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Empowering Polynomial Theory Conjectures with Spreadsheets

Abstract
Polynomial functions and their properties are fundamental to algebra, calculus, and mathematical modeling.
Students who do not have a strong understanding of the relationship between factoring and solving equations
can have difficulty with optimization problems in calculus and solving application problems in any field.
Understanding function transformations is important in trigonometry, the idea of the general antiderivative,
and describing the geometry of a problem mathematically. This paper presents spreadsheet activities designed
to bolster students' conceptualization of the factorization theorem for polynomials, complex zeros of
polynomials, and function transformations. These activities were designed to use a constructivist approach
involving student experimentation and conjectures.
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Abstract

Polynomial functions and their properties are fundamental to al-
gebra, calculus, and mathematical modeling. Students who do not
have a strong understanding of the relationship between factoring and
solving equations can have difficulty with optimization problems in
calculus and solving application problems in any field. Understand-
ing function transformations is important in trigonometry, the idea of
the general antiderivative, and describing the geometry of a problem
mathematically. This paper presents spreadsheet activities designed
to bolster students’ conceptualization of the factorization theorem for
polynomials, complex zeros of polynomials, and function transforma-
tions. These activities were designed to use a constructivist approach
involving student experimentation and conjectures.

Keywords: experimentation with functions, function transformations, poly-
nomial theory, factorization theorem for polynomials, conjugate pairs theo-
rem, spreadsheets, active learning, inquiry-based learning

1 Introduction

Many active and exploratory learning activities use an approach based in
constructivism; students start with a situation or problem, form the questions
that would lead them to a solution, and develop an approach to explain or
solve the problem. While it is not clear whether a constructivist approach
in mathematics education significantly improves student learning outcomes
[4], it is well-aligned with the scientific method and the pattern-finding and
conjecturing approach that mathematicians use to develop theorems.

Rauff [8] discusses how students’ beliefs about factoring influence their
ability to understand and work with the factored form of a polynomial. Al-
lowing students to experiment and form conjectures about polynomials rather
than simply presenting them with theorems and rules should help them be-
lieve the statements of the theorems more completely. Connecting students’
beliefs and ideas about the algebraic, geometric, and numerical properties
of polynomial functions should help them understand such functions at a
deeper level.

Since at least 1985, spreadsheets have been used in educational settings
to aid student learning [5]. Spreadsheets are a valuable tool for instructors to
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design activities since they can accomplish complex mathematical, statisti-
cal, and graphical tasks without requiring much programming knowledge. If
students are required to use a common platform such as Excel, spreadsheets
also avoid many issues of compatibility that may result from web-based tools
or software that requires installation. In higher education, many universities
provide Microsoft Office to students for free or at a discounted price, which
helps break down the barrier of access to the technology. Spreadsheets are
also widely used in workplace and laboratory environments, so the familiar-
ity and skills that students gain through classroom spreadsheet activities is
transferable to their future educational and work endeavors.

The work of Sadri [9] presented spreadsheet activities to help students
understand polynomials and other functions. These activities were intended
for secondary mathematics education, aligned with the Common Core Stan-
dards for Mathematics [3] and the earlier work by Alagic and Palenz [1]. Sadri
included an activity that enabled students to experiment with the properties
of quadratic functions and further activities that automated the calculations
involved in applying the rational zeros theorem and the intermediate value
theorem [7]. We aim to take further steps along this path with additional
polynomial theory. Spreadsheets are used to expedite calculations, including
computations with complex numbers that could not be accomplished on a
standard graphing calculator. More importantly, the goal is to allow students
to experiment with polynomial functions and receive instant symbolic and
graphical feedback about how their choices affect the formula and graph of
a function.

In this paper, we present activities intended for a precalculus or college
algebra course at either the secondary or postsecondary level. These activities
were designed in Microsoft Excel because of its wide availability. We did
not use any macros, visual basic, or similar enhancements to Excel’s basic
functionality for ease of instructor implementation and to avoid issues of
compatibility and security settings on students’ computers.

2 Activity: Factors of a Quartic Polynomial

This classroom activity uses a quartic polynomial to develop the factorization
theorem for polynomials, the behavior of a polynomial near x-intercepts,
and the conjugate pairs theorem [7]. This follows a constructivist approach
where students choose coefficients, investigate the changes in the shape of
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Figure 1: Formula to evaluate f(x) with any four complex constants.

the polynomial, and develop conjectures about the behavior of polynomials
in general. The repetition of the word “factor” in the instructions is intended
to reinforce the concept for students who still have some uncertainty about
the definition and process of factoring.

