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Abstract 

This article offers innovative and original mathematical vignettes in the treatment of 

number sequences along with recursive and explicit formulas in a technology-supported multi-

representational pedagogical context. Multiple representations are used to explain (i) how to 

help students understand summation identities of the form “Left-Hand-Side (LHS) equals 

Right-Hand-Side (RHS)” and (ii) how to use spreadsheet activities to lead to the better 

understanding of how to develop proofs for these formulas. LHS and RHS can at times be 

thought of as the recursive and explicit forms, of the number sequence under consideration, 

respectively. Such a multi-representational pedagogy comprises (but is not limited to) physical 

manipulatives, diagrams or drawn representations, visual proofs, algebraic representations, 

formal proofs, and spreadsheets. The article concludes by emphasizing the fundamental role of 

spreadsheets for a thorough understanding of summation formulas or identities of the form 

LHS = RHS and the transition from numerical evidence to formal mathematical proof. 

Keywords: Spreadsheets; sequence; explicit formula; recursive formula; summation 

identities; multiple representations. 

1. Introduction 

The focus of this in-the-classroom article is certain summation formulas and 

figurate numbers along with selected Fibonacci number relationships that can be 

taught in a multi-representational pedagogy comprised of a variety of 

representations such as physical manipulatives, diagrams or drawn representations, 

visual proofs, algebraic representations, formal proofs, and spreadsheets. The most 

important contribution of the article is the emphasis on the fundamental role of 

spreadsheets for a thorough understanding of such summation formulas, figurate 

number relationships or identities of the form LHS = RHS; and the role of 

spreadsheet activities in helping students understand and develop formal proofs for 

these formulas. Numerous articles exploring such formulas and identities in a 

spreadsheet environment are published. Among those, Baker and Sugden (2013, 

2015) investigated patterns arising from Fibonacci number relationships by using 

standard spreadsheet functionalities. Baker (2016) presented a spreadsheet-based 

exploration of figurate numbers (pentagonal, hexagonal, and 𝑘-gonal numbers) and 

their growth patterns. The article by Abramovich, Fujii and Wilson (1995) 

incorporated use of various graphing technology including dynamic geometry 

software and spreadsheets to explore interesting properties of polygonal numbers. 

Abramovich (2011) discussed the role of spreadsheets in elementary number theory 

and teacher education. 
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2. Recursive and Explicit Formulas 

Recursive and explicit formulas arise in a variety of context, such as summation 

formulas and figurate numbers. In particular, power-sum identities such as ∑ 𝑖𝑛
𝑖=1 =

𝑛(𝑛+1)

2
 and ∑ 𝑖2𝑛

𝑖=1 =
𝑛(𝑛+1)(2𝑛+1)

6
 have been known to ancient Greeks in closed form, 

who derived such expressions based on unity without the presence of a known 

measurement unit (NCTM, 1989). In fact, the geometrical and physical representation 

of figurate numbers (by points drawn on sand or pebbles) and the study of their 

properties were common in the early Pythagorean era (Heath, 1921; NCTM, 1989). 

Nicomachus of Gerasa (first century B.C.) is credited for the sum of odd integers 

formula ∑ 2𝑖 − 1𝑛
𝑖=1 = 𝑛2, which he obtained via dot patterns forming symmetric 

L−shapes. Nicomachus (first century B.C.), Aryabhata (fifth century A.C.), and Al-

Karaji (tenth century A.C.) are known for deriving the integral cubes summation 

formula ∑ 𝑖3𝑛
𝑖=1 = [

𝑛(𝑛+1)

2
]

2
. 

The first complete investigation and the resulting properties of figurate 

numbers – also called polygonal numbers – were studied by Nicomachus of Gerasa 

(first century B.C.), which are given in the manuscript Introductio Arithmetica. Though 

his work included few of his original ideas, it is commonly acknowledged that 

Introductio arithmetica stood as an artistic collection of well described, clearly 

presented and explained definitions and statements with a lot of illustrations based 

on physical forms and visual proofs (NCTM, 1989; Nicomachus of Gerasa, 1926). 

Nicomachus of Gerasa’s work that contains today’s well–known “sum = product” 

identities arising from the geometry of the figures generated by dots and via line 

segments connecting these dots (Heath, 1921; NCTM, 1989, pp. 54-56; Nicomachus of 

Gerasa, 1926, pp. 230-262). Table 1 outlines some of these identities some of which 

can be written in the recursive and the explicit formats. 
Description of the Identity LHS = RHS Form Recursive Form Explicit Form 

The sum of the first n consecutive positive 

integers is the nth  triangular number 𝑻𝒏.  ∑ 𝑖

𝑛

𝑖=1

=
𝑛(𝑛 + 1)

2
 {

𝑇1 = 1
𝑇𝑛 = 𝑇𝑛−1 + 𝑛

 𝑇𝑛 =
𝑛(𝑛 + 1)

2
 

The sum of the first n consecutive positive odd 

integers is the nth  square number 𝑺𝒏.  ∑ 2𝑖 − 1

𝑛

𝑖=1

= 𝑛2 {
𝑆1 = 1
𝑆𝑛 = 𝑆𝑛−1 + (2𝑛 − 1)

 
𝑆𝑛 = 𝑛2 

The sum of any pair of consecutive triangular 

numbers is a square number.  

