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Unlocking the Spreadsheet Utility for Calculus: A Pure Worksheet Solver
for Differential Equations

Abstract
This paper presents a unique solver for nonlinear initial-boundary value partial differential equations (PDE)
that integrates with Microsoft Excel as a pure math function. The solver receives via input arguments formulas,
variables, and parameters for the PDE, and is executed as a regular formula command in a range of cells. The
solver, utilizing the method of lines, evaluates to a formatted tabular solution suitable for direct plotting of
snapshot or transient views. Design of the solver is made possible by bypassing restrictions that block a
worksheet function from receiving and evaluating formulas while preserving its purity. Three examples are
presented to demonstrate the merits of this unconventional solver design which shields the tedious
algorithmic implementation details from the user, and greatly simplifies solving a PDE using an intuitive math
function without any dialogues, macros or VBA programming.
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I.   INTRODUCTION 

 

Partial differential equations (PDE) models are inescapable in science and 

engineering [1] as well as modern social sciences [2]. When PDE involve more than 

one spatial independent variable, the problem of geometry definition becomes an 

integral part of solving them. An entire industry has evolved supporting integrated 

advanced geometrical modeling and computational tools for solving PDE in product 

design. These sophisticated and expensive tools are typically geared to specific 

engineering applications. For simple regular geometries, several mathematical tools 

such as MATLAB® and Mathematica® offer powerful solvers for PDE, and are 

often used in the classroom. Students are expected to master the programming 

languages of these tools in order to utilize them effectively. 

On the other hand, the ubiquitous spreadsheet application, primarily Excel, is 

widely used by professionals, and in the classroom as a math tool, thanks in part to 

its ease of use, rich intrinsic math functions, graphing, and extensibility. Attempts to 

solve PDE in a spreadsheet have been limited in scope to pedagogical linear models. 

These methods typically utilize finite difference approximations which map naturally 

to the native grid structure of the spreadsheet. Visual Basic for Application (VBA) 

programs are developed in conjunction with macros and user input forms to carry out 

the solution procedure [3], [4]. Such methods serve primarily as teaching aid on 

structured numerical solution procedures for linear PDE but are otherwise 

impractical for solving general nonlinear PDE. They do however, illustrate how far 

the common spreadsheet has been exploited perhaps beyond what its original 

designers have anticipated. 

In this article we introduce a practical spreadsheet solver for a general system of 

nonlinear transient boundary value differential equations in one spatial dimension 

which can be presented in the following form: 

 
𝜕𝑢𝑖

𝜕𝑡
= 𝑓𝑖(𝑡, 𝑥, 𝒖, 𝒖𝒙, 𝒖𝒙𝒙),   𝑖 = 1, . . , 𝑛 (1) 

 

subject to proper initial and boundary conditions. The restriction to one spatial 

dimension avoids the problem of geometry definition which is, admittedly, not suited 

for the spreadsheet application. In (1) we have also restricted the order of the 

equations to 2nd order. This restriction can be easily relaxed to include higher orders 

although it is generally sufficient for modeling a practical range of problems. 

The solver is designed exclusively for Excel as a pure worksheet math function. 

Definition of the problem formulas, as given in (1), are passed as arguments, and the 

solver is evaluated as a standard formula in an allocated range. The solver populates 

the range with a formatted solution which can be readily plotted. The solver pure 

functional design which receives the PDE formulas, variables and parameters via 

regular arguments, requires no dialogues, and does not modify its inputs or any data 

1

Ghaddar: Unlocking the Spreadsheet:  A Worksheet Solver for Differential Equations

Published by ePublications@bond, 2016



 

 

in the spreadsheet, is strikingly different from the conventional spreadsheet 

command utilized for evaluating formulas, and the several hundred intrinsic math 

functions which can only operate on constant numeric input. The design is made 

possible by means of an innovative method [5] which allows a math function to 

accept formulas as a new type of argument while preserving its purity. The method 

works by capturing the definition of an input argument formula using the spreadsheet 

Advanced Programming Interface (API), and constructing a relational graph of nodes 

representing the formula inter-dependence on nested formulas, variable cells, and 

recursive calls. A graph evaluator which exploits the spreadsheet API, is employed 

to evaluate the relational nodes of the graph in an order of their dependence, and 

aggregating their values to obtain the value of the formula all without modifying any 

data in the spreadsheet. 
 

