
Spreadsheets in Education (eJSiE)

Volume 9 | Issue 1 Article 5

May 2016

Unlocking the Spreadsheet Utility for Calculus: A
Pure Worksheet Solver for Differential Equations
Chahid K. Ghaddar
ExcelWorks LLC, cghaddar@excel-works.com

Follow this and additional works at: http://epublications.bond.edu.au/ejsie

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works
4.0 License.

This Regular Article is brought to you by the Bond Business School at ePublications@bond. It has been accepted for inclusion in Spreadsheets in
Education (eJSiE) by an authorized administrator of ePublications@bond. For more information, please contact Bond University's Repository
Coordinator.

Recommended Citation
Ghaddar, Chahid K. (2016) Unlocking the Spreadsheet Utility for Calculus: A Pure Worksheet Solver for Differential Equations,
Spreadsheets in Education (eJSiE): Vol. 9: Iss. 1, Article 5.
Available at: http://epublications.bond.edu.au/ejsie/vol9/iss1/5

http://epublications.bond.edu.au/ejsie?utm_source=epublications.bond.edu.au%2Fejsie%2Fvol9%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epublications.bond.edu.au/ejsie/vol9?utm_source=epublications.bond.edu.au%2Fejsie%2Fvol9%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epublications.bond.edu.au/ejsie/vol9/iss1?utm_source=epublications.bond.edu.au%2Fejsie%2Fvol9%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epublications.bond.edu.au/ejsie/vol9/iss1/5?utm_source=epublications.bond.edu.au%2Fejsie%2Fvol9%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epublications.bond.edu.au/ejsie?utm_source=epublications.bond.edu.au%2Fejsie%2Fvol9%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://epublications.bond.edu.au/ejsie/vol9/iss1/5?utm_source=epublications.bond.edu.au%2Fejsie%2Fvol9%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epublications.bond.edu.au
mailto:acass@bond.edu.au
mailto:acass@bond.edu.au

Unlocking the Spreadsheet Utility for Calculus: A Pure Worksheet Solver
for Differential Equations

Abstract
This paper presents a unique solver for nonlinear initial-boundary value partial differential equations (PDE)
that integrates with Microsoft Excel as a pure math function. The solver receives via input arguments formulas,
variables, and parameters for the PDE, and is executed as a regular formula command in a range of cells. The
solver, utilizing the method of lines, evaluates to a formatted tabular solution suitable for direct plotting of
snapshot or transient views. Design of the solver is made possible by bypassing restrictions that block a
worksheet function from receiving and evaluating formulas while preserving its purity. Three examples are
presented to demonstrate the merits of this unconventional solver design which shields the tedious
algorithmic implementation details from the user, and greatly simplifies solving a PDE using an intuitive math
function without any dialogues, macros or VBA programming.

Keywords
partial differential equations, solvers, spreadsheet, calculus, numerical methods

Distribution License

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0
License.

This regular article is available in Spreadsheets in Education (eJSiE): http://epublications.bond.edu.au/ejsie/vol9/iss1/5

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://epublications.bond.edu.au/ejsie/vol9/iss1/5?utm_source=epublications.bond.edu.au%2Fejsie%2Fvol9%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages

I. INTRODUCTION

Partial differential equations (PDE) models are inescapable in science and

engineering [1] as well as modern social sciences [2]. When PDE involve more than

one spatial independent variable, the problem of geometry definition becomes an

integral part of solving them. An entire industry has evolved supporting integrated

advanced geometrical modeling and computational tools for solving PDE in product

design. These sophisticated and expensive tools are typically geared to specific

engineering applications. For simple regular geometries, several mathematical tools

such as MATLAB® and Mathematica® offer powerful solvers for PDE, and are

often used in the classroom. Students are expected to master the programming

languages of these tools in order to utilize them effectively.

On the other hand, the ubiquitous spreadsheet application, primarily Excel, is

widely used by professionals, and in the classroom as a math tool, thanks in part to

its ease of use, rich intrinsic math functions, graphing, and extensibility. Attempts to

solve PDE in a spreadsheet have been limited in scope to pedagogical linear models.

These methods typically utilize finite difference approximations which map naturally

to the native grid structure of the spreadsheet. Visual Basic for Application (VBA)

programs are developed in conjunction with macros and user input forms to carry out

the solution procedure [3], [4]. Such methods serve primarily as teaching aid on

structured numerical solution procedures for linear PDE but are otherwise

impractical for solving general nonlinear PDE. They do however, illustrate how far

the common spreadsheet has been exploited perhaps beyond what its original

designers have anticipated.