𝑇𝑛−1 + 𝑇𝑛 = 𝑛2 N/A N/A 

Eight times any triangular number plus 1 is the 

square of an odd number.  

8𝑇𝑛 + 1 = (2𝑛 + 1)2 N/A N/A 

The sum of the first n triangular numbers is the 

nth tetrahedral number 𝜽𝒏 𝜃𝑛 = ∑ 𝑇𝑖

𝑛

𝑖=1

 {
𝜃1 = 1
𝜃𝑛 = 𝜃𝑛−1 + 𝑇𝑛

 𝜃𝑛 =
𝑛(𝑛 + 1)(𝑛 + 2)

6
 

The sum of the first n consecutive positive even 

integers is the nth  pronic number 𝑷𝒏.  ∑ 2𝑖

𝑛

𝑖=1

= 𝑛(𝑛 + 1) {
𝑃1 = 2
𝑃𝑛 = 𝑃𝑛−1 + 2𝑛

 
𝑃𝑛 = 𝑛(𝑛 + 1) 

The nth pronic number equals twice the nth 

triangular number.  

𝑃𝑛 = 2𝑇𝑛 N/A N/A 

Four times any pronic number plus 1 is the 

square of an odd number. 

4𝑃𝑛 + 1 = (2𝑛 + 1)2 N/A N/A 

The sum of the first n consecutive positive cube 

numbers is the square of the nth triangular 

number. 

∑ 𝑖3

𝑛

𝑖=1

= [
𝑛(𝑛 + 1)

2
]

2

 {
𝑇1

2 = 1

𝑇𝑛
2 = 𝑇𝑛−1

2 + 𝑛3 ∑ 𝑖3

𝑛

𝑖=1

= [
𝑛(𝑛 + 1)

2
]

2

 

Six times any triangular number plus 1 is a hex 

number. 

6𝑇𝑛 + 1 = 𝐻𝑛

= 1 + 3𝑛(𝑛 + 1) 
N/A N/A 

Table 1: LHS = RHS Identities in Explicit and Recursive Formats 
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This article offers a teaching method that can be used to help students 

understand and distinguish between recursive and explicit formulas in a multi-

representational pedagogy. Although some of the formulas listed in Table 1 cannot 

be categorized as either explicit or recursive within the algebraic representation, it 

could still be possible to model these equations as ‘explicit’ or ‘recursive’ in the 

language of Spreadsheets representations, as demonstrated below. 

3. LHS and RHS in a multi-representational pedagogy 

The notions of recursive formulas and explicit formulas are closely related to 

the LHS and the RHS of a given summation formula, respectively. The first identity 

that will be used to illustrate the multi-representational pedagogy is “The sum of the 

first n consecutive positive cube numbers is the square of the nth triangular number,” 

that is, ∑ 𝑖3𝑛
𝑖=1 = [

𝑛(𝑛+1)

2
]

2
. 

3.1. Physical Manipulatives: Area as a Sum vs. Area as a Product 

Actual 1-inch cubes can be used to demonstrate some of the perfect cubes of the 

number sequence 𝑎𝑛 = 𝑛3 , as depicted in Fig.1a. Using color tiles, it is possible to 

visualize the sum of the first four cubes as the area of a growing rectangle. The area 

of the rectangle depicted in Fig.1b can be interpreted in two ways: (i) the area as a 

sum can be thought of as ∑ 𝑖34
𝑖=1 , which corresponds to the recursive form; (ii) the 

area as a product can be thought of as 𝑇4
2, which corresponds to the explicit form of 

the summation identity. 

 

Figure 1: Adding perfect cubes 

3.2. Algebraic Representation: Recursive vs. Explicit Forms 

The LHS of the identity ∑ 𝑖3𝑛
𝑖=1 = [

𝑛(𝑛+1)

2
]

2
could be algebraically interpreted in 

the following recursive form: {
𝑇1

2 = 13

𝑇𝑛
2 = 𝑇𝑛−1

2 + 𝑛3. This representation is in agreement 

with the growing rectangle pattern depicted in Fig.1b because 𝑇1
2 = 13, 𝑇2

2 = 13 +

23 = 𝑇1
2 + 23, 𝑇3

2 = 13 + 23 + 33 = 𝑇2
2 + 33, 𝑇4

2 = 𝑇3
2 + 43. Similarly, the RHS of the 

identity ∑ 𝑖3𝑛
𝑖=1 = [

𝑛(𝑛+1)

2
]

2
 can be written explicitly (closed form) as 13 = [

1(1+1)

2
]

2
=

3
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12, 13 + 23 = [
2(2+1)

2
]

2
= 32, 13 + 23 + 33 = [

3(3+1)

2
]

2
= 62, 13 + 23 + 33 + 43 =

[
4(4+1)

2
]

2
= 102, in agreement with the area as a product of the growing rectangle in 

Fig.1b. An animated implementation of Fig.1b that illustrates the above discussion 

using the spreadsheet grid itself (with columns resized to form squares) and 

conditional formatting is included in Appendix A. 