 
 

Figure 1. Flowchart for worksheet solver function design 
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The method enabled the development of a new class of worksheet calculus 

functions [6] based on the flowchart logic of Fig 1. The benefits of the pure functional 

solver design over conventional interactive command approaches are noteworthy. 

First the solver fully separates the numerical procedure, which is often of less interest 

to the user, from the problem input model and output solution. In contrast, the 

command mechanism which is the standard procedure for updating variable cells 

values and evaluating dependent formulas, utilizes the spreadsheet explicitly as the 

computational grid for the numerical algorithm. In essence, it mixes up inputs, 

algorithmic procedure, and results overwriting inputs by results. Second, and more 

importantly, by preserving purity and recursion properties, the functions can 

achievably support a functional paradigm for solving more complex problems 

including dynamical optimization and optimal control as demonstrated by the author 

in [8]. Since commands are not mathematical functions, and do not possess such 

essential properties to support a functional paradigm, solving dynamical optimization 

problems of differential systems have remained outside the scope of traditional 

spreadsheet applications.  

The remainder of this article is divided into three sections. In the next section, we 

describe the PDE problem formulation and the employed numerical algorithm. Next, 

the worksheet solver interface and output format are described. This is followed by 

demonstrating the solver with three PDE examples. We recommend reviewing 

Appendix A1, which includes a brief description of basic spreadsheet concepts, for 

any reader not familiar with the spreadsheet prior to reviewing the examples. 

 

II. PROBLEM STATEMENT AND NUMERICAL ALGORITHM 

 

We consider a system of initial boundary-value nonlinear partial differential 

equations of at most second order which is given in the form (1) in the domain 0 ≤
𝑥 ≤ 𝐿, and for 𝑡 ∈ [0, 𝑇]. Initial condition 𝑢𝑖(𝑥, 0) =  𝑖𝑐𝑖(𝑥), is required for each 

state variable 𝑢𝑖 , 𝑖 = 1, . . 𝑛. To facilitate defining the initial condition function as a 

formula in the spreadsheet, we represent it with respect to zero: 

 

0 = 𝑖𝑐𝑖(𝑥),   𝑖 = 1, . . 𝑛 (2) 

 

Depending on the highest derivative order for each equation in system (1), one or 

two boundary conditions are required for each equation. The boundary conditions 

are specified at the left (x=0) and/or right (x=L) points of the domain. Each boundary 

condition may depend on 𝑡, 𝒖, and 𝒖𝒙. Again to enable definition by a formula, we 

represent each boundary condition function with respect to zero:  

 

0 =  𝑏𝑐𝑖(𝑡, 𝒖, 𝒖𝒙) (3) 
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The general form (1) can describe a variety of PDE types in terms of geometric 

properties, nonlinearity and smoothness for which a particular solution method may 

be more effective than others. The design of the pure solver permits encapsulating 

multiple finite difference and Galerkin methods which can be selected by the user 

via options. The first order initial value form (1) makes the method of lines [9], [10] 

particularly attractive given the availability of several ODE implicit adaptive 

integration schemes codes, and hence has been selected for the default algorithm. 

Spatial discretization is carried out on a uniform mesh by standard collocation over 

piecewise polynomials using B-spline basis functions [10]. The resulting implicit 

ODE system is integrated by any of the implicit schemes RADAU5, BDF, or 

ADAMS with adaptive step control [11], [12].   

 

III.  SPREADSHEET SOLVER DESCRIPTION 

 

A. Representation of PDE in spreadsheet   
 

The system (1) can be described by n formulas for the right-hand-side (RHS) 

equations 𝑓𝑖 ,  which are defined in terms of a selected set of (2+3n) cells 

corresponding to the system variables (𝑡, 𝑥, 𝒖, 𝒖𝒙, 𝒖𝒙𝒙).  The system relationship can 

be preserved by maintaining the formulas and variables are passed to the solver in a 

pre-determined order as follows: (𝑓1, 𝑓2, . . , 𝑓𝑛) for formulas, and  

(𝑡, 𝑥, 𝑢1, . . , 𝑢𝑛, 𝑢1,𝑥 , . . , 𝑢𝑛,𝑥, 𝑢1,𝑥𝑥, . . , 𝑢𝑛,𝑥𝑥) for variables. The selection of the cells 

which define the formulas and variables is arbitrary. In practice, it is convenient to 

work with a contiguous set of named cells rather than raw cell addresses. Each 

variable 𝑢1, . . , 𝑢𝑛 cell must contain a formula which defines the initial condition, 

𝑖𝑐𝑖(𝑥) for the variable. The initial condition formula is defined in terms of the cell 

variable representing 𝑥. 