In this article we introduce a practical spreadsheet solver for a general system of

nonlinear transient boundary value differential equations in one spatial dimension

which can be presented in the following form:

𝜕𝑢𝑖

𝜕𝑡
= 𝑓𝑖(𝑡, 𝑥, 𝒖, 𝒖𝒙, 𝒖𝒙𝒙), 𝑖 = 1, . . , 𝑛 (1)

subject to proper initial and boundary conditions. The restriction to one spatial

dimension avoids the problem of geometry definition which is, admittedly, not suited

for the spreadsheet application. In (1) we have also restricted the order of the

equations to 2nd order. This restriction can be easily relaxed to include higher orders

although it is generally sufficient for modeling a practical range of problems.

The solver is designed exclusively for Excel as a pure worksheet math function.

Definition of the problem formulas, as given in (1), are passed as arguments, and the

solver is evaluated as a standard formula in an allocated range. The solver populates

the range with a formatted solution which can be readily plotted. The solver pure

functional design which receives the PDE formulas, variables and parameters via

regular arguments, requires no dialogues, and does not modify its inputs or any data

1

Ghaddar: Unlocking the Spreadsheet: A Worksheet Solver for Differential Equations

Published by ePublications@bond, 2016

in the spreadsheet, is strikingly different from the conventional spreadsheet

command utilized for evaluating formulas, and the several hundred intrinsic math

functions which can only operate on constant numeric input. The design is made

possible by means of an innovative method [5] which allows a math function to

accept formulas as a new type of argument while preserving its purity. The method

works by capturing the definition of an input argument formula using the spreadsheet

Advanced Programming Interface (API), and constructing a relational graph of nodes

representing the formula inter-dependence on nested formulas, variable cells, and

recursive calls. A graph evaluator which exploits the spreadsheet API, is employed

to evaluate the relational nodes of the graph in an order of their dependence, and

aggregating their values to obtain the value of the formula all without modifying any

data in the spreadsheet.

Figure 1. Flowchart for worksheet solver function design

2

Spreadsheets in Education (eJSiE), Vol. 9, Iss. 1 [2016], Art. 5

http://epublications.bond.edu.au/ejsie/vol9/iss1/5

The method enabled the development of a new class of worksheet calculus

functions [6] based on the flowchart logic of Fig 1. The benefits of the pure functional

solver design over conventional interactive command approaches are noteworthy.

First the solver fully separates the numerical procedure, which is often of less interest

to the user, from the problem input model and output solution. In contrast, the

command mechanism which is the standard procedure for updating variable cells

values and evaluating dependent formulas, utilizes the spreadsheet explicitly as the

computational grid for the numerical algorithm. In essence, it mixes up inputs,

algorithmic procedure, and results overwriting inputs by results. Second, and more

importantly, by preserving purity and recursion properties, the functions can

achievably support a functional paradigm for solving more complex problems

including dynamical optimization and optimal control as demonstrated by the author

in [8]. Since commands are not mathematical functions, and do not possess such

essential properties to support a functional paradigm, solving dynamical optimization

problems of differential systems have remained outside the scope of traditional

spreadsheet applications.

The remainder of this article is divided into three sections. In the next section, we

describe the PDE problem formulation and the employed numerical algorithm. Next,

the worksheet solver interface and output format are described. This is followed by

demonstrating the solver with three PDE examples. We recommend reviewing

Appendix A1, which includes a brief description of basic spreadsheet concepts, for

any reader not familiar with the spreadsheet prior to reviewing the examples.

II. PROBLEM STATEMENT AND NUMERICAL ALGORITHM

We consider a system of initial boundary-value nonlinear partial differential

equations of at most second order which is given in the form (1) in the domain 0 ≤
𝑥 ≤ 𝐿, and for 𝑡 ∈ [0, 𝑇]. Initial condition 𝑢𝑖(𝑥, 0) = 𝑖𝑐𝑖(𝑥), is required for each

state variable 𝑢𝑖 , 𝑖 = 1, . . 𝑛. To facilitate defining the initial condition function as a

formula in the spreadsheet, we represent it with respect to zero:

0 = 𝑖𝑐𝑖(𝑥), 𝑖 = 1, . . 𝑛 (2)

Depending on the highest derivative order for each equation in system (1), one or

two boundary conditions are required for each equation. The boundary conditions

are specified at the left (x=0) and/or right (x=L) points of the domain. Each boundary

condition may depend on 𝑡, 𝒖, and 𝒖𝒙. Again to enable definition by a formula, we

represent each boundary condition function with respect to zero:

0 = 𝑏𝑐𝑖(𝑡, 𝒖, 𝒖𝒙) (3)

3

Ghaddar: Unlocking the Spreadsheet: A Worksheet Solver for Differential Equations

Published by ePublications@bond, 2016

The general form (1) can describe a variety of PDE types in terms of geometric

properties, nonlinearity and smoothness for which a particular solution method may

be more effective than others. The design of the pure solver permits encapsulating

multiple finite difference and Galerkin methods which can be selected by the user

via options. The first order initial value form (1) makes the method of lines [9], [10]

particularly attractive given the availability of several ODE implicit adaptive

integration schemes codes, and hence has been selected for the default algorithm.

Spatial discretization is carried out on a uniform mesh by standard collocation over

piecewise polynomials using B-spline basis functions [10]. The resulting implicit

ODE system is integrated by any of the implicit schemes RADAU5, BDF, or

ADAMS with adaptive step control [11], [12].

III. SPREADSHEET SOLVER DESCRIPTION

A. Representation of PDE in spreadsheet

The system (1) can be described by n formulas for the right-hand-side (RHS)

equations 𝑓𝑖 , which are defined in terms of a selected set of (2+3n) cells

corresponding to the system variables (𝑡, 𝑥, 𝒖, 𝒖𝒙, 𝒖𝒙𝒙). The system relationship can

be preserved by maintaining the formulas and variables are passed to the solver in a

pre-determined order as follows: (𝑓1, 𝑓2, . . , 𝑓𝑛) for formulas, and

(𝑡, 𝑥, 𝑢1, . . , 𝑢𝑛, 𝑢1,𝑥 , . . , 𝑢𝑛,𝑥, 𝑢1,𝑥𝑥, . . , 𝑢𝑛,𝑥𝑥) for variables. The selection of the cells

which define the formulas and variables is arbitrary. In practice, it is convenient to

work with a contiguous set of named cells rather than raw cell addresses. Each

variable 𝑢1, . . , 𝑢𝑛 cell must contain a formula which defines the initial condition,

𝑖𝑐𝑖(𝑥) for the variable. The initial condition formula is defined in terms of the cell

variable representing 𝑥.

To define the boundary conditions (3), we use two additional cells for each

equation to hold the left and right boundary conditions formulas which are defined

using the cells representing (𝑡, 𝑢1, . . , 𝑢𝑛, 𝑢1,𝑥 , . . , 𝑢𝑛,𝑥). If no boundary condition is

required, the text ‘NA’ is added to the corresponding cell. This completes the

representation of the PDE system in Excel in terms of standard formulas. Additional

parameters including time and spatial domains are passed as standard value

arguments.

B. Solver Interface

Based on the preceding representation of the PDE system in Excel, the design for the

solver interface follows naturally as shown in the formula:

4

Spreadsheets in Education (eJSiE), Vol. 9, Iss. 1 [2016], Art. 5

http://epublications.bond.edu.au/ejsie/vol9/iss1/5

=PDSOLVE (rhs, vars, lbc, rbc, L, T, [options])) (4)

References to the system RHS formulas are supplied to PDSOLVE in the first

parameter rhs, and the system variables in vars. References to the left and right

boundary conditions formulas are specified via lbc and rbc respectively. Spatial and

temporal domains limits are defined in the 5th and 6th parameters L and T. The solver

accepts additional optional arguments which are described in detail in [7]. These

arguments include supplying analytic Jacobians for the system formulas, as well as

custom settings for the underlining algorithm such as tolerances and selection of

temporal integration algorithm.

Once the arguments are specified, the user simply evaluates the solver as an array

formula in a pre-allocated range in Excel large enough to hold the solution. The

solver computes and displays a formatted solution as described in the next section.

C. Solution layout in the spreadsheet

We present the numerical solution for system (1) in Excel in one of two tabular

layouts that are convenient for plotting a transient or snapshot views of the solution.

Fig 2 shows a snapshot layout for a system of two equations. This layout allows for

direct plotting of the system variables spatial profiles at selected time points in the

first row. In the transient layout, the order of x and t are exchanged to allow for direct

plotting of the variables transient behavior at selected spatial points. Values of the

independent variables x and t are reported at uniform intervals as determined by the

size of the allocated array for output. However, this default behavior can be changed

by either providing a step size or specific custom points using optional formats for

the solver parameters L and T. Furthermore, displaying the columns for the first and

second derivatives can be turned on or off via solver options [7].