3.3. Spreadsheets Representation: Making Sense of Recursive & Explicit Forms 

In the spreadsheet, natural numbers 𝑛 = 1,2,3, … ,20 could be entered in 

Column A. The terms of the sequence, that is, the perfect cubes, are then entered in 

Column B via the syntax B1=A1^3, which is then dragged down to B20. Then, the 

operation in Column C is carried out to demonstrate the recursive aspect of the 

summation: Set C1=B1, followed by the syntax C2: =C1+B2 (my students call this 

“diagonal sum”), depicted in Fig.2a. 

 

Figure 2: Visualizing sum of consecutive cubes 

Alternatively,  the same sum could be visualized by saying “add the cell to the 

left to the cell above, and then copy down.” In fact, in actual usage, doing this with a 

mouse (or similar device) is a much better way to carry out the computations than 

typing in formulas. After dragging down to C20 as in Fig.2b, Column D is used to 

demonstrate the explicit form of the summation identity: Set D1=(A1*(A1+1)/2)^2 as 

in Fig.2c, and drag down to D20; observe that Columns C and D are equivalent 

(Fig.2d). This equivalence shows the LHS=RHS equivalence of the summation 

identity ∑ 𝑖3𝑛
𝑖=1 = [

𝑛(𝑛+1)

2
]

2
 that is explored. 

4. More examples 

This section illustrates the LHS=RHS equivalence for some number sequences 

that I have used with my students in various classes in  the past (Sequences and 

Series, History of Mathematics, Calculus, Methods of Teaching Secondary-School 

Mathematics, etc.). The figures of physical manipulatives and the spreadsheet 

screenshots are all taken from my own lecture notes and classroom videos. I remade 

some of the figures in the case where a screenshot taken from a certain classroom 

video was either incomplete or unclear. 
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4.1. Sum of the first n consecutive positive integers is the nth triangular number 

As usual, natural numbers 𝑛 = 1,2,3, … ,20 are entered in Column A. Column B 

is then used to demonstrate the recursion {
𝑇1 = 1
𝑇𝑛 = 𝑇𝑛−1 + 𝑛

 in the following manner: Set 

B1: =A1, followed by the syntax B2: =B1+A2 as in Fig.3a, which is then dragged down 

to B20 as before (Fig.3b). The explicit (closed) form 𝑇𝑛 =
𝑛(𝑛+1)

2
 could then be 

demonstrated in a similar manner as before by setting C1: =A1*(A1+1)/2 and 

applying it to the whole column (Fig.3c). It is important to emphasize that the values 

of Column C should depend on the values of Column A, hence, the correct syntax 

would be C1: =(A1*(A1+1))/2, as shown in Fig.3c. An alternative recursion for the 

triangular numbers could also given by {
𝑇1 = 1

𝑇𝑛+1 =
𝑛+2

𝑛
𝑇𝑛

. When entering this recursion 

in spreadsheets in Column D, the syntax to be used should depend on both the 

values of Column A and the values of Column B: Set D1=1, followed by the syntax 

D2: =((A1+2)/A1)*B1, which is then dragged down to D20 as before (Fig.3d) 

 

Figure 3: Visualizing sum of consecutive integers 

4.2. Sum of the first n triangular numbers is the nth tetrahedral number 

A tetrahedral number corresponds to a three-dimensional figure in the shape of 

a tetrahedron made of spheres. Each tetrahedral number can be expressed as the sum 

of consecutive triangular numbers. The nth tetrahedral number 𝜃𝑛 is defined as the 

sum of the first n triangular numbers, whose algebraic representation is the equation 

𝜃𝑛 = ∑ 𝑇𝑛
𝑛
𝑖=1 . For example, the third tetrahedral number, 𝜃3 = 𝑇1 + 𝑇2 + 𝑇3 = 1 + 3 +

6 = 10 as shown in Fig.4a. One possible recursion for the tetrahedral numbers is 

given by {
𝜃1 = 1
𝜃𝑛 = 𝑇𝑛 + 𝜃𝑛−1

. 

 

Figure 4: Visualizing tetrahedral numbers 
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The sequence of tetrahedral numbers in spreadsheets can be obtained 

recursively as follows. Upon entering the natural numbers in Column A, the 

triangular numbers in Column B could be entered either recursively or explicitly as 

demonstrated above in Section 3.1. In my case, my students used the recursive form 

for the triangular numbers and suggested a technique that I had not used before 

when it came to enter the tetrahedral numbers in Column C: (i) right-click on the top 

of Column B; (ii) select copy; (iii) paste it to Column C. These numbers recursively 

appeared on Column C as depicted in Fig.4b. To demonstrate the explicit form 𝜃𝑛 =
𝑛(𝑛+1)(𝑛+2)

6
, the syntax D1: =A1*(A1+1)*(A1+2)/6 could be used (Fig.4c). 