The spreadsheet allows students to select constants in the factored form of
a fourth-degree polynomial and view the resulting graph and expanded form
of the polynomial. We chose to have students input their constants to the
form f(x) = (x+k1)(x+k2)(x+k3)(x+k4) rather than the standard factored
form f(x) = (x − z1)(x − z2)(x − z3)(x − z4) to make students consciously
think about how the signs of the zeros of f are the opposites of the signs of
the constants that appear in the factored form.

In order to allow the most general case where any complex number can
be a zero of the function, the IMSUM and IMPRODUCT functions were
used rather than standard addition and multiplication. Because Excel can
have issues with floating-point precision [6], complex terms do not always
cancel as they should through multiplication and addition. This can result
in values that should be real having a very small imaginary part. The IF
and IMAGINARY functions were used to check for a small imaginary part,
and the REAL function eliminates an imaginary part that was the result of a
rounding error. The two steps in the formula (evaluating and then checking
for floating-point error) appear in Figure 1. These could be combined in a
single formula, but are kept separate in the figure for clarity.

If proficiency in Microsoft Excel commands is one of the learning outcomes
of the course, the activity could begin by asking students to enter a formula
to generate the function values and fill it down. Depending on the level of the
students’ Excel knowledge, this could be done for the case of real constants
only or for the more general case that handles complex constants.

The IMSUM and IMPRODUCT functions were also used to display the
coefficients of the polynomial in expanded form, so students can make a
visual connection between the factored form and expanded form, as well as
being able to see when the coefficients have a nonzero imaginary part. Figure
2 shows the formulas for the coefficients.
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Figure 2: Coefficients for the expanded form of f(x).

If an instructor wants students to generate Excel commands as part of
the activity, the students could be asked to find the expanded form of the
polynomial on paper, combine like terms, and then enter formulas for the
coefficients. This could be done for real or complex constants.

In order to focus students on the shape and zeros of the function, the
graph is generated automatically without requiring students to select an in-
terval of x-values. The purpose of this graph is to visualize the zeros of the
function. Since the students are free to set constants that could result in any
possible values for the zeros of the function, the left and right bounds of the
graph needed to be chosen dynamically based on the particular polynomial.
For the case where the polynomial has real zeros, we used bounds based on
the greatest and least zeros of the polynomial. To ensure that the edge of
the graph does not stop exactly at one of the intercepts, we extended the
graph at each end by the greater value of 1 unit or 10% of the greatest or
least zero of the polynomial.

Ideally, we would show students a comprehensive graph that captures all
zeros and all turning points (local extrema) of the function. When all the ze-
ros of the function are real, all turning points of the graph occur between the
x-intercepts, so including all of the x-intercepts is enough to produce a com-
prehensive graph. When f(x) has complex zeros, the graph may have critical
points that are not between the x-intercepts, or no x-intercepts at all. The
derivative of f(x) is a cubic polynomial, so the critical points of f could be
found using the general solution of the cubic equation. However, the general
solution of the cubic relies on complex terms canceling each other out, which
does not reliably occur in Excel due to its issues with floating-point precision
[6]. It would require a significant amount of coding to circumvent these pre-
cision errors, in addition to the complex formulas for the zeros themselves.
Bounds on the zeros of f ′(x) could be computed, however these bounds can
be large relative to the actual zeros. With the high rate of change of a quartic
function, using an overly wide interval often results in a graph with a very
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Figure 3: Left bound and increment for x-values. Cells C4 and C5 contain
the minimum and maximum real zeros of the polynomial, respectively.

Figure 4: Example of Factors of a Quartic Polynomial spreadsheet with real-
valued input.

large vertical scale that can make it difficult to visually determine whether
the function has x-intercepts. Since the main goal of showing the graph in
the complex case is to indicate there are no zeros, we used bounds that gen-
erated clear graphs in practice. The values used were ± the greater of 1
or the square root of the magnitude of the largest constant entered, where
the IMABS function was used to find the magnitudes of the constants. The
formulas for the left bound of the graph and the increment used to generate
one hundred x-values appear in Figure 3.

2.1 Real Coefficients

These exercises are meant to be completed one at a time, with students
sharing their observations with the group after each exercise. The italicized
questions are follow-up questions in case the student observations do not
address particular behaviors of the polynomials. Figure 4 shows an example
of the spreadsheet using real coefficients.
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1. f(x) is a quartic, or fourth-degree, polynomial in factored form. Enter
the same number for the constants in all four factors. What do you
observe about the polynomial?

