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Shrinkage of the Sample Correlation Matrix of Returns Towards a
Constant Correlation Target: A Pedagogic Illustration Based on Dow
Jones Stock Returns

Abstract
This paper extends the introduction to shrinkage estimation in a recent paper from the same journal. The
extension, which is in a portfolio investment context, is on shrinkage of the sample correlation matrix of
returns towards a constant correlation target. Here, shrinkage estimation is about finding a weighted average
of the sample correlation matrix and the target matrix, for a balance between reducing overall forecast errors
and maintaining some existing idiosyncrasies in the individual correlations. Excel plays an important
pedagogic role here. Besides illustrating the computations involved, the use of Excel also enables students to
gain valuable hands-on experience in shrinkage estimation, by working with the Dow Jones stock returns in an
Excel file accompanying this paper.
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Shrinkage of the Sample Correlation Matrix of Returns Towards a Constant

Correlation Target: A Pedagogic Illustration Based on Dow Jones Stock Returns

1 Introduction

Mean-variance portfolio theory is part of the core curriculum in �nancial education. Students

learn from the theory that combinations of risky securities, such as common stocks, can im-

prove an investment�s risk-return trade-o¤. Portfolio selection models that are formulated to

capture relevant institutional features and investment constraints adequately are useful for as-

sisting practical portfolio decisions. The implementation of a portfolio selection model typically

requires, as input parameters, a vector of expected returns and a covariance matrix of returns,

which is symmetric. The covariance of matrix itself can be deduced from a vector of standard

deviations of returns and a correlation matrix of returns, which is also symmetric, and vice

versa.

The true values of the individual input parameters being unknown, their estimated values

will have to be used instead. As the portfolio selection results are input sensitive, it is important

that reliable estimates are used. A popular estimation method is by using a sample of past

monthly or weekly return observations, under the assumption that each observation is a random

draw from a stationary joint probability distribution. The choice of the length of a sample

period is often a trade-o¤ between satisfying the stationarity assumption (for using a short

sample) and reducing the estimation errors (for using a long sample).

In practice, the use of past return observations to form expectations can also serve as a

starting point in generating a set of acceptable input parameters. This is because insights

of �nancial analysts are often deemed necessary for revising the estimated values of the input

parameters. For an n-security case, the individual input parameters to be estimated include n

expected returns, n standard deviations of returns, and n(n�1)=2 correlations of returns. These
correlations are all o¤-diagonal elements in the upper or lower triangle of the n� n correlation
matrix of returns. A relevant question, therefore, is whether it is practical for �nancial analysts

to revise the entire set of estimated input parameters or only part of it.

Take, for example, the case where n = 50; which is not a large number for the size of

a professionally managed stock portfolio. The insights of a group of analysts who track the
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�nancial data of the 50 companies considered, collectively, can lead to some improvements of

the 50-element vector of sample average returns � as proxies for the corresponding expected

returns � and the 50-element vector of sample standard deviations of returns. However, to

revise the 1; 225 individual correlation coe¢ cients, even partially, based on analysts� insights

is a highly burdensome task. For any larger n; the enormity of the task will be even more

overwhelming. The practical concerns that the correlations involved are too numerous for

�nancial analysts to revise has led Elton and Gruber (1973) and Elton, Gruber, and Urich

(1978) to comment that it is highly unlikely that estimations of the correlation matrix can be

based on approaches other than those relying on past return observations.

The above authors and, subsequently, Chan, Karceski, and Lakonishok (1999), have provided

empirical supports for using the average of sample correlations as a predictor of the individual

correlations. Although such averaging is e¤ective in reducing overall forecast errors, any idio-

syncrasies in the individual correlations, inevitably, will be lost. For example, if some securities

among the many securities considered are from the same industry, their sample correlations

of returns are usually higher than the overall average. Their sample correlations beyond the

overall average can be viewed as part of the idiosyncrasies in the set of securities considered,

and such idiosyncrasies will be lost due to averaging. Shrinkage estimation of covariance and

correlation matrices � a statistical approach introduced to the �nance profession by Ledoit and

Wolf (2003, 2004) � is a good remedy, which strikes a balance between reducing overall forecast

errors and retaining some existing idiosyncrasies in the individual correlations.