4.3. Square pyramidal numbers  

A square pyramidal number corresponds to a three-dimensional figure in the 

shape of a squarebased pyramid. The nth square pyramidal number is defined as the 

sum of the first n square numbers. The arrangement shown in Fig.5 represents the 

fifth square pyramidal number, 55, which is the sum of the first five square numbers: 

1, 4, 9, 16, 25. 

 

Figure 5: Boulets en Pierre, Musée Historique de Strasbourg, France 

 

 

Figure 6: Visualizing square pyramidal numbers 
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Spreadsheets can be used to obtain the sequence of square pyramidal numbers 

{1, 5, 14, 30, 55, 91, 140, 204, 285, 385, …}. Moreover, it can be shown that each square 

pyramidal number 𝑃𝑛 can be written as the sum of two consecutive tetrahedral 

numbers. For this purpose, Column A and Column B are used to enter natural 

numbers and square numbers, respectively. In Column C, set C1=B1 and C2: =B2+C1, 

which is dragged down to the bottom cell. Once again, as was the case before, this 

sum could be obtained by adding the cell to the left to the cell above, and then 

copying down; which is more efficiently executed with a mouse instead of typing 

these formulas. This way of obtaining the square pyramidal numbers is based on the 

sum of square numbers, as depicted in Fig.6a. The other way of obtaining the square 

pyramidal numbers is achieved via the addition of tetrahedral numbers (which can 

be obtained via triangular numbers as illustrated in Section 3.2 above). For this 

purpose, Column D and Column E are used to enter triangular numbers and 

tetrahedral numbers, respectively. In Column F, we use the syntaxes F1=1 and F2: 

=E1+E2, which is dragged down to the bottom cell as usual (Fig.6b). Remark that 

F1=1 and starting with F2, we added the consecutive tetrahedral numbers in pairs. 

We observe that Columns C and F are equivalent, as expected. 

4.4. Identities involving triangular numbers  

To demonstrate 8𝑇𝑛 + 1 = (2𝑛 + 1)2 on spreadsheets, my students first defined 

the natural numbers and the triangular numbers in Columns A and B, respectively, 

as before. Squares of odd numbers are entered via the syntax C1: =(2*A1+1)^2, as in 

Fig.7a. Column D is then used to demonstrate 8𝑇𝑛 + 1: Set D1: =8*B1+1 then drag 

down to D20; once again we observe the equivalence of Columns C and D (Fig.7b). 

 

Figure 7: Visualizing eight times a triangular number 

The identity 𝑇𝑛−1 + 𝑇𝑛 = 𝑛2  can be demonstrated both physically (using square 

color tiles) and via spreadsheets. Triangular numbers 𝑇1 = 1, 𝑇2 = 𝑇1 + 2, 𝑇3 = 𝑇2 +

3, 𝑇4 = 𝑇3 + 4, 𝑇5 = 𝑇4 + 5, … can be arranged using different colors; adding them 

consecutively in pairs, we obtain a sequence of square numbers, as depicted in 

Fig.8a. To demonstrate the identity 𝑇𝑛−1 + 𝑇𝑛 = 𝑛2 in spreadsheets, we proceed by 

entering the natural numbers and the triangular numbers in Column A and Column 

B, respectively. Column C is then used to visualize the sum of the consecutive pairs 

of triangular numbers via the syntaxes C1=1 and C2: =B1+B2, which is then dragged 

7
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down to the bottom cell (Fig.8b). As also demonstrated for Fig.1b, an animated 

implementation of Fig.8a that illustrates the identity 𝑇𝑛−1 + 𝑇𝑛 = 𝑛2 using the 

spreadsheet grid and conditional formatting is included in Appendix B.  

 

Figure 8: Visualizing sums of consecutive triangular numbers 

4.5. Identities involving pronic numbers  

Pronic numbers 𝑃𝑛 are the numbers of the form 𝑛(𝑛 +  1) such as 2, 6, 12, 20, 

30, etc. Nicomachus used the adjective “heteromecic” for these numbers (NCTM, 

1989, p. 56). Pronic numbers can be represented as rectangles with integer 

dimensions differing by 1 (Fig.9a). For 𝑛 = 1,2,3, the identity 4𝑃𝑛 + 1 = (2𝑛 + 1)2 can 

be represented with the arrangement of four congruent rectangles each made of a 

different color, as in Fig.9b. The areas of these rectangles could be interpreted in two 

ways: (i) the area as a sum can be thought of as 4𝑃𝑛 + 1 respectively for 𝑛 = 1,2,3; (ii) 

the area as a product can be thought of (2𝑛 + 1)2 respectively for 𝑛 = 1,2,3. 