 A B C D E F G H I J K

1 t t0 t0 t0 t0 t0 t0 t1 t1 t1

2 X 𝑢1 𝑢1 𝑢1,𝑥 𝑢1,𝑥 𝑢1,𝑥𝑥 𝑢2,𝑥𝑥 𝑢2 𝑢2 𝑢2,𝑥 ..

3 x0 ..

4 x1 ..

5 x2 ..

..

N L

Figure 2. Snapshot solution layout in Excel for partial differential equation solver

PDSOLVE. The display of 1st and 2nd derivative variables is optional. In the transient

view layout, the order of ‘x’ and ‘t‘ is exchanged

Each column block has solution
values for dependent variable at (x, t)

values

5

Ghaddar: Unlocking the Spreadsheet: A Worksheet Solver for Differential Equations

Published by ePublications@bond, 2016

IV. EXAMPLES

A. Parabolic Heat Equation

We demonstrate the use of PDSOLVE by computing the solution to a transient heat

transfer problem across a slab that is initially at zero temperature with an insulated

right side. At time equals zero, the left side is brought to 100 degrees. The problem

is described by the parabolic equation:

𝜕𝑢

𝜕𝑡
= 𝑘

𝜕2𝑢

𝜕𝑥2
 (5)

with initial condition 𝑢(𝑥, 0) = 0, left boundary condition 𝑢(0, 𝑡) = 100, and right

boundary condition 𝜕𝑢(𝑥, 𝑡)/𝜕𝑥 = 0 at 𝑥 = 1. The problem’s spatial domain is 𝑥 ∈
[0, 1] and the time interval is 𝑡 ∈ [0, 1]. Fig 3 shows the complete system model in

Excel. Using cells T1, X1, U1, U2, and U3 for system variables 𝑡, 𝑥, 𝑢, 𝑢𝑥, 𝑢𝑥𝑥

respectively, the system RHS formula is defined in A1, the left boundary condition

in B1, and the right boundary condition in C1, the conductivity 𝑘 in K1 and the initial

condition in U1.

 A B C K U

1 =K1*U1 =U1-100 =U2 1 =IF(X1=0,100,0)

Figure 3. Problem setup for Example 1 in Excel

To compute the solution, we simply evaluate the following PDSOLVE formula:

=PDSOLVE(A1, (T1,X1,U1:U3), B1, C1, {0,1}, {0,.5,1}) (6)

in an allocated range E1:H23. In (6), we pass references to the system RHS equation,

variables, and boundary condition formulas defined in Fig 3. The 6th argument {0,

0.5, 1} instructs the solver to report output time points at 0, 0.5 and 1 only, whereas

output spatial points in the domain {0, 1} are reported uniformly in accordance with

the available number of rows in the allocated solution range. PDSOLVE populates

the range with the snapshot solution format shown in Fig 4 and plotted in Fig 5.

Alternatively; we can specify via the solver’s optional parameters a transient

format for the output [7], which simplifies plotting transient response at selected

spatial points as is shown in Fig 6.

6

Spreadsheets in Education (eJSiE), Vol. 9, Iss. 1 [2016], Art. 5

http://epublications.bond.edu.au/ejsie/vol9/iss1/5

 E F G H

1 T1 0 0.5 1

2 X1 U1 U1 U1

3 0 100 100 100

4 0.05 100 97.0906084 99.15263854

5 0.1 100 94.19916828 98.31050871

6 0.15 100 91.34351958 97.47880964

7 0.2 100 88.54127962 96.66267545

8 0.25 100 85.80973399 95.86714337

9 0.3 100 83.16572917 95.09712222

10 0.35 100 80.62556836 94.35736176

11 0.4 100 78.20491103 93.65242317

12 0.45 100 75.91867607 92.9866506

13 0.5 100 73.78095094 92.36414463

14 0.55 100 71.8049046 91.78873701

15 0.6 100 70.00270828 91.26396785

16 0.65 100 68.3854604 90.79306425

17 0.7 100 66.96312022 90.37892153

18 0.75 100 65.7444465 90.02408583

19 0.8 100 64.73694473 89.73073923

20 0.85 100 63.94682086 89.50068639

21 0.9 100 63.37894262 89.33534325

22 0.95 100 63.03680972 89.23572814

23 1 100 62.92253049 89.20245472

Figure 4. Computed solution for Example 1 by PDSOLVE

Figure 5. Plot of Fig 4 results showing temperature distribution at various times

7

Ghaddar: Unlocking the Spreadsheet: A Worksheet Solver for Differential Equations

Published by ePublications@bond, 2016

Figure 6. Transient temperature profiles at various positions

B. Hyperbolic Wave Equation

Next we solve the following 2nd order inhomogeneous wave equation:

𝜕2𝑢

𝜕𝑡2
= 𝛼

𝜕2𝑢

𝜕𝑥2
+ 2𝑥2 + sin (𝑡)

(7)

for the initial and boundary conditions shown in Table 1.