Shrinkage estimation in the context here is about achieving the best weighted average of a

sample covariance or correlation matrix and an approximate but structured matrix, for a given

decision criterion. The latter matrix is called the shrinkage target, for which a symmetric matrix

based on a constant correlation structure is a practical example. The weight that is assigned

to the shrinkage target is known as the shrinkage intensity. However, unless some asymptotic

properties are assumed for analytical convenience, the determination of the shrinkage intensity

for a constant correlation target is still a tedious task. [See Kwan (2008) for the corresponding

analytical details when no asymptotic properties are assumed.]

Using Excel for a numerical illustration, Kwan (2011) has provided an introduction to the

shrinkage approach. For simplicity, each shrinkage target is characterized by zero correlations

throughout. The current paper extends this introduction by shrinking the sample correlation
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matrix towards a constant correlation target instead. Here, the constant correlation is provided

by the average of the individual sample correlations. Such an extension is relevant, both

practically and pedagogically, for the following reason:

As the use of a zero correlation target always leads to attenuations in the individual cor-

relations, their post-shrinkage average will always be lower than the original sample average.

Besides the lack of empirical supports for a zero correlation target, it is also di¢ cult to ex-

plain, from a pedagogic perspective, why attenuating the sample correlations can be expected

to provide better estimates of the true correlations. In contrast, the use of a constant cor-

relation target, which does not cause any change to the original sample average, is free from

such concerns. With the post-shrinkage correlations being closer to the original sample av-

erage, a balance between two competing interests can be achieved. As indicated earlier, the

balance is between reducing overall forecast errors and retaining some existing idiosyncrasies in

the individual correlations.

This paper presents a pedagogic version of the above extension. A crucial simplifying

assumption here is that any revisions of the sample standard deviations of returns for potential

improvements are based on the judgement of the �nancial analysts involved. Under such an

assumption, we can focus on shrinkage estimation of the individual correlations of returns,

without the encumbrance of the usual statistical issues pertaining to their estimation via the

corresponding sample variances and covariances as encountered previously in Kwan (2008).

As in Kwan (2011), Excel also plays an important pedagogic role in the current paper.

For students who are unfamiliar with computer programming in Visual Basic for Applications

(VBA), this paper illustrates, in a small scale example, an Excel-based computational approach

that does not require its use. For versatility in accommodating various numbers of securities

and return observations, this paper generates a user-de�ned Excel function for computing the

shrinkage intensity, with the corresponding code in VBA. Access to the function can also be

achieved via a keyboard shortcut, which will prompt the user for speci�c inputs as required for

its individual arguments. Either way, to access the function requires that the corresponding

Macro feature be enabled.

From a computational standpoint, shrinkage estimation with a constant correlation target

accommodates a zero correlation target as a special case. Thus, the above-mentioned Excel

function is coded in such a way that this special case is also covered. The choice between the
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two shrinkage targets is via one of the function�s arguments. Further, the current paper also

addresses the statistical issue of bias, as considered in Kwan (2008), for using sample correlations

to estimate the corresponding true but unknown correlations. The same Excel function allows

such bias to be either corrected or ignored at the discretion of the user. The choice is also via

one of the function�s arguments.

Given the above choices in the shrinkage target and in bias correction, there are four sets of

shrinkage results to compare, for a given set of securities and the corresponding return obser-

vations. To facilitate some meaningful comparisons, this paper uses actual stock return data,

instead of arti�cial data as in Kwan (2011). The full data set, which covers seven years of

monthly return observations of the current 30 Dow Jones stocks, from January 2010 to Decem-

ber 2016; is contained in one of the two Excel �les accompanying this paper.1 To accommodate

more readers, both Excel �les have been saved in the 1997-2003 version, which has .xls as the

extension of each �lename.