To define the boundary conditions (3), we use two additional cells for each 

equation to hold the left and right boundary conditions formulas which are defined 

using the cells representing (𝑡, 𝑢1, . . , 𝑢𝑛, 𝑢1,𝑥 , . . , 𝑢𝑛,𝑥). If no boundary condition is 

required, the text ‘NA’ is added to the corresponding cell.  This completes the 

representation of the PDE system in Excel in terms of standard formulas. Additional 

parameters including time and spatial domains are passed as standard value 

arguments.  

 

B. Solver Interface  
 

Based on the preceding representation of the PDE system in Excel, the design for the 

solver interface follows naturally as shown in the formula: 
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=PDSOLVE (rhs, vars, lbc, rbc, L, T, [options])) (4) 

 

References to the system RHS formulas are supplied to PDSOLVE in the first 

parameter rhs, and the system variables in vars. References to the left and right 

boundary conditions formulas are specified via lbc and rbc respectively. Spatial and 

temporal domains limits are defined in the 5th and 6th parameters L and T. The solver 

accepts additional optional arguments which are described in detail in [7]. These 

arguments include supplying analytic Jacobians for the system formulas, as well as 

custom settings for the underlining algorithm such as tolerances and selection of 

temporal integration algorithm.  

Once the arguments are specified, the user simply evaluates the solver as an array 

formula in a pre-allocated range in Excel large enough to hold the solution. The 

solver computes and displays a formatted solution as described in the next section. 

 

C. Solution layout in the spreadsheet 
 

We present the numerical solution for system (1) in Excel in one of two tabular 

layouts that are convenient for plotting a transient or snapshot views of the solution. 

Fig 2 shows a snapshot layout for a system of two equations. This layout allows for 

direct plotting of the system variables spatial profiles at selected time points in the 

first row. In the transient layout, the order of x and t are exchanged to allow for direct 

plotting of the variables transient behavior at selected spatial points. Values of the 

independent variables x and t are reported at uniform intervals as determined by the 

size of the allocated array for output. However, this default behavior can be changed 

by either providing a step size or specific custom points using optional formats for 

the solver parameters L and T. Furthermore, displaying the columns for the first and 

second derivatives can be turned on or off via solver options [7]. 

 

 

 A B C D E F G H I J K 

1 t t0 t0 t0 t0 t0 t0 t1 t1 t1  

2 X 𝑢1 𝑢1 𝑢1,𝑥 𝑢1,𝑥 𝑢1,𝑥𝑥 𝑢2,𝑥𝑥 𝑢2 𝑢2 𝑢2,𝑥 .. 

3 x0          .. 

4 x1          .. 

5 x2          .. 

..            

N L           
 

Figure 2. Snapshot solution layout in Excel for partial differential equation solver 

PDSOLVE. The display of 1st and 2nd derivative variables is optional. In the transient 

view layout, the order of ‘x’ and ‘t‘ is exchanged 

 

Each column block has solution 
values for dependent variable at (x, t) 

values 
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IV.   EXAMPLES 

 

A. Parabolic Heat Equation   
 

We demonstrate the use of PDSOLVE by computing the solution to a transient heat 

transfer problem across a slab that is initially at zero temperature with an insulated 

right side. At time equals zero, the left side is brought to 100 degrees. The problem 

is described by the parabolic equation: 

 

𝜕𝑢

𝜕𝑡
= 𝑘

𝜕2𝑢

𝜕𝑥2
 (5) 

 

with initial condition 𝑢(𝑥, 0) =  0, left boundary condition 𝑢(0, 𝑡) =  100, and right 

boundary condition  𝜕𝑢(𝑥, 𝑡)/𝜕𝑥 = 0 at 𝑥 = 1. The problem’s spatial domain is 𝑥 ∈
[0, 1] and the time interval is  𝑡 ∈ [0, 1].  Fig 3 shows the complete system model in 

Excel. Using cells T1, X1, U1, U2, and U3 for system variables   𝑡, 𝑥, 𝑢, 𝑢𝑥, 𝑢𝑥𝑥  

respectively, the system RHS formula is defined in A1, the left boundary condition 

in B1, and the right boundary condition in C1, the conductivity 𝑘 in K1 and the initial 

condition in U1. 