Table 1. Problem definition for Example 2

Time period 𝒕 ∈ [𝟎, 𝟏]
Spatial range 0 ≤ 𝑥 ≤ 4

Parameter ∝= 1

Initial conditions

𝑢(𝑥, 0) = sin (𝜋𝑥)
𝜕𝑢(𝑥, 𝑡)

𝜕𝑡
|𝑡=0 = −𝜋 𝑐𝑜𝑠 (𝜋𝑥)

Left boundary condition 𝑢(𝑥, 𝑡)|𝑥=0 = 0

Right boundary condition 𝑢(𝑥, 𝑡)|𝑥=4 = 0

Using standard substitution, we to convert (7) to two 1st order equations in time:

8

Spreadsheets in Education (eJSiE), Vol. 9, Iss. 1 [2016], Art. 5

http://epublications.bond.edu.au/ejsie/vol9/iss1/5

𝜕𝑢

𝜕𝑡
= 𝑣

𝜕𝑣

𝜕𝑡
= 𝛼

𝜕2𝑢

𝜕𝑥2
+ 2𝑥2 + sin (𝑡)

(8)

With this substitution, the 2nd initial condition is now assigned to 𝑣(𝑥, 0). Note that

the left and right boundary conditions which constrain 𝑢 must be defined in relation

to the first equation governing
𝜕𝑢

𝜕𝑡
 and no boundary conditions are required for the 2nd

equation governing
𝜕𝑣

𝜕𝑡
. To define (8) in Excel, we use the cells T1, X1, U1, V1, U2,

V2, U3, V3 to represent the system variables 𝑡, 𝑥, 𝑢, 𝑣, 𝑢𝑥, 𝑣𝑥 , 𝑢𝑥𝑥, 𝑣𝑥𝑥 respectively,

and define the equations and boundary conditions as shown in Fig 7.

RHS Left BC Right BC

 A B C

1 =V1 =U1 =U1

2 =A1*U3+2*X1^2+SIN(T1) NA NA

Figure 7. Problem setup for Example 2 in Excel

We also assign the initial condition formulas for variables U1 and V1 as shown in

Fig 8.

 U V

1 =SIN(PI()*X1) =-PI()*COS(PI()*X1)

Figure 8. Definition of initial conditions for Example 2

To compute the solution, we evaluate the following PDSOLVE formula:

=PDSOLVE(A1:A2, (T1,X1,U1:V2), B1:B2, C1:C2, {0,4}, {0,.5,1}) (9)

in allocated range H1:N23, and obtain the results shown in Fig 9.

9

Ghaddar: Unlocking the Spreadsheet: A Worksheet Solver for Differential Equations