 

Figure 9: Pronic numbers 
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To demonstrate the identity 4𝑃𝑛 + 1 = (2𝑛 + 1)2 on spreadsheets, my students 

first entered the natural numbers in Column A as usual. Pronic numbers are then 

introduced in Column B via the syntax B1: =A1*(A1+1). Column C is then used to 

define the LHS of the identity via the syntax C1: =4*B1+1. Finally, squares of odd 

numbers are entered via the syntax D1: =(2*A1+1)^2, as before. The equivalence of 

Columns C and D demonstrates the identity 4𝑃𝑛 + 1 = (2𝑛 + 1)2 (Fig.10). 

 

Figure 10: Visualizing pronic numbers 

4.6. Hex numbers 

Hex numbers 𝐻𝑛 = 1 + ∑ 6𝑖𝑛−1
𝑖=0  can be derived and also modeled in many 

ways: (i) One way of modeling hex numbers 𝐻1 = 1, 𝐻2 = 𝐻1 + 6, 𝐻3 = 𝐻2 + 12, 𝐻4 =

𝐻3 + 18, … could be achieved by using dots placed on concentric hexagonal lattices 

starting from center outward (Fig.11); (ii) Another way of visualizing these numbers 

could be realized by relating them to triangular numbers via 𝐻1 = 1, 𝐻2 = 1 +

6𝑇1, 𝐻3 = 1 + 6𝑇2, 𝐻4 = 1 + 6𝑇3, … as shown in Fig.12. 

 

Figure 11: Modeling hex numbers 

 

Figure 12: Modeling hex numbers (cont.) 
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The sequence of hex numbers along with some of their interesting properties in 

spreadsheets can be obtained recursively as follows. Natural numbers in Column A 

as usual; the syntax B1=1 followed by B2: =B1+6*A1 are entered in Column B. This is 

the first way of obtaining hex numbers introduced above (Fig.13a). The second way 

could be achieved in a similar manner by first entering trianular numbers in Column 

C either recursively or explicitly as demonstrated before (Fig.13b). The hex numbers 

are then entered in Column D via the syntax D1=1 followed by D2: =1+6*C1 (Fig.13c). 

Finally, the syntax E1=1 followed by E2: =E1+D2 demonstrates the interesting 

property that the sum of the first n hex numbers is a perfect cube (Fig.13d). 

 

Figure 13: Hex numbers in two different ways 

4.7. Fibonacci numbers 

For each natural number n, the nth Fibonacci number 𝑓𝑛 can be defined 
recursively by 𝑓1 = 1, 𝑓2 = 1, and 𝑓𝑛+2 = 𝑓𝑛+1 + 𝑓𝑛 for 𝑛 ≥ 1. Fibonacci numbers can 

also be defined explicitly via the equation 𝑓𝑛 =
𝜙𝑛−(−𝜙)−𝑛

√5
 for 𝑛 ≥ 1, where 𝜙 =

1+√5

2
 is 

the well-known golden ratio. Via either approach, it can be shown that 𝑓3 = 2, 𝑓4 =
3, 𝑓5 = 5, 𝑓6 = 8 and so on. To obtain the Fibonacci sequence recursively, set B1=1, 
B2=1 and B3: =B1+B2 (Fig.14a). To obtain the Fibonacci sequence explicitly, enter the 
syntax C1: =( ( (1 + sqrt(5))/2)^A1 – ( (1 – sqrt(5))/2)^A1 ) /sqrt(5) and drag down to 
the bottommost cell (Fig.14b). 

 

Figure 14: Fibonacci numbers in two different ways 

Spreadsheets could be used to demonstrate interesting properties of Fibonacci 
sequence. After defining the terms of the sequence in Column A, for instance, to 

demonstrate the famous sum of squares identity ∑ 𝑓𝑖
2𝑛

𝑖=1 = 𝑓𝑛𝑓𝑛+1, Column B and 
Column C are used to visualize the LHS and the RHS, respectively. In Column B, we 
set B1: =A1^2 and B2: =B1+A2^2 (Fig.15a). In Column C, we set C1: =A1*A2 and 
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drag it down (Fig.15b). The famous Simson’s identity 𝑓𝑛−1𝑓𝑛+1 − 𝑓𝑛 = (−1)𝑛 can be 

demonstrated in a similar manner: Set D2: =A1*A3-A2^2 and drag down (Fig.15c). 

