 -0.0188 1.51686 -0.9552
14 2| 1.018 1.186 0.858 0.22074 0.26074| -42.73 -0.0145 -0.0038 0.62046 0.16348
15 3] 1.034 0.166 0.183 0.13085 0.17085| 63.632 0.00965 -0.0002 0.61405 -0.0096
16 4] 1.763 1.004 1.096 0.29709 0.33709| -17.03 -0.0108 0.03202 0.1831 -0.5453
17 5] 0.972 0.541 0.845 0.17014 0.21014] 41.028 -0.0298 0.00404 -1.223 0.16573
18 6 -0.441 0.739 0.377 0.01453 0.05453| 8.1848 0.01762 -0.0203 0.14422 -0.1663
19 7| 1.169 0.781 0.277 0.19157 0.23157| 28.464 -0.002 -0.0134 -0.0561 -0.3801
20 8 1.159 0.93 -0.129 0.18872 0.22872| -57.99 -0.0192 0.02625 1.11234 -1.5225
21 9| 1.604 1.408 -0.25 0.2675 0.3075| -55.65 -0.0233 -0.0225 1.29671 1.25307
22 10 1.12 -0.272 -0.3 0.09516 0.13516| -35.39 0.02277 -0.0049 -0.8058 0.17408
23| 11 1.07 0.277 0.92 0.16469 0.20469| 69.903 0.00851 0.03007 0.59488 2.10213
24| 12 1.665 0.362 0.589 0.22616 0.26616| 35.809 -0.0013 0.00996 -0.0476 0.35683
25| 13 1.292 0.134 0.772 0.17466 0.21466| 52.422 -0.002 0.01852 -0.1038 0.97073
26| 14 0.325 0.644 1.148 0.11527 0.15527| -1.872 -0.0039 -0.0185 0.00732 0.03472
27| 15( 1.128 0.917 1.198 0.22421 0.26421] -54.39 0.02016 -0.0138 -1.0966 0.74813
28| 16 -0.124 1.444 -0.264 0.07952 0.11952| 95.754 -0.0258 -0.0051 -2.4733 -0.4839
29| 17 1.216 -0.26  0.953 0.14415 0.18415| 32.852 -0.0116 0.00877 -0.3798 0.28811
30| 18] -0.586 0.239 -0.224 -0.0545 -0.0145| 47.061 -0.025 0.00873 -1.1751 0.41065
31| 19| 0.108 0.671 0.261 0.06668 0.10668| 2.1368 -0.0216 0.02417 -0.0462 0.05164
32| 20| 1.506 0.57 0.385 0.21711 0.25711f -55.01 -0.0168 -0.0054 0.923 0.29614
33] 21 0.96 1.359 -0.079 0.19836 0.23836| 28.423 -0.0262 -0.0283 -0.7433 -0.8047
341 22| 0.056 1.194 -0.09 0.08704 0.12704| -19.14 0.0252 -0.026 -0.4823 0.49682
35| 23] 1.056 1.073 0.964 0.22019 0.26019| -46.05 0.00145 0.01605 -0.0668 -0.7389
36| 24| 1.776 0.755 -0.007 0.248 0.288| -37.86 -0.028 -0.0168 1.06049 0.63673
37| 25| 1.183 1.034 0.519 0.21808 0.25808| -38.68 0.01702 0.03986 -0.6584 -1.5418
38| 26| 1.011 -0.08 1.15 0.14011 0.18011 46.8 -0.024 -0.0069 -1.1251 -0.3229
39| 27| 0.089 0.519 0.584 0.06364 0.10364 59.4 0.02971 -0.0145 1.76477 -0.8629
111f 99| 0.721 0.859 0.681 0.15987 0.19987 16.8 -0.0005 -0.011 -0.0089 -0.1842
112| 1001 0.384 1.136 0.309 0.13103 0.17103 9 -0.0246 -0.0081 -0.2217 -0.0732

Figure 4 An Example of Inadequate Noise Attenuation.
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available. However, seemingly innocuous uses of some basic finance terms to articulate this
simple idea could still cause inadvertent confusions to students. In particular, although the
term rate of return (or, simply, return) is not applicable to self-financed portfolios for which no
investment capital — i.e., a zero in the denominator for each return computation — is involved,
standard textbook explanations of the absence of arbitrage profits from such portfolios still
routinely rely on its use.’

To deepen the perceived mystery of the APT to many finance students, textbook derivations
of the model all require some mathematical knowledge that is likely unfamiliar to them. This
paper, which has derived the Arbitrage Pricing Line from a pedagogic perspective, is intended
to dispel any remaining mystery of the model. The model derivation has a crucial requirement.
Specifically, the number of securities in the market must be large enough for self-financed risk-
free portfolios to be constructed. Given such a requirement, as there are many more securities
than the number of linear constraints for portfolio construction, there will be infinitely many
ways to allocate investment funds among the available securities. Interestingly, it is the lack
of uniqueness in the allocation of investment funds that facilitates a pedagogic derivation of the
model.

Excel plays an important pedagogic role in this paper. It is also the same lack of uniqueness
that allows Excel Solver to be used by students as a numerical tool to recognize the various
nuances of the model derivation. The Excel file accompanying this paper has been set up in
such a way that it is easy to generate different sets of data for the numerical tasks involved. Of
particular importance is the noise issue. Although it is required in the model derivation that
the noise be attenuated effectively in a portfolio context, whether the requirement is satisfied
can be revealed only in numerical settings. Thus, the Excel illustration in this paper is a good
starting point for students to gain valuable hands-on experience with the noise issue in the model

derivation.

SFor example, Levy and Post (2005, Chapter 11) state that “(s)ince the arbitrage portfolio involves no net
investment and no risk, it must yield a zero expected return,” (p. 372). Likewise, Copeland, Weston, and
Shastri (2005, Chapter 6) state that “(i)f the return on the arbitrage portfolio were not zero, then it would be
possible to achieve an infinite return with no capital requirements and no risk,” (p. 178).
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