Do you see any connection between the number you entered and the
graph of the polynomial?

2. Enter the same number for the constants in three of the factors and a
different number for the fourth constant. What changed in the graph
of the polynomial?

Do you see the same relationship between the intercepts of the graph
and the numbers you entered?

3. Use two numbers again; this time, enter one number for the constants
in two of the factors and a different number for the other two factors.
What changed in the graph of the polynomial?

Did the shape or behavior of the curve near the x-intercepts change?

4. Now use three numbers; enter one number for the constants in two of
the factors and different numbers for the two remaining factors. What
changed in the graph? Try to come up with some conjectures, general
statements about how the constants you choose affect the shape of the
graph. How do the constants affect the x-intercepts of the graph?

How does the number of times you use the same number (the multiplic-
ity of the factor) affect the graph near the corresponding x-intercept?

5. Enter four different numbers for the constants in the four factors. Does
the graph appear to be consistent with the conjectures we made?

This activity could be followed by an introduction to the factorization
theorem for polynomials, a more formal definition of multiplicity and a gen-
eral discussion of the behavior of a polynomial near its x-intercepts.

2.2 Nonreal Complex Coefficients

As with the exercises regarding real zeros of a polynomial, these are intended
to be completed one at a time and to have students state their observations
at each step to develop an understanding of how their choices of zeros affect
the polynomial. The italicized questions are follow-up questions. Figure 5
shows an example of the spreadsheet using nonreal complex coefficients.
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Figure 5: Example of Factors of a Quartic Polynomial spreadsheet with
nonreal complex input.

1. Enter real numbers for the constants in three of the factors and a
complex number in the form a + bi where b 6= 0 for the fourth factor.
What do you observe about the polynomial?

Why do you think Excel didn’t display a graph?

2. Enter two real numbers in two of the factors and two nonreal com-
plex numbers in the other two factors. Do you notice any difference
compared to when the function had only one complex zero?

3. When you solve real quadratic equations with the quadratic formula,
nonreal solutions always came in the form of conjugates a± bi. Enter
two real numbers in two of the factors and two complex conjugates
(a+bi and a−bi) in the other two factors. What happens to the graph?
What similarities and differences do you see between this graph and the
graphs you generated using four real constants? Try to come up with
some conjectures about how complex constants affect the shape of the
graph.

4. Enter two pairs of complex conjugates (a ± bi and c ± di). Does the
graph appear to be consistent with the conjectures we made?

This activity could be followed by an introduction to the conjugate pairs
theorem.
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3 Activity: Function Transformations

This classroom activity uses quadratic, cubic, and quartic polynomials to
help build an intuition for the various transformations that can be applied
to the graph of a parent function. Here, students are supplied with the
basic polynomial function and its graph in an Excel workbook. For each of
the parent polynomials stated above, the associated workbook contains five
sections:

1. Constants Election The top left-hand corner of the workbook con-
tains f(x), p(x), and the bound and increment cells. Here, f(x) repre-
sents the final transformed function to be generated off of the parent
polynomial function p(x). We use a conventional approach to denote
our functional transformations where, given a parent polynomial p(x),
all the transformations which can be applied and still remain in the
family of functions of p are captured by f(x) = a · p(b · (x − c)) + d.
To this purpose, we have highlighted the cells of f which represent the
constants a, b, c, and d. These highlighted cells are pre-populated with
the entries a = 1, b = 1, c = 0, and d = 0, which the students will then
change using a constructivist approach in the activity to build their
understanding of the transformations that each of the constants can
produce.

2. Graph Window Parameters Below the Constants Election section
of the workbook is the parameterization of the Graph Window. This
section is included so that the students can see how the plot of the
graphs is chosen, respective of the transformations that have been ap-
plied. In particular, to choose the minimum x-value, we employ the
MIN function in Excel to take the least value of either −2 or −2

b
+ c. In

a similar vein, to choose the maximum x-value, we employ the MAX
function in Excel to take the greater value of either 2 or 2

b
+ c. Both

Excel functions are depicted in Figure 6. Finally, the cell beneath the
“max” x-value is the increment width setting used to generate 100
partitioning x-values.

3. Graph Window Below the Graph Window Parameters is the Graph
Window itself. Here, the students will see the graph of the parent
polynomial function and each subsequent function transformation that
they make. Since it is common practice to name a polynomial function
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Figure 6: Parameterization of the Graph Window.