 

 A B C K U 

1 =K1*U1 =U1-100 =U2 1 =IF(X1=0,100,0) 

 

Figure 3. Problem setup for Example 1 in Excel 
 

To compute the solution, we simply evaluate the following PDSOLVE formula: 

 

=PDSOLVE(A1, (T1,X1,U1:U3), B1, C1, {0,1}, {0,.5,1}) (6) 

 

in an allocated range E1:H23. In (6), we pass references to the system RHS equation, 

variables, and boundary condition formulas defined in Fig 3.  The 6th argument {0, 

0.5, 1} instructs the solver to report output time points at 0, 0.5 and 1 only, whereas 

output spatial points in the domain {0, 1} are reported uniformly in accordance with 

the available number of rows in the allocated solution range.  PDSOLVE populates 

the range with the snapshot solution format shown in Fig 4 and plotted in Fig 5. 

Alternatively; we can specify via the solver’s optional parameters a transient 

format for the output [7], which simplifies plotting transient response at selected 

spatial points as is shown in Fig 6. 
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 E F G H 

1 T1 0 0.5 1 

2 X1 U1 U1 U1 

3 0 100 100 100 

4 0.05 100 97.0906084 99.15263854 

5 0.1 100 94.19916828 98.31050871 

6 0.15 100 91.34351958 97.47880964 

7 0.2 100 88.54127962 96.66267545 

8 0.25 100 85.80973399 95.86714337 

9 0.3 100 83.16572917 95.09712222 

10 0.35 100 80.62556836 94.35736176 

11 0.4 100 78.20491103 93.65242317 

12 0.45 100 75.91867607 92.9866506 

13 0.5 100 73.78095094 92.36414463 

14 0.55 100 71.8049046 91.78873701 

15 0.6 100 70.00270828 91.26396785 

16 0.65 100 68.3854604 90.79306425 

17 0.7 100 66.96312022 90.37892153 

18 0.75 100 65.7444465 90.02408583 

19 0.8 100 64.73694473 89.73073923 

20 0.85 100 63.94682086 89.50068639 

21 0.9 100 63.37894262 89.33534325 

22 0.95 100 63.03680972 89.23572814 

23 1 100 62.92253049 89.20245472 
 

Figure 4. Computed solution for Example 1 by PDSOLVE 
 

 

 
 

Figure 5. Plot of Fig 4 results showing temperature distribution at various times 
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Figure 6. Transient temperature profiles at various positions 
 

 

B. Hyperbolic Wave Equation 
 

Next we solve the following 2nd order inhomogeneous wave equation:  

 

𝜕2𝑢

𝜕𝑡2
= 𝛼

𝜕2𝑢

𝜕𝑥2
+ 2𝑥2 + sin (𝑡) 

 

(7) 

for the initial and boundary conditions shown in Table 1. 

 
 

Table 1. Problem definition for Example 2 
 

Time period 𝒕 ∈ [𝟎, 𝟏] 
Spatial range 0 ≤ 𝑥 ≤ 4 

Parameter ∝= 1 

Initial conditions 

 

𝑢(𝑥, 0) = sin (𝜋𝑥) 
𝜕𝑢(𝑥, 𝑡)

𝜕𝑡
|𝑡=0 = −𝜋 𝑐𝑜𝑠 (𝜋𝑥) 

Left boundary condition 𝑢(𝑥, 𝑡)|𝑥=0 =  0 

Right boundary condition 𝑢(𝑥, 𝑡)|𝑥=4 =  0 
 

 

Using standard substitution, we to convert (7) to two 1st order equations in time: 
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𝜕𝑢

𝜕𝑡
= 𝑣 

𝜕𝑣

𝜕𝑡
= 𝛼

𝜕2𝑢

𝜕𝑥2
+ 2𝑥2 + sin (𝑡) 