Published by ePublications@bond, 2016

 H I J K L M N

1 T1 0 0 0.5 0.5 1 1

2 X1 U1 V1 U1 V1 U1 V1

3 0 0.0000 -3.1416 0.0000 0.3559 0.0000 0.2296

4 0.2 0.5878 -2.5416 0.0374 0.6525 0.2184 0.4696

5 0.4 0.9511 -0.9708 0.0663 1.0155 0.4283 1.1009

6 0.6 0.9511 0.9708 0.4391 -2.3810 0.6660 1.7395

7 0.8 0.5878 2.5416 0.9999 -1.0115 0.9596 2.1886

8 1 0.0000 3.1416 1.2810 1.2056 1.3664 1.9869

9 1.2 -0.5878 2.5416 1.2000 3.4923 2.3485 1.3592

10 1.4 -0.9511 0.9708 0.8300 5.1536 3.2362 4.0835

11 1.6 -0.9511 -0.9708 0.3620 5.7536 3.8363 7.2172

12 1.8 -0.5878 -2.5416 0.0320 5.2924 4.1530 10.1480

13 2 0.0000 -3.1416 0.0310 4.2058 4.3252 12.2679

14 2.2 0.5878 -2.5416 0.4320 3.1992 4.5774 13.3480

15 2.4 0.9511 -0.9708 1.1620 2.9780 5.1342 13.6172

16 2.6 0.9511 0.9708 2.0300 3.9779 6.1341 13.6839

17 2.8 0.5878 2.5416 2.8000 6.1992 7.5730 14.2051

18 3 0.0000 3.1416 3.2810 9.2056 9.3689 17.5690

19 3.2 -0.5878 2.5416 3.3999 12.2825 11.0936 15.0290

20 3.4 -0.9511 0.9708 3.2380 14.7019 11.2085 11.3838

21 3.6 -0.9511 -0.9708 3.1089 16.6364 9.3706 7.5006

22 3.8 -0.5878 -2.5416 2.2000 9.1226 5.5533 3.6277

23 4 0.0000 -3.1416 0.0000 0.2805 0.0000 0.1835

Figure 9. Computed solution for Example 2 by PDSOLVE

Fig 10 shows a snapshot plots of 𝑢(𝑥, 𝑡) at 𝑡 = 0, 0.5, and 1.0. The plot is easily

constructed in Excel by highlighting the data of Fig 9 and inserting a scatter plot.

10

Spreadsheets in Education (eJSiE), Vol. 9, Iss. 1 [2016], Art. 5

http://epublications.bond.edu.au/ejsie/vol9/iss1/5

Figure 10. Plot of Fig 9 solution showing wave propagation at various times

C. Burgers Equation

In the 3rd example, we solve the 1D dissipative Burgers equation and compare results

to the exact Fourier solution. Burgers equation arises in various topics including fluid

mechanics in particular. We consider the following Burgers equation:

𝜕𝑢

𝜕𝑡
= −𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕2𝑢

𝜕𝑥2
 (10)

with initial condition

𝑢(𝑥, 0) = sin(𝜋𝑥) , 0 < 𝑥 < 1, (11)

and homogenous boundary conditions:

𝑢(0, 𝑡) = u(1, t), 𝑡 > 0 (12)

The exact Fourier solution for (10)-(12) is given by [13]:

𝑢(𝑥, 𝑡) = 2𝜋𝑣
∑ 𝑎𝑛 exp(−𝑛2𝜋2𝑣𝑡) 𝑛 sin (𝑛𝜋𝑥)∞

𝑛=1

𝑎0 + ∑ 𝑎𝑛
∞
𝑛=1 exp(−𝑛2𝜋2𝑣𝑡) cos (𝑛𝜋𝑥)

, (13)

where

𝑎0 = ∫ exp (−(2𝜋𝑣)−1[1 − cos(𝜋𝑥])𝑑𝑥,
1

0

 (14)

11

Ghaddar: Unlocking the Spreadsheet: A Worksheet Solver for Differential Equations

Published by ePublications@bond, 2016

and,

𝑎𝑛 = 2 ∫ exp (−(2𝜋𝑣)−1[1 − cos(𝜋𝑥]) cos(𝑛𝜋𝑥) 𝑑𝑥
1

0

 (15)

Table 2 displays vales of the exact solution computed using (13) as reported in [13]

for viscosity values 0.1 and 0.01, at the shown values for x and t.

Table 2. Exact solution values for Example 3 as reported in [13]

x t u(x,t),

v=0.1

u(x,t),

v=0.01

0.25

0.4 0.30889 0.34191

0.6 0.24074 0.26896

1 0.16256 0.18819

3 0.02720 0.07511

0.75

0.4 0.62544 0.91026

0.6 0.48721 0.76724

1 0.28747 0.55605

3 0.02977 0.22481

To model (10) in Excel, we refer to the system variables 𝑡, 𝑥, 𝑢, 𝑢𝑥, 𝑢𝑥𝑥 by the

named cells t, x, u, ux, uxx assigned to T1, X1, U1, U2, U3 respectively. The system

RHS formula is defined in A1, the left and right boundary condition formulas in B1

and C1, and the initial condition in U1 as shown in Fig 11. We make use of D1

(named v) to hold the viscosity value set initially to 0.1.

 A B C D U

1 =-u*ux+v*uxx =u =u 0.1 =SIN(PI()*x)

Figure 11. Problem setup for Example 3 in Excel

We compute the solution by evaluating the following PDSOLVE formula

=PDSOLVE(A1, (t,x,U1:U3), B1, C1, {0,1}, {0,.4,.6,1,2,3}) (16)

in allocated range A5:G27, and obtain the default snapshot solution format shown in

Fig 12. Note that we have requested the solution be reported at the specific time

12

Spreadsheets in Education (eJSiE), Vol. 9, Iss. 1 [2016], Art. 5

http://epublications.bond.edu.au/ejsie/vol9/iss1/5

points provided in argument 6, whereas the spatial points are reported at uniform

intervals according to 21 available rows in the allocated solution range.