Figure 7: Expansion of the Transformed Polynomial.

p(x), we chose to label the parent polynomial function p(x) for the
double entendre and mnemonic where the dependent variable p repre-
sents both “polynomial” and “parent”. In a similar fashion, the final
transformed function is billed as f(x) since it is the final function and
it is in the family of functions of p.

4. Polynomial Expansion In the top right-hand corner of each work-
book is the expanded form of the polynomial, based off of the Constants
Election data that the students feed into the highlighted cells. Further
exercises could be developed here to help tie together the concepts of
the Function Transformations Activity and the Factors of Polynomials
Activity workbooks. Since both of these workbooks include the ex-
panded forms of the polynomials, relating the expansions would serve
as a bridge between the two activities.

5. Function Tables Finally, below the Polynomial Expansion section are
the 6 function tables that will produce the numerical values determined
by the choices of a, b, c, and d as elected by the students. These tables
are what we use to generate the graphs of each transformation and the
parent function p.

The students are guided through a step-by-step process, outlined below,
to transform p into f . Each function transformation is color coded to
help identify the transformation to its graph, beginning with p being
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Figure 8: Cubic Parent Graph p(x) = x3.

color coded grey, as depicted in Figure 8.

3.1 Cubic Transformations Activity

We outline the general ideas and processes for the transformations activities
using the cubic polynomial workbook as our model. The basic principles
are the same, and while the activities may feel redundant, it is deliberate
that the questions we ask in the cases of the quadratic, cubic, and quartic
polynomials remain the same. This is to affirm the roles that a, b, c, and d
play in the transformations of a parent function, regardless of the function
itself.

Before we describe the general process for this activity, we offer a brief
discussion of the ranges that a, b, c, and d may assume.

While the ranges of each of these constants may appear to be limited,
the values are not restricted to integers. The rationale in limiting the range
on the constants is solely for the convenience of ensuring that the Graph
Window remains within manageable tolerances. Indeed, given the rate at
which the polynomials grow, an unrestricted choice of a, b, c, or d could
quickly escalate out of control. For instance, simply relaxing the conditions
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of either b or c to a range between −10 and 10 could result in terms of the
polynomials containing factors as large as magnitudes 100,000 in the case of
the quartic. In fact, even magnitudes as large as 1,000,000,000 could arise
if the conditions of both b and c are relaxed to a range of −10 to 10 in the
quartic! To this end, we have set the following ranges:

1. a ∈ [−10, 10]

2. b ∈ [−5, 5]

3. c ∈ [−5, 5]

4. d ∈ [−10, 10]

The tolerance on both a and d is due to their placement within the polyno-
mials allowing for them to be more relaxed. Below, we describe this activity’s
process.

1. To begin, the students are asked to multiply p by a non-zero constant a
greater than or equal to −10 but less than or equal to 10, and a should
not be equal to 1.

Once the students have chosen a value for a and entered it into the
highlighted cell of the Constants Election section, a new graph will
appear in the Graph Window. This new function is color coded blue in
the Excel workbook to help the students identify what effect a scalar
multiple of a function has on the graph of the function by comparing
the new blue function to the original grey, exemplified in Figure 9.

2. Next, we ask the students to multiply a non-zero constant b greater than
or equal to −5 but less than or equal to 5 by the independent variable
x in the parent function p. The graph and function associated with the
effects of b is color coded pink. At this point, assuming reasonable and
good choices for a and b have been made, four graphs should now be
displayed: the original parent function p(x), family members a · p(x),
and p(b · x), and a new red graph. Such a graph can be witnessed in
Figure 10. The red graph is the composite f(x) = a · p(b · x). The goal
is to have the students eventually formulate the conjecture that f(x)
reacts to all of the transformations applied to p(x).
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Figure 9: Scalar multiple of p(x).

Figure 10: Scalar multiple of x.
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Figure 11: Constant added to x.

3. After some anticipated trial and error, the students are asked to then
choose a non-zero constant c to add–or subtract–to the independent
variable x. As with a and b from above, the window for choice of
c is restricted to being greater than or equal to −5 but less than or
equal to 5. Upon entering a choice for c, a new graph should appear
in the graph window, color coded green. This new graph is associated
with the function p(x− c). Here, the students are asked to make their
observations about the reactions that a · p(x) [blue], p(b ·x) [pink], and
f(x) [red] experience at the introduction of p(x− c). At this point, five
graphs should now be visible in the graph window as demonstrated in
Figure 11.