 

(8) 

With this substitution, the 2nd initial condition is now assigned to 𝑣(𝑥, 0). Note that 

the left and right boundary conditions which constrain 𝑢 must be defined in relation 

to the first equation governing 
𝜕𝑢

𝜕𝑡
 and no boundary conditions are required for the 2nd 

equation governing 
𝜕𝑣

𝜕𝑡
. To define (8) in Excel, we use the cells T1, X1, U1, V1, U2, 

V2, U3, V3 to represent the system variables 𝑡, 𝑥, 𝑢, 𝑣, 𝑢𝑥, 𝑣𝑥 , 𝑢𝑥𝑥, 𝑣𝑥𝑥 respectively, 

and define the equations and boundary conditions as shown in Fig 7.  

 

 
RHS Left BC Right BC 

 A B C 

1 =V1 =U1 =U1 

2 =A1*U3+2*X1^2+SIN(T1) NA NA 

 
Figure 7. Problem setup for Example 2 in Excel 

 

We also assign the initial condition formulas for variables U1 and V1 as shown in 

Fig 8. 

 

 U V 

1 =SIN(PI()*X1) =-PI()*COS(PI()*X1) 

 

Figure 8. Definition of initial conditions for Example 2  

 

To compute the solution, we evaluate the following PDSOLVE formula: 

 

=PDSOLVE(A1:A2, (T1,X1,U1:V2), B1:B2, C1:C2, {0,4}, {0,.5,1}) (9) 

 

in allocated range H1:N23, and obtain the results shown in Fig 9. 
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 H I J K L M N 

1 T1 0 0 0.5 0.5 1 1 

2 X1 U1 V1 U1 V1 U1 V1 

3 0 0.0000 -3.1416 0.0000 0.3559 0.0000 0.2296 

4 0.2 0.5878 -2.5416 0.0374 0.6525 0.2184 0.4696 

5 0.4 0.9511 -0.9708 0.0663 1.0155 0.4283 1.1009 

6 0.6 0.9511 0.9708 0.4391 -2.3810 0.6660 1.7395 

7 0.8 0.5878 2.5416 0.9999 -1.0115 0.9596 2.1886 

8 1 0.0000 3.1416 1.2810 1.2056 1.3664 1.9869 

9 1.2 -0.5878 2.5416 1.2000 3.4923 2.3485 1.3592 

10 1.4 -0.9511 0.9708 0.8300 5.1536 3.2362 4.0835 

11 1.6 -0.9511 -0.9708 0.3620 5.7536 3.8363 7.2172 

12 1.8 -0.5878 -2.5416 0.0320 5.2924 4.1530 10.1480 

13 2 0.0000 -3.1416 0.0310 4.2058 4.3252 12.2679 

14 2.2 0.5878 -2.5416 0.4320 3.1992 4.5774 13.3480 

15 2.4 0.9511 -0.9708 1.1620 2.9780 5.1342 13.6172 

16 2.6 0.9511 0.9708 2.0300 3.9779 6.1341 13.6839 

17 2.8 0.5878 2.5416 2.8000 6.1992 7.5730 14.2051 

18 3 0.0000 3.1416 3.2810 9.2056 9.3689 17.5690 

19 3.2 -0.5878 2.5416 3.3999 12.2825 11.0936 15.0290 

20 3.4 -0.9511 0.9708 3.2380 14.7019 11.2085 11.3838 

21 3.6 -0.9511 -0.9708 3.1089 16.6364 9.3706 7.5006 

22 3.8 -0.5878 -2.5416 2.2000 9.1226 5.5533 3.6277 

23 4 0.0000 -3.1416 0.0000 0.2805 0.0000 0.1835 
 

Figure 9. Computed solution for Example 2 by PDSOLVE 
 

 

Fig 10 shows a snapshot plots of 𝑢(𝑥, 𝑡) at 𝑡 = 0, 0.5, and 1.0. The plot is easily 

constructed in Excel by highlighting the data of Fig 9 and inserting a scatter plot. 
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Figure 10. Plot of Fig 9 solution showing wave propagation at various times 

 

 