 A B C D E F G

5 t 0.0 0.4 0.6 1.0 2.0 3.0

6 x u u u u u u

7 0.00 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

8 0.05 0.15643 0.06297 0.04891 0.03324 0.01448 0.00592

9 0.10 0.30902 0.12565 0.09764 0.06631 0.02875 0.01171

10 0.15 0.45399 0.18776 0.14601 0.09904 0.04261 0.01727

11 0.20 0.58779 0.24897 0.19379 0.13120 0.05584 0.02247

12 0.25 0.70711 0.30891 0.24074 0.16256 0.06820 0.02720

13 0.30 0.80902 0.36715 0.28653 0.19278 0.07944 0.03134

14 0.35 0.89101 0.42315 0.33074 0.22145 0.08932 0.03481

15 0.40 0.95106 0.47622 0.37282 0.24803 0.09754 0.03749

16 0.45 0.98769 0.52547 0.41200 0.27182 0.10382 0.03931

17 0.50 1.00000 0.56965 0.44721 0.29191 0.10788 0.04019

18 0.55 0.98769 0.60706 0.47695 0.30714 0.10942 0.04010

19 0.60 0.95106 0.63530 0.49913 0.31607 0.10821 0.03899

20 0.65 0.89101 0.65105 0.51089 0.31702 0.10405 0.03688

21 0.70 0.80902 0.64973 0.50845 0.30811 0.09684 0.03378

22 0.75 0.70711 0.62542 0.48724 0.28750 0.08657 0.02976

23 0.80 0.58779 0.57124 0.44229 0.25375 0.07339 0.02491

24 0.85 0.45399 0.48074 0.36953 0.20631 0.05760 0.01934

25 0.90 0.30902 0.35091 0.26782 0.14609 0.03968 0.01322

26 0.95 0.15643 0.18602 0.14122 0.07583 0.02024 0.00671

27 1.00 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Figure 12. Computed solution for Example 3 by PDSOLVE

Fig 13 shows the solution plot at the requested time points. Comparing values of

Fig 12 to the exact values of Table 2 shows the maximum numerical error is on the

order of 1e-05.

13

Ghaddar: Unlocking the Spreadsheet: A Worksheet Solver for Differential Equations

Published by ePublications@bond, 2016

Figure 13. Plot of Fig 12 results showing effects of convection-diffusion of initial

sinusoidal condition at various times. Viscosity = 0.1

To compute the solution of Burgers equation (10) for v = 0.01, we simply change

the value of cell D1 in Fig 11 to 0.01. Excel automatically computes the new solution

and updates the plot which is shown in Fig 14. Although not shown here, the

maximum numerical error in comparison to Table 2 was again on the order of 1e-05.

Figure 14. Plot showing effects of convection-diffusion of initial sinusoidal condition at

various times. Viscosity = 0.01

14

Spreadsheets in Education (eJSiE), Vol. 9, Iss. 1 [2016], Art. 5

http://epublications.bond.edu.au/ejsie/vol9/iss1/5

V. CONCLUSION

We exploited Excel’s computing engine to develop a novel worksheet solver for

1D partial differential equations. Design of the solver was made possible by

bypassing inherent restrictions in order to allow a worksheet function to receive and

evaluate formulas via input arguments. Several examples were presented to

demonstrate the merits of the new design which encapsulates the algorithm, and

separates problem model from results, in contrast to standard methods which mix

inputs, algorithm and results.

Although we do not provide benchmark performance data in this article, we

comment that all the preceding examples compute on the order of a second or less,

on a typical computer with an Intel core i5 processor. The solver and several other

calculus and ODE spreadsheet solvers are available in an add-in software library at

excel-works.com [7], which integrates seamlessly with Excel Spreadsheet.

APPENDIX

A1 BASIC SPREADSHEET CONCEPTS

A typical worksheet in Excel is composed of a large structured grid. Each cell in the

grid is referenced by its column label and row number, e.g., A1, and represents a

global memory placeholder. A range of cells can be referenced as a rectangular array,

e.g., A1:B3, or a union of disjoint arrays and cells, e.g., (X1, A1:A3). A cell may

store a constant value or a formula defined using basic spreadsheet syntax, e.g., ‘=

SQRT (X1^2 + Y1*Y1)’. The spreadsheet engine insures orderly evaluation of all

dependent formulas upon a change in the value of any cell. A general function can

thus be identified by a root formula and a list of variable cells. Nested dependency

allows arbitrarily complex functions to be constructed. To motivate the possibilities,

consider the formula ‘=SUM (X1:Z1)’ assigned to A1, the pair (A1, Y1) identifies

the function f(y)=X1+y+Z1, where X1 and Z1 are treated as constant values. In

another example, consider the formula ‘=1+COS(B1)’ assigned to A1, and the

formula ‘=SQRT(ABS(X1))’ assigned to B1, the pair (A1, X1) identifies the function

f(x)=1+cos (√ (|x|)).