4. The final transformation, represented by the color coding purple, is a
constant d added to the parent function p(x). That is, the function
p(x) + d. Once a non-zero constant between the values of −10 and 10
is entered for d, the graph window will display up to six graphs: p(x)
[grey], a · p(x) [blue], p(b · x) [pink], p(x− c) [green], p(x) + d [purple],
and f(x) [red]. Figure 12 shows an example of this.

The students are then asked to continue to vary the parameters on a,
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Figure 12: Constant added to p(x).

b, c, and d one at a time and to record their observations about the result-
ing graphs, placing particular emphasis on the parent graph p(x) and the
resulting composite function f(x).

3.2 Quadratic and Quartic Transformations

The aforementioned process for transforming a cubic function is to be repli-
cated in the cases of the quadratic and quartic functions. An example of
quadratic transformations where a = −2.00, b = 1.50, c = −1.00, and
d = 4.00 is displayed in Figure 13, while Figure 14 exemplifies quartic trans-
formations where a = −0.80, b = −0.50, c = 0.75, and d = 5.00.

As before, the following exercises are meant to be completed one at a
time, with students sharing their observations with the group after each
exercise. The italicized questions are follow-up questions in case the student
observations do not address particular behaviors of the transformations of
the polynomials.

1. Enter a real non-zero number between −10 and 10 for the scalar a.
What do you observe about the resulting polynomial? How does it
compare to the parent polynomial function? Repeat this step using
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Figure 13: Example of a transforming the parent quadratic function p(x) =
x2.

Figure 14: Example of a transforming the parent quartic function p(x) = x4.
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different values for a. Formulate a conjecture about how a transforms
the parent function.

If you have not already, try the following:

(a) Enter a negative value for a. What happens to the new graph as
compared to the parent polynomial?

(b) Enter a value for a such that 0 < |a| < 1. What happens to the
new graph as compared to the parent polynomial?

2. Enter a real non-zero number between −5 and 5 for the scalar b. What
do you observe about the resulting polynomial? How does it compare
to the parent polynomial function? Repeat this step using different
values for b. Formulate a conjecture about how b transforms the parent
function.

If you have not already, try the following:

(a) Enter a negative value for b. What happens to the new polynomial
graph as compared to the parent polynomial graph?

(b) Enter a value for b such that 0 < |b| < 1. What happens to the
new polynomial graph as compared to the parent polynomial graph?

3. Enter a real non-zero number between −5 and 5 for the constant c.
What do you observe about the resulting polynomial? How does it
compare to the parent polynomial function? Repeat this step using
different values for c. Formulate a conjecture about how c transforms
the parent function. If you have not already, try the following:

(a) Reset the initial values for a and b to both be 1. Make note of the
x-intercept(s) of the parent polynomial graph. Varying the values
for c only, what happens to the x-intercepts of the new polynomial
graph as compared to the parent polynomial graph?

(b) The common approach to expressing a polynomial function trans-
formation is f(x) = a · p(b · (x− c)) + d. Notice the sign preceding
c. How does the resulting transformation caused by c differ from
the sign preceding c? Algebraically, what is happening?

4. Enter a real non-zero number between −10 and 10 for the scalar d.
What do you observe about the resulting polynomial? How does it
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compare to the parent polynomial function? Repeat this step using
different values for d. Formulate a conjecture about how d transforms
the parent function.

If you have not already, try the following:

(a) Reset the initial values for a and b to both be 1 and the initial
value of c to be 0. Make note of the y-intercept of the parent
polynomial graph. Varying the values for d only, what happens
to the y-intercept of the new polynomial graph as compared to the
parent polynomial graph?

Once the students have verified that their conjectures are correct with
the instructor, this activity can serve as the springboard into more general-
ized function transformation theory for non-polynomial functions including
exponential, logarithmic, and trigonometric functions.

4 Conclusion

These spreadsheet activities were designed using a constructivist approach
to help students build an algebraic, numerical, and graphical understand-
ing of zeros and transformations of polynomial functions. Since Microsoft
Excel is a common platform, the software should not be a barrier as long
as students have their own computers or the activity occurs in a computer
lab environment. Students who are familiar with Excel should have little
difficulty approaching these activities. Learners sometimes have issues with
the cognitive load of learning software and mathematics concurrently [2].
However, for these activities, the only input to the spreadsheet is numerical
and the output is graphical and algebraic using standard notation. These
activities provide a concrete hands-on introduction to theory and operations
involving polynomials to enhance the learning process.
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