C. Burgers Equation 
 

In the 3rd example, we solve the 1D dissipative Burgers equation and compare results 

to the exact Fourier solution. Burgers equation arises in various topics including fluid 

mechanics in particular.  We consider the following Burgers equation: 

 

𝜕𝑢

𝜕𝑡
= −𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕2𝑢

𝜕𝑥2
 (10) 

 

with initial condition 

 

𝑢(𝑥, 0) = sin(𝜋𝑥) ,    0 < 𝑥 < 1, (11) 

 

and homogenous boundary conditions: 

 

𝑢(0, 𝑡) = u(1, t),    𝑡 > 0 (12) 

 

The exact Fourier solution for (10)-(12) is given by [13]: 

 

𝑢(𝑥, 𝑡) = 2𝜋𝑣
∑ 𝑎𝑛 exp(−𝑛2𝜋2𝑣𝑡) 𝑛 sin (𝑛𝜋𝑥)∞

𝑛=1

𝑎0 + ∑ 𝑎𝑛
∞
𝑛=1 exp(−𝑛2𝜋2𝑣𝑡) cos (𝑛𝜋𝑥)

, (13) 

 

where  

𝑎0 = ∫ exp (−(2𝜋𝑣)−1[1 − cos(𝜋𝑥])𝑑𝑥,
1

0

 (14) 
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and, 

 

𝑎𝑛 = 2 ∫ exp (−(2𝜋𝑣)−1[1 − cos(𝜋𝑥]) cos(𝑛𝜋𝑥) 𝑑𝑥
1

0

 (15) 

 

Table 2 displays vales of the exact solution computed using (13) as reported in [13] 

for viscosity values 0.1 and 0.01, at the shown values for x and t. 

 
Table 2. Exact solution values for Example 3 as reported in [13] 

 

x t u(x,t), 

v=0.1 

u(x,t), 

v=0.01 

0.25 

0.4 0.30889  0.34191  

0.6 0.24074 0.26896 

1 0.16256  0.18819 

3 0.02720  0.07511  

0.75 

0.4 0.62544 0.91026 

0.6 0.48721  0.76724 

1 0.28747 0.55605 

3 0.02977 0.22481  

 

To model (10) in Excel, we refer to the system variables 𝑡, 𝑥, 𝑢, 𝑢𝑥, 𝑢𝑥𝑥 by the 

named cells t, x, u, ux, uxx assigned to T1, X1, U1, U2, U3 respectively. The system 

RHS formula is defined in A1, the left and right boundary condition formulas in B1 

and C1, and the initial condition in U1 as shown in Fig 11. We make use of D1 

(named v) to hold the viscosity value set initially to 0.1.   

 

 

 A B C D U 

1 =-u*ux+v*uxx =u =u 0.1 =SIN(PI()*x) 

 
Figure 11. Problem setup for Example 3 in Excel 

 

We compute the solution by evaluating the following PDSOLVE formula 

 

=PDSOLVE(A1, (t,x,U1:U3), B1, C1, {0,1}, {0,.4,.6,1,2,3}) (16) 

 

in allocated range A5:G27, and obtain the default snapshot solution format shown in 

Fig 12. Note that we have requested the solution be reported at the specific time 
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points provided in argument 6, whereas the spatial points are reported at uniform 

intervals according to 21 available rows in the allocated solution range.  

 

 