Excel supports two types of formulas: simple formulas and array formulas. A

simple formula is assigned to one cell and evaluates to a single value, e.g.,’=SUM

(A1:B4)’. Alternatively, an array formula is assigned to a range of cells and evaluates

to an array of values, e.g., ‘=MINVERSE (A1:C3)’ which computes the inverse of

the 3 by 3 matrix A1:C3.

15

Ghaddar: Unlocking the Spreadsheet: A Worksheet Solver for Differential Equations

Published by ePublications@bond, 2016

REFERENCES

[1] Robert L. Sternberg (Editor), Anthony J. Kalinowski (Editor), John S. Papadakis (Editor),

“Nonlinear Partial Differential Equations in Engineering and Applied Science (Lecture Notes in

Pure and Applied Mathematics),” CRC Press; 1 edition (June 1, 1980).

[2] Suren Basov, “Partial Differential Equations in Economics and Finance,” Nova Science Pub Inc

(October 29, 2007).

[3] Chung-Yau Lam and F. H. Alan Koh, “A Partial Differential Equation Solver for the Classroom,”

Int. J. Engng Ed.Vol. 22, No. 4, pp. 868-875, 2006.

[4] Hagler, Marion, “Spreadsheet Solution of Partial Differential Equations,” IEEE Transactions on

Education, Volume:E-30 Issue:3

[5] C. Ghaddar, “Method, Apparatus, and Computer Program Product for Optimizing Parameterized

Models Using Functional Paradigm of Spreadsheet Software,” USA Patent No. 9286286.

[6] C. Ghaddar, “Unconventional Calculus Spreadsheet Functions”, World Academy of Science,

Engineering and Technology, International Science Index 112. International Journal of

Mathematical, Computational, Physical, Electrical and Computer Engineering (2016), 10(4), 160

– 166. http://waset.org/publications/10004374

[7] C. Ghaddar, “ExceLab Reference Manual”, https://excel-works.com

[8] C. Ghaddar, “Modeling and Optimization of Dynamical Systems by Unconventional Spreadsheet

Functions”, American Journal of Modeling and Optimization. Vol. 4, No. 1, 2016, pp 1-12.

http://pubs.sciepub.com/ajmo/4/1/1

[9] Schiesser W.E (1991). The Numerical Method of Lines, San Diego, CA: Academic Press, 1991.

[10] U. M. Ascher, R. M. Mattheij and R. D. Russell, “Numerical Solution of Boundary Value

Problems for Ordinary Differential Equations,” SIAM, 1995.

[11] E Hairer and G Wanner, “Solving Ordinary Differential Equations II: Stiff and Differential-

Algebraic Problems,” Springer Series in Computational Mathematics, 1996.

[12] A. C. Hindmarsh, “ODEPACK, A Systematized Collection of ODE Solvers,” in Scientific

Computing, R. S. Stepleman et al. (Eds.), North-Holland, Amsterdam, 1983, pp. 55-64.

[13] S. Kutluay, A.R. Bahadir, A. Ozdes, Numerical solution of one-dimensional Burgers equation,

explicit and exact-explicit finite difference method. Journal of Computational and Applied

Mathematics 103 (i 999) 251-261

16

Spreadsheets in Education (eJSiE), Vol. 9, Iss. 1 [2016], Art. 5

http://epublications.bond.edu.au/ejsie/vol9/iss1/5

http://waset.org/publications/10004374
https://excel-works.com/
http://pubs.sciepub.com/ajmo/4/1/1

	Spreadsheets in Education (eJSiE)
	May 2016

	Unlocking the Spreadsheet Utility for Calculus: A Pure Worksheet Solver for Differential Equations
	Chahid K. Ghaddar
	Recommended Citation

	Unlocking the Spreadsheet Utility for Calculus: A Pure Worksheet Solver for Differential Equations
	Abstract
	Keywords
	Distribution License

	tmp.1463496724.pdf.r5Nzu