The example in the remaining Excel �le, which is for illustrating the computational details

with or without the use of VBA, is based only on �ve of the Dow Jones stocks and six monthly

return observations. Obviously, the number of observations involved is too low for any mean-

ingful comparisons of the four sets of shrinkage results. Instead, the comparisons are based on

the full set of Dow Jones stocks, with return observations ranging from 36 months to 84 months,

all ending at December 2016: The �rst-mentioned Excel �le, which contains the full data set,

also includes a VBA-only example based on the 30 Dow Jones stocks and a 36-month sample

period. Omitted from the �le are other VBA-only examples with longer sample periods, which

are similar from a computational standpoint.

The sample estimates as reported in this paper will show, in general, how the returns of major

U.S. stocks are correlated and how such estimates are a¤ected by the choice of the sample period.

Students will see how shrinkage estimation a¤ects the sample correlation matrix and whether

improving the shrinkage target, as is done in this paper, makes any di¤erence in the shrinkage

results. Students will also see whether ignoring the statistical issue of bias is consequential.

Further, given the available return observations in the �rst-mentioned Excel �le, it will be a

1The underlying daily closing stock prices and any dividend data were collected from the Yahoo! Finance
website (https://ca.�nance.yahoo.com/), by �rst entering each company�s ticker symbol for the search. Such
data were available under the �Historical Data�tab.
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good exercise for students to repeat the same computations for di¤erent sample periods. The

exercise will help them gain some valuable hands-on experience with shrinkage estimation.

The data set in the �rst-mentioned Excel �le accompanying this paper can easily be aug-

mented to include some other stocks and/or to lengthen the sample period. Thus, students

can also gain some hands-on experience in data collection for estimating the covariance matrix.

However, as the scope of this paper is con�ned to illustrating the statistical approach of shrink-

age estimation, whether the resulting correlation matrix will lead to meaningful improvements

in the portfolio selection results still depends on the quality of other input parameters, which

include a vector of expected returns and a vector of standard deviations or variances of returns.

The remainder of this paper is organized as follows: The analytical materials leading to the

determination of the shrinkage intensity for a constant correlation target and a zero correlation

target are presented in Sections 2 and 3, respectively. Section 4 �rst illustrates with a small

scale case the computations involved, including the generation of a user-de�ned Excel function

for computing the shrinkage intensity, as well as an approach not requiring the use of VBA.

The codes in VBA and a subroutine for use in the illustration can be found in either Excel

�le accompanying this paper. Section 4 then summarizes and discusses the various shrinkage

results, based on the full set of Dow Jones stocks and di¤erent sample periods. Section 5

provides some concluding remarks, as well as some suggestions for instructors.

2 Shrinkage Towards a Constant Correlation Target

This section, which is con�ned to shrinkage of the sample correlation matrix of returns towards

a constant correlation target, covers the corresponding analytical and statistical tasks in �ve

subsections. In the �rst subsection, we transform linearly the return observations to make the

resulting sample covariance and correlation matrices indistinguishable from each other. Such

transformations, which do not a¤ect the sample correlation matrix, are for analytical convenience

afterwards. In the second subsection, following Ledoit and Wolf (2003, 2004), we derive an

explicit expression of the shrinkage intensity based on minimization of the expected value of

a quadratic loss function. The third subsection shows how the shrinkage intensity can be

estimated by using the transformed observations. In the fourth subsection, we verify that the

estimated shrinkage intensity is always within its intended range. Finally, in the �fth subsection,
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we correct the statistical bias for using sample correlations to estimate the corresponding true

but unknown correlations, as mentioned brie�y in the introductory section.

2.1 Positive Linear Transformations of Return Observations

For an n-security case, letR1;R2; : : : ;Rn be the random returns of the individual securities. Let

also Ri1; Ri2; : : : ; RiT be the returns observed at times 1; 2; : : : ; T; respectively, for i = 1; 2; : : : ; n:

For each security i; the sample mean return and the sample variance of returns are

Ri =
1

T

XT

t=1
Rit (1)

and

s2i =
1

T � 1
XT

t=1
(Rit �Ri)

2; (2)

respectively, where si is the sample standard deviation of returns. The sample covariance of

returns between securities i and j; for i; j = 1; 2; : : : ; n; is

sij =
1

T � 1
XT

t=1
(Rit �Ri)(Rjt �Rj): (3)

It is implicit that

s2i = sii: (4)

The sample correlation of returns between securities i and j; for i; j = 1; 2; : : : ; n; is

rij =
sij
sisj

: (5)

Let us perform a positive linear transformation on each of the n random variables, by de�ning

Zi =
Ri �Ri

si
; for i = 1; 2; : : : ; n: (6)

We now have Zi1; Zi2; : : : ; ZiT ; instead of Ri1; Ri2; : : : ; RiT ; as the corresponding observed values

at times 1; 2; : : : ; T: With

Zit =
Rit �Ri

si
; for i = 1; 2; : : : ; n and t = 1; 2; : : : ; T; (7)

the sample mean and the sample variance of each Zi are

Zi =
1

T

XT

t=1
Zit =

1

T

XT

t=1

Rit �Ri

si

=
1

si

��
1

T

XT

t=1
Rit

�
�Ri

�
= 0 (8)
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and

dV ar(Zi) =
1

T � 1
XT

t=1
(Zit �Zi)

2

=
1

s2i

�
1

T � 1
XT

t=1
(Rit �Ri)

2

�
= 1; (9)

respectively. The sample covariance between Zi and Zj is

dCov(Zi;Zj) =
1

T � 1
XT

t=1
(Zit �Zi)(Zjt �Zj)

=
1

sisj

�
1

T � 1
XT

t=1
(Rit �Ri)(Rjt �Rj)

�
=

sij
sisj

= rij: (10)

Thus, such transformations do not change the sample correlation matrix of the n variables; in-

deed, the sample correlation betweenRi andRj; the sample correlation between Zi and Zj; and

the sample covariance between Zi and Zj; for i; j = 1; 2; : : : ; n and i 6= j; are indistinguishable.

2.2 Derivation of the Shrinkage Intensity

As both Zi and Zj have zero sample means, we can write

rij =
1

T � 1
XT

t=1
ZitZjt: (11)

There are n(n�1)=2 o¤-diagonal elements in the upper triangle of the sample correlation matrix.
Thus, the average of the sample correlations is

r =
2

n(n� 1)
Xn�1

i=1

Xn

j=i+1
rij: (12)

The true correlation between Ri and Rj; for i; j = 1; 2; : : : ; n and i 6= j; is unknown. Let us

denote it as �ij:

With � being the shrinkage intensity, the weight assigned to r; the departure of the resulting

correlation between Ri and Rj from the corresponding true correlation is �r + (1� �)rij � �ij:
Following Ledoit and Wolf (2004), we look for the value of � that minimizes the expected value

of a quadratic loss function,

L(�) = E
nXn�1

i=1

Xn

j=i+1
[�r + (1� �)rij � �ij]2

o
; (13)
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where E(�) is the expected value operator. Implicitly, the individual sample correlations and

their average are treated as random variables. Here, the double summation is over the n(n�1)=2
o¤-diagonal elements in the upper triangle of the correlation matrix to be estimated. As E(�)
is a linear operator, equation (13) is equivalent to

L(�) =
Xn�1

i=1

Xn

j=i+1
E
�
[�r + (1� �)rij � �ij]2

	
: (14)

Noting that E(x2) = V ar(x) + [E(x)]2; for any random variable x; we can write

L(�) =
Xn�1

i=1

Xn

j=i+1

n
V ar[�r + (1� �)rij � �ij] +

�
E[�r + (1� �)rij � �ij]

	2o
; (15)

which, upon simpli�cations, leads to

L(�) =
Xn�1

i=1

Xn

j=i+1

�
�2V ar(r) + (1� �)2V ar(rij) + 2�(1� �)Cov(r; rij)

+ [�E(r) + (1� �)E(rij)� �ij]2
	
: (16)

The optimal shrinkage intensity can be deduced from

dL(�)

d�
=

Xn�1

i=1

Xn

j=i+1
f2�V ar(r)� 2(1� �)V ar(rij) + 2(1� 2�)Cov(r; rij)

+ 2E(r � rij)[�E(r � rij) + E(rij)� �ij]
	

= 0: (17)

The result is

� =

Pn�1
i=1

Pn
j=i+1

�
V ar(rij)� Cov(r; rij)� E(r � rij)[E(rij)� �ij]

	Pn�1
i=1

Pn
j=i+1 fV ar(r) + V ar(rij)� 2Cov(r; rij) + [E(r � rij)]2g

: (18)

In view of equation (12), we can writeXn�1

i=1

Xn

j=i+1
V ar(r) =

n(n� 1)
2

V ar(r)

=
n(n� 1)

2

�
2

n(n� 1)

�2
V ar

�Xn�1

i=1

Xn

j=i+1
rij

�
(19)

=
2

n(n� 1)
Xn�1

i=1

Xn

j=i+1

Xn�1

k=1

Xn

`=k+1
Cov(rij; rk`): (20)

Further, asXn�1

i=1

Xn

j=i+1
Cov(r; rij) =

Xn�1

i=1

Xn

j=i+1
Cov

��
2

n(n� 1)
Xn�1

k=1

Xn

`=k+1
rk`

�
; rij

�
=

2

n(n� 1)
Xn�1

i=1

Xn

j=i+1

Xn�1

k=1

Xn

`=k+1
Cov(rij; rk`); (21)
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we con�rm that Xn�1

i=1

Xn

j=i+1
V ar(r) =

Xn�1

i=1

Xn

j=i+1
Cov(r; rij): (22)

Accordingly, equation (18) reduces to

� =

Pn�1
i=1

Pn
j=i+1

�
�ij � E(r � rij)[E(rij)� �ij]

	Pn�1
i=1

Pn
j=i+1 f�ij + [E(r � rij)]2g

; (23)

where

�ij = V ar(rij)�
2

n(n� 1)
Xn�1

k=1

Xn

`=k+1
Cov(rij; rk`): (24)

2.3 Estimations of Various Expected Values, Variances, and Covari-
ances

To compute the shrinkage intensity from equations (23) and (24), estimates of various expected

values, variances, and covariances, as well as approximations of the true but unknown correla-

tions, are required. Estimations of the variances and covariances involved � which draw on

Schäfer and Strimmer (2005) for �nite samples � can be explained by using familiar statistical

concepts. Thus, they are presented below �rst. However, to estimate the true but unknown

correlations without statistical bias is not as simple. To avoid unnecessary digressions, the cor-

responding material where the issue of bias is ignored is covered at the end of this subsection,

along with estimations of the remaining terms in equation (23).

2.3.1 Variances

To estimate V ar(rij); for i = 1; 2; : : : ; n � 1 and j = i + 1; i + 2; : : : ; n; let W ij = ZiZj: Let

also Wij1;Wij2; : : : ;WijT be the T observations of W ij: The sample mean of W ij in terms of

the T observations of Zi and Zjis

W ij =
1

T

XT

t=1
ZitZjt: (25)

Combining equations (11) and (25) leads to

rij =
T

T � 1W ij: (26)

Using dV ar(�) and dCov(�; �) for sample variances and covariances of the random variables

involved, respectively, we can write

dV ar(rij) = T 2

(T � 1)2
dV ar(W ij) (27)
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and

dV ar(W ij) = dV ar� 1
T

XT

t=1
Wijt

�
=
1

T 2
dCov �XT

t=1
Wijt;

XT

u=1
Wiju

�
=

1

T 2

XT

t=1

XT

u=1

dCov (Wijt;Wiju) : (28)

With Wij1;Wij2; : : : ;WijT being T random draws from the probability distribution ofW ij; it is

implicit that dCov (Wijt;Wijt) = dV ar(W ij); for t = 1; 2; : : : ; T; (29)

and, in the absence of serial correlations,

dCov (Wijt;Wiju) = 0; for t 6= u: (30)

It follows directly from

dV ar(W ij) =
1

T 2

h
T dV ar(W ij)

i
=
1

T
dV ar(W ij) (31)

that dV ar(rij) = T

(T � 1)2
dV ar(W ij): (32)

As dV ar(W ij) =
1

T � 1
XT

t=1
(Wijt �W ij)

2; (33)

we can estimate each V ar(rij) in equation (24) with

dV ar(rij) = T

(T � 1)3
XT

t=1
(Wijt �W ij)

2: (34)

2.3.2 Covariances

To estimate each Cov(rij; rk`) in equation (24), we also letW k` = ZkZ`; for k = 1; 2; : : : ; n� 1
and ` = k + 1; k + 2; : : : ; n: With Wk`1;Wk`2; : : : ;Wk`T being the T observations of W k`; the

corresponding sample mean is

W k` =
1

T

XT

t=1
ZktZ`t: (35)

It follows from equation (26) that

dCov(rij; rk`) = T 2

(T � 1)2
dCov(W ij;W k`); (36)
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where

dCov(W ij;W k`) = dCov� 1
T

XT

t=1
Wijt;

1

T

XT

u=1
Wk`u

�
=

1

T 2

XT

t=1

XT

u=1

dCov(Wijt;Wk`u): (37)

As Wij1;Wij2; : : : ;WijT and Wk`1;Wk`2; : : : ;Wk`T are random draws from the probability

distributions ofW ij andW k`; respectively, it is implicit that

dCov (Wijt;Wk`t) = dCov(W ij;W k`); for t = 1; 2; : : : ; T; (38)

and, in the absence of serial correlations,

dCov (Wijt;Wk`u) = 0; for t 6= u: (39)

Thus, equation (36) can be written as

dCov(rij; rk`) = T 2

(T � 1)2

�
T

T 2
dCov(W ij;W k`)

�
=

T

(T � 1)2
dCov(W ij;W k`): (40)

Once dCov(W ij;W k`) is expressed explicitly in terms of the observations, equation (40) becomes

dCov(rij; rk`) = T

(T � 1)3
XT

t=1
(Wijt �W ij)(Wk`t �W k`): (41)

2.3.3 Expected Values

To get equations (23) and (24) ready for use, we also need various sample means for the corre-

sponding expected values, as well as an estimate of each true but unknown correlation �ij; for

i = 1; 2; : : : ; n�1 and j = i+1; i+2; : : : ; n: Let us start with the expected value E(rij): Given
equation (26), whereW ij is already a sample mean, the sample mean of rij is

rij =
T

T � 1W ij; (42)

As rij = rij; we can directly substitute rij for E(rij) when using equations (23) and (24) to

compute the optimal shrinkage intensity. With r being the average of the n(n�1)=2 individual
sample correlations, we can also directly substitute r for E(r) there as well.

To estimate each unknown �ij; for i 6= j; is not a simple task. This is because, for a �nite

sample, E(rij) is a biased estimator of �ij: The nature of the bias is that the sample correlation
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tends to understate the true correlation in magnitude. The bias becomes smaller, if a larger

sample of return observations is used for the estimation.2 For analytical convenience, we use

E(rij) as an estimator of �ij for now. Bias correction will be considered in the �nal subsection

below.

With E(rij)� �ij being zero, equation (23) reduces to

� =

Pn�1
i=1

Pn
j=i+1 �ijPn�1

i=1

Pn
j=i+1 f�ij + [E(r � rij)]2g

: (43)

As we can use rij and r for E(rij) and E(r); respectively, the estimated � is given by

b� = Pn�1
i=1

Pn
j=i+1 b�ijPn�1

i=1

Pn
j=i+1[b�ij + (r � rij)2] ; (44)

where b�ij = dV ar(rij)� 2

n(n� 1)
Xn�1

k=1

Xn

`=k+1

dCov(rij; rk`): (45)

Here, rij; r; dV ar(rij); and dCov(rij; rk`) can be computed by using equations (11), (12), (34),
respectively.

2.4 Acceptability of the Estimated Shrinkage Intensity

For the shrinkage results based on equations (44) and (45) to be acceptable, the condition of

0 < b� < 1 must be satis�ed. To satisfy such a condition, in turn, requires thatPn�1
i=1

Pn
j=i+1 b�ij

be positive. The sign of this double summation is the same as that of

n(n� 1)
2

Xn�1

i=1

Xn

j=i+1
b�ij

=
n(n� 1)

2

Xn�1

i=1

Xn

j=i+1

dV ar(rij)�Xn�1

i=1

Xn

j=i+1

Xn�1

k=1

Xn

`=k+1

dCov(rij; rk`): (46)
For ease of exposition below, let

A =
n(n� 1)

2

Xn�1

i=1

Xn

j=i+1

dV ar(rij) (47)

and

B =
Xn�1

i=1

Xn

j=i+1

Xn�1

k=1

Xn

`=k+1

dCov(rij; rk`): (48)

2For the purpose of deriving equation (23), whether there is any statistical bias in each sample correlation
rij as an estimator of the true but unknown correlation �ij is not an issue. It becomes an issue, only when the
expected value of each rij is used for the corresponding �ij in the implementation of equation (23). Thus, this is
the place, not any earlier, to consider the issue.
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The double summation in A and the quadruple summation in B cover, in total, n(n�1)=2 terms
and [n(n� 1)=2]2 terms, respectively.
We provide below a direct proof of A � B > 0: Before proceeding, notice that, due to the

presence of the multiplicative factor n(n� 1)=2; each of the sample variance terms in A appears
n(n� 1)=2 times. Notice also that, as dCov(rij; rij) = dV ar(rij); n(n� 1)=2 of the [n(n� 1)=2]2
terms in B; where both k = i and ` = j; are sample variances. As A and B have the same

number of additive terms, the proof below is based on comparisons between individual pairs of

terms from each sum of terms.

For any pair of dV ar(rij) and dV ar(rk`); as�qdV ar(rij)�qdV ar(rk`)�2 � 0; (49)

we have dV ar(rij) + dV ar(rk`) � 2qdV ar(rij)qdV ar(rk`): (50)

Provided that the two random variables rij and rk` are not perfectly and positively correlated,

we also have qdV ar(rij)qdV ar(rk`) > dCov(rij; rk`): (51)

which leads to dV ar(rij) + dV ar(rk`) > 2dCov(rij; rk`) (52)

or, equivalently, dV ar(rij) + dV ar(rk`) > dCov(rij; rk`) + dCov(rk`; rij): (53)

It is only when both k = i and ` = j that we have equality of the two sides.

After netting out the n(n � 1)=2 sample variance terms in A and B where both k = i and

` = j; we have

1

2

(�
n(n� 1)

2

�2
� n(n� 1)

2

)
=
(n+ 1)(n)(n� 1)(n� 2)

8
(54)

pairs of sample variances in A left, for comparisons with the corresponding pairs of sample

covariances in B: Given inequality (53), the positive sign of A � B is assured. To illustrate,

let us consider the case where n = 4: In this case, as n(n � 1)=2 = 6; [n(n � 1)=2]2 = 36; and
(n+ 1)(n)(n� 1)(n� 2)=8 = 15; we can write, explicitly,

A = 6dV ar(r12) + 6dV ar(r13) + 6dV ar(r14) + 6dV ar(r23) + 6dV ar(r24) + 6dV ar(r34) (55)
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and

B = dV ar(r12) + dCov(r12; r13) + dCov(r12; r14) + dCov(r12; r23) + dCov(r12; r24) + dCov(r12; r34)
+dCov(r13; r12) + dV ar(r13) + dCov(r13; r14) + dCov(r13; r23) + dCov(r13; r24) + dCov(r13; r34)
+dCov(r14; r12) + dCov(r14; r13) + dV ar(r14) + dV ar(r14; r23) + dCov(r14; r24) + dCov(r14; r34)
+dCov(r23; r12) + dCov(r23; r13) + dCov(r23; r14) + dV ar(r23) + dCov(r23; r24) + dCov(r23; r34)
+dCov(r24; r12) + dCov(r24; r13) + dCov(r24; r14) + dCov(r24; r23) + dV ar(r24) + dCov(r24; r34)
+dCov(r34; r12) + dCov(r34; r13) + dCov(r34; r14) + dCov(r34; r23) + dCov(r34; r24) + dV ar(r34):

(56)

After netting out the 6 sample variance terms in A and B; we have 15 pairs of sample variances in

A and the corresponding 15 pairs of sample covariances in B for comparisons. Given inequality

(53), it is straightforward to establish that A�B > 0:

2.5 Bias Correction

Even under the stationarity assumption of security return distributions, to estimate �ij for i 6= j
without relying on asymptotic properties is not a simple task. This is because E(rij) is a biased

estimator of �ij: [See, for example, Zimmerman, Zumbo, and Williams (2003).] The nature of

the bias is that the sample correlation tends to understate the true correlation in magnitude.

The bias attenuates as the sample period lengthens. However, the use of a longer sample

period is susceptible to violations of the stationarity assumption. As the analytical task to �nd

an unbiased estimator is beyond the scope of this paper, only an approximate result from the

statistics literature is duplicated here instead.

As reported in Zimmerman, Zumbo, and Williams (2003), the following estimator of �ij; at-

tributed to Olkin and Pratt (1958), is able to eliminate most of the bias in the sample correlation

rij of normally distributed variables i and j:

b�ij = rij �1 + 1� r2ij
2(T � 3)

�
: (57)

With the bias in the estimation of �ij accounted for, the estimated � based on equation (23) is

given by b� = Pn�1
i=1

Pn
j=i+1(b�ij � b
ij)Pn�1

i=1

Pn
j=i+1[b�ij + (r � rij)2] : (58)
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Here, b
ij = (rij � r) �rij(1� r2ij)2(T � 3)

�
(59)

is the estimated value of E(r � rij)[E(rij)� �ij] in equation (23).
Does bias correction lead to a lower or higher shrinkage intensity? The answer hinges on

the sign of the sum
Pn�1

i=1

Pn
j=i+1 b
ij or, equivalently, the sign of the sumPn�1

i=1

Pn
j=i+1[rij(1�

r2ij)](rij � r): The latter sum can be viewed as a weighted sum of the n(n � 1)=2 values of
(rij � r); for i = 1; 2; : : : ; n � 1 and j = i + 1; i + 2; : : : ; n; with the corresponding weight for

each (rij � r) term provided by rij(1 � r2ij): The weighted average of the n(n � 1)=2 values of
(rij � r) is the weighted sum divided by the sum of the n(n� 1)=2 weights. Although both the
sum

Pn�1
i=