 A B C D E F G 

5 t 0.0 0.4 0.6 1.0 2.0 3.0 

6 x u u u u u u 

7 0.00 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

8 0.05 0.15643 0.06297 0.04891 0.03324 0.01448 0.00592 

9 0.10 0.30902 0.12565 0.09764 0.06631 0.02875 0.01171 

10 0.15 0.45399 0.18776 0.14601 0.09904 0.04261 0.01727 

11 0.20 0.58779 0.24897 0.19379 0.13120 0.05584 0.02247 

12 0.25 0.70711 0.30891 0.24074 0.16256 0.06820 0.02720 

13 0.30 0.80902 0.36715 0.28653 0.19278 0.07944 0.03134 

14 0.35 0.89101 0.42315 0.33074 0.22145 0.08932 0.03481 

15 0.40 0.95106 0.47622 0.37282 0.24803 0.09754 0.03749 

16 0.45 0.98769 0.52547 0.41200 0.27182 0.10382 0.03931 

17 0.50 1.00000 0.56965 0.44721 0.29191 0.10788 0.04019 

18 0.55 0.98769 0.60706 0.47695 0.30714 0.10942 0.04010 

19 0.60 0.95106 0.63530 0.49913 0.31607 0.10821 0.03899 

20 0.65 0.89101 0.65105 0.51089 0.31702 0.10405 0.03688 

21 0.70 0.80902 0.64973 0.50845 0.30811 0.09684 0.03378 

22 0.75 0.70711 0.62542 0.48724 0.28750 0.08657 0.02976 

23 0.80 0.58779 0.57124 0.44229 0.25375 0.07339 0.02491 

24 0.85 0.45399 0.48074 0.36953 0.20631 0.05760 0.01934 

25 0.90 0.30902 0.35091 0.26782 0.14609 0.03968 0.01322 

26 0.95 0.15643 0.18602 0.14122 0.07583 0.02024 0.00671 

27 1.00 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

 
Figure 12. Computed solution for Example 3 by PDSOLVE 

 

 

Fig 13 shows the solution plot at the requested time points. Comparing values of 

Fig 12 to the exact values of Table 2 shows the maximum numerical error is on the 

order of 1e-05.  
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Figure 13. Plot of Fig 12 results showing effects of convection-diffusion of initial 

sinusoidal condition at various times. Viscosity = 0.1 

 

 

To compute the solution of Burgers equation (10) for v = 0.01, we simply change 

the value of cell D1 in Fig 11 to 0.01. Excel automatically computes the new solution 

and updates the plot which is shown in Fig 14. Although not shown here, the 

maximum numerical error in comparison to Table 2 was again on the order of 1e-05. 

 

 

 
 

Figure 14. Plot showing effects of convection-diffusion of initial sinusoidal condition at 

various times. Viscosity = 0.01 
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V. CONCLUSION 

 

We exploited Excel’s computing engine to develop a novel worksheet solver for 

1D partial differential equations. Design of the solver was made possible by 

bypassing inherent restrictions in order to allow a worksheet function to receive and 

evaluate formulas via input arguments. Several examples were presented to 

demonstrate the merits of the new design which encapsulates the algorithm, and 

separates problem model from results, in contrast to standard methods which mix 

inputs, algorithm and results. 

Although we do not provide benchmark performance data in this article, we 

comment that all the preceding examples compute on the order of a second or less, 

on a typical computer with an Intel core i5 processor.  The solver and several other 

calculus and ODE spreadsheet solvers are available in an add-in software library at 

excel-works.com [7], which integrates seamlessly with Excel Spreadsheet. 

 

APPENDIX 

A1 BASIC SPREADSHEET CONCEPTS 

 

A typical worksheet in Excel is composed of a large structured grid. Each cell in the 

grid is referenced by its column label and row number, e.g., A1, and represents a 

global memory placeholder. A range of cells can be referenced as a rectangular array, 

e.g., A1:B3, or a union of disjoint arrays and cells, e.g., (X1, A1:A3).  A cell may 

store a constant value or a formula defined using basic spreadsheet syntax, e.g., ‘= 

SQRT (X1^2 + Y1*Y1)’.  The spreadsheet engine insures orderly evaluation of all 

dependent formulas upon a change in the value of any cell. A general function can 

thus be identified by a root formula and a list of variable cells.  Nested dependency 

allows arbitrarily complex functions to be constructed.  To motivate the possibilities, 

consider the formula ‘=SUM (X1:Z1)’ assigned to A1, the pair (A1, Y1) identifies 

the function f(y)=X1+y+Z1, where X1 and Z1 are treated as constant values. In 

another example, consider the formula ‘=1+COS(B1)’ assigned to A1, and the 

formula ‘=SQRT(ABS(X1))’ assigned to B1, the pair (A1, X1) identifies the function 

f(x)=1+cos (√ (|x|)). 

Excel supports two types of formulas: simple formulas and array formulas. A 

simple formula is assigned to one cell and evaluates to a single value, e.g.,’=SUM 

(A1:B4)’. Alternatively, an array formula is assigned to a range of cells and evaluates 

to an array of values, e.g., ‘=MINVERSE (A1:C3)’ which computes the inverse of 

the 3 by 3 matrix A1:C3. 
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