 

Figure 15: Fibonacci sequence identities 

Simson’s identity 𝑓𝑛−1𝑓𝑛+1 − 𝑓𝑛 = (−1)𝑛 can also be demonstrated physically 
using color tiles. Because a subtraction is involved, only two colors are suggested in 
such a way that one color represents positives and the other color represents 
negatives. Fig.15d demonstrates Simson’s identity for 𝑛 = 2,3,4,5. Specifically we 
have the physical representation of four Simson identites, which are in agreement 
with the rectangular arrangments demonstrated in Fig.15d: 

• 𝑛 = 2: 𝑓1𝑓3 = 𝑓2
2 + 1 (that is, 1×2 = 12 + 1); 

• 𝑛 = 3: 𝑓2𝑓4 = 𝑓3
2 − 1 (that is, 1×3 = 22 − 1); 

• 𝑛 = 4: 𝑓3𝑓5 = 𝑓4
2 + 1 (that is, 2×5 = 32 + 1);  

• 𝑛 = 5: 𝑓4𝑓6 = 𝑓5
2 − 1 (that is, 3×8 = 52 − 1); 

• For even 𝑛 ≥ 2: 𝑓𝑛−1𝑓𝑛+1 = 𝑓𝑛
2 + 1 (i.e., rectangle exceeds square by 1 unit); 

• For odd 𝑛 ≥ 3: 𝑓𝑛−1𝑓𝑛+1 = 𝑓𝑛
2 − 1 (i.e., square exceeds rectangle by 1 unit). 

4.8. A Recurrence relation of factorials 

The next example is the famous recurrence relation of factorials ∑ 𝑘 ∙ 𝑘!𝑁
𝑘=1 =

(𝑁 + 1)𝑁! − 1, which can also be demonstrated physically with Cuisenaire rods or 

color tiles for the first couple of terms as follows (Fig.16-17): 

• 𝑁 = 1: 1 ∙ 1! = 2 ∙ 1! − 1; 

• 𝑁 = 2: 1 ∙ 1! + 2 ∙ 2! = 3 ∙ 2! − 1; 

• 𝑁 = 3: 1 ∙ 1! + 2 ∙ 2! + 3 ∙ 3! = 4 ∙ 3! − 1;  

• 𝑁 = 4: 1 ∙ 1! + 2 ∙ 2! + 3 ∙ 3! + 4 ∙ 4! = 5 ∙ 4! − 1; 

• Thus 1 ∙ 1! + 2 ∙ 2! + ⋯ + (𝑁 − 1) ∙ (𝑁 − 1)! + 𝑁 ∙ 𝑁! = (𝑁 + 1) ∙ 𝑁! − 1. 

 

Figure 16: A recurrence relation of factorials 
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Figure 17: A recurrence relation of factorials (cont.) 

The spreadsheets demonstration of this relation is based on the factorial 

notation that is applied as follows: Upon entering the natural numbers in Column A 

as before, in Column B, type B1: =A1*A1! and drag it down to bottom cell (Fig.18a). 

Column C is then used to demonstrate the summation on the LHS of the identity 

using the previously described “add them diagonally” technique: C1=B1 and C2: 

=C1+B2, which is then dragged down to the bottom cell (Fig.18b). Finally, Column D 

is used to demonstrate the RHS of the identity: D1: =(A1+1)*A1!–1 which is then 

applied to all Column D (Fig.18c). The equivalence of Column C and Column D 

concludes the demonstration of the LHS=RHS identity. 

 

Figure 18: A recurrence relation of factorials on spreadsheets 
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4.9. A Recurrence relation of consecutive powers of 2 

Another interesting formula that can be both recursively and explicitly 

modeled is the recurrence relation of consecutive powers of 2, which is given by  
∑ (𝑘 + 1) ∙ 2𝑘𝑁

𝑘=1 = 𝑁 ∙ 2𝑁+1. This formula can also be visualized physically with 

square color tiles or Cuisenaire rods, as depicted in Fig.19: 

 

Figure 19: A recurrence relation of consecutive powers of 2 

The spreadsheets demonstration starts with the introduction of the natural 

numbers in Column A, as usual. The next step is to enter the LHS of the identity, that 

is, the recursive form: Set B1: =(A1+1)*2^A1; C1=B1; C2: =B2+C1 (diagonal addition 

technique) and drag them all down to the bottom cell (Fig.20a). To demonstrate the 

RHS of the identity: Set D1: =A1*2^(A1+1) and drag it down to the bottom cell (the 

explicit form), which is depicted in Fig.20b. 

 

Figure 20: A recurrence relation of consecutive powers of 2 on spreadsheets 

4.10. Sums of consecutive powers of 3 

The sum of consecutive powers of 3 formula ∑ 3𝑘𝑁
𝑘=0 =

3𝑁+1−1

2
 can be modeled 

both recursively and explicitly as demonstrated below. I start with the color tiles 

representation demonstrated in Fig.21. 
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Figure 21: A recurrence relation of consecutive powers of 3 

In spreadsheets, the LHS of the identity (the recursive form) is visualized as 

follows: Set B1: =3^A1; C1=B1; C2: =B2+C1 (diagonal addition technique) and drag 

them all down to the bottom cell (Fig.22a). To demonstrate the RHS of the identity, 

that is, the explicit form: Set D1: =(3^(A1+1)–1)/2 and drag it down to the bottom cell 

(Fig.22b). 

 

Figure 22: A recurrence relation of consecutive powers of 3 on spreadsheets 

5. Transition from Numerical Evidence to Formal Mathematical 

Proof 

Although terminologically classified as recursive and explicit, there are those 

“sum=product” identities that are recursive in their nature and those explicit in their 

nature, yet some of these formulas still cannot be strictly classified as either implicit 

or recursive in the mathematical sense. Spreadsheets proved necessary in not only 

visualizing the LHS and RHS of “sum=product” identities in a coordinative manner, 
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but in understanding and distinguishing between the recursive forms and explicit 

forms of such LHS=RHS identities as well. In coordination with physical 

manipulatives, spreadsheets could also prove very useful in helping students 

transition from numerical evidence to formal mathematical proof in many ways. This 

concluding section aims to highlight these many ways via which students of 

elementary number theory can be helped to achieve that transition. 

5.1. Visualizing the Steps of Mathematical Induction 

Most of the examples used in this article can be proved via either direct proof 

or mathematical induction. En route to a thorough understanding of mathematical 

induction proof, in particular, the primary role of spreadsheets and physical 

manipulatives in coordination could facilitate the steps of mathematical induction, 

including the base case and the inductive step. Though trivial, it is fundamental to 

start with the demonstration of the base case in all three representations (physical, 

spreadsheets, and algebraic). To explain this, I choose one of the identities introduced 

above: the recurrence relation of factorials 1 + ∑ 𝑘 ∙ 𝑘!𝑁
𝑘=1 = (𝑁 + 1)𝑁!. 

5.1.1.  Step 1: 𝑵 = 𝟏 ⟹ 𝟏 + 𝟏 ∙ 𝟏! = 𝟐 ∙ 𝟏! 

In this step, the LHS of the identity consists of the constant 1 plus one 1!, that is, 

one piece of a blue square tile (or a Cuisenaire rod of value 1) modeling the constant 

1 plus one more yellow piece modeling the addend one 1!. The LHS of the identity, in 

a sense, is viewed as the “area as a sum” of a growing rectangle. The RHS of the 

same identity at this elementary stage can be viewed as “area as a repeated addition” 

as two 1! (Fig.23a). It is important, at this elementary stage, to note the slight 

difference between the two interpretations of the area of the growing rectangle. At 

the same time, on spreadsheets, we first enter the natural numbers in Column A as 

usual. We then type B1: =A1*A1! which models the number of factorials to be added 

at each step followed by C1: =1+B1 which models the “area as a sum” of the growing 

rectangle (that is, the LHS of the identity). Finally the syntax D1: =(A1+1)*A1! is 

entered, which models the “area as a repeated addition;” that is, the RHS of the first 

step of the identity 1 + 1 ∙ 1! = 2 ∙ 1! (Fig.23b). 

 

Figure 23: Identity 1 + ∑ 𝑘 ∙ 𝑘!𝑁
𝑘=1 = (𝑁 + 1)𝑁! Step 1: 𝑵 = 𝟏 ⟹ 1 + 𝟏 ∙ 𝟏! = 𝟐 ∙ 𝟏! 

5.1.2.  Step 2: 𝑵 = 𝟐 ⟹ 𝟏 + 𝟏 ∙ 𝟏! + 𝟐 ∙ 𝟐! = 𝟑 ∙ 𝟐! 

In the second step, we keep what is already there from the previous step and 

just add the new addend, that is, two sets of two green square tiles modeling the two 

2!. The LHS of the identity is once again checked and viewed as the “area as a sum” 

of a growing rectangle sequence. The RHS of the identity at this second step is 

interpreted as “area as a repeated addition” as three sets of 2! (Fig.24a). As before, B2 
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can be obtained via spreadsheet functionality by dragging cell B1 down. The 

“diagonal adding” approach is to be applied to Column C as this is the column in 

which we add all terms in agreement with the LHS of the identity. For that purpose, 

we type C2: =C1+B2, which models the “area as a sum” of the growing rectangle at 

the second step. D2 too can be obtained by dragging cell D1 down as Column D can 

be thought of as the explicit form the identity which models the RHS of the identity 

(Fig.24b). Columns C and D could be thought of as reflecting the implicit (recursive) 

and the explicit nature of the identity, respectively. 

 

Figure 24: Identity 1 + ∑ 𝑘 ∙ 𝑘!𝑁
𝑘=1 = (𝑁 + 1)𝑁! Step 2: 𝑵 = 𝟐 ⟹ 1 + 1 ∙ 1! + 2 ∙ 2! = 3 ∙ 2! 

5.1.3.  Step 3: 𝑵 = 𝟑 ⟹ 𝟏 + 𝟏 ∙ 𝟏! + 𝟐 ∙ 𝟐! + 𝟑 ∙ 𝟑! = 𝟒 ∙ 𝟑! 

In the third step, the new addend will be three sets of what is already present, 

namely three sets of 6! in red color (Fig.25a). The LHS is then recursively interpreted 

as an area as a sum of 1 + 1 ∙ 1! + 2 ∙ 2! + 3 ∙ 3! whereas the RHS is explicitly 

interpreted as an area as a repeated addition as 4 ∙ 3! because there are four sets of 3! 

altogether (Fig.25a). Spreadsheet approach in the third step is easier than before 

because at this stage all three cells B2, C2, and D2 are draggable (Fig.25b). Once again 

the term being added in B3 is color-coded to emphasize the connection between the 

two representations. 

 

Figure 25: Identity 1 + ∑ 𝑘 ∙ 𝑘!𝑁
𝑘=1 = (𝑁 + 1)𝑁! Step 3: 𝑁 = 3 ⟹ 1 + 1 ∙ 1! + 2 ∙ 2! + 3 ∙ 3! = 4 ∙ 3! 

5.1.4.  Step 4: 𝑵 = 𝟒 ⟹ 𝟏 + 𝟏 ∙ 𝟏! + 𝟐 ∙ 𝟐! + 𝟑 ∙ 𝟑! + 𝟒 ∙ 𝟒! = 𝟓 ∙ 𝟒! 

The fourth stage is demonstrated in a similar manner, keeping in mind the 

setting of the stage for transition from numerical evidence to formal mathematical 

proof (Fig.26a-b). It is important to emphasize the respective roles of the LHS and the 

RHS of the identity as the area of the growing rectangle sequence (Fig.26a) and how 

these roles manifest themselves in spreadsheets in coordination (Fig.26b). 

5.2. Formal Mathematical Proof 

Now that the two representations (physical manipulatives and spreadsheets) 

are explored in a reconciliatory manner in coordination at each step, it remains to 

show how these two representations can be used to help students transition to the 

actual formal mathematical proof (algebraic representation) via mathematical 
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induction. Given that the base case was already verified, I move to the inductive step, 

that is, to show that the implication 𝑃(𝑁 = 𝑛) ⟹ 𝑃(𝑁 = 𝑛 + 1) is true. 

 

Figure 26: Identity 1 + ∑ 𝑘 ∙ 𝑘!𝑁
𝑘=1 = (𝑁 + 1)𝑁! Step 4: 𝑁 = 4 ⟹ 1 + 1 ∙ 1! + 2 ∙ 2! + 3 ∙ 3! + 4 ∙ 4! = 5 ∙ 4! 

𝑃(𝑁 = 𝑛) refers to the identity 1 + ∑ 𝑘 ∙ 𝑘!𝑛
𝑘=1 = (𝑛 + 1)𝑛!. To move to the next 

stage, that is, the 𝑁 = 𝑛 + 1 stage, by experience with the discussion in Section 5.1 

along with Figures 24-27, we add the “new” addend (𝑛 + 1)(𝑛 + 1)! to both sides of 

the identity 1 + ∑ 𝑘 ∙ 𝑘!𝑛
𝑘=1 = (𝑛 + 1)𝑛!. The new LHS becomes 1 + ∑ 𝑘 ∙ 𝑘!𝑛

𝑘=1 + (𝑛 +

1)(𝑛 + 1)! whereas the new RHS becomes (𝑛 + 1)𝑛! + (𝑛 + 1)(𝑛 + 1)!. By experience 

once again, the LHS is viewed as a certain number of addends which corresponds to 

the “area as a sum” of the growing rectangle sequence. The new LHS, on the other 

hand, can be rewritten by using properties of factorials as: (𝑛 + 1)𝑛! + (𝑛 +

1)(𝑛 + 1)! =  (𝑛 + 1)𝑛! + (𝑛 + 1)(𝑛 + 1)𝑛!. Finally, factorization, simplifying, and the 

commutative property of multiplication yield the LHS in the desired format: 
(𝑛 + 1)𝑛! + (𝑛 + 1)(𝑛 + 1)𝑛! = (𝑛 + 1)𝑛! [1 + (𝑛 + 1)] = (𝑛 + 1)𝑛! [(𝑛 + 1) + 1] =
(𝑛 + 1)! [(𝑛 + 1) + 1] = [(𝑛 + 1) + 1](𝑛 + 1)!. 

6. Conclusion 

The activities presented in this article are a compilation of lecture notes that I 

used in the past years in the teaching of sequences and series along with recursive 

and explicit formulas in various classes such as Sequences and Series, Mathematics 

for Elementary School Teachers, Elementary Number Theory, etc. A multi-

representational pedagogy is considered to explain (i) how to help students 

understand summation identities of the form LHS = RHS; and (ii) how to use 

spreadsheet activities to lead to a better understanding of how to develop proofs for 

these formulas. The multi-representational pedagogy proposed in the article 

comprised physical manipulatives, diagrams or drawn representations, visual 

proofs, algebraic representations, formal proofs, and spreadsheets. The spreadsheets 
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component stood as a valuable component in (i) visualizing the LHS and RHS of 

“sum=product” identities in a coordinative manner; (ii) understanding and 

distinguishing between the recursive forms and explicit forms of such LHS = RHS 

identities; and (iii) connecting the visualizations to the understanding of 

mathematical induction and the formal proof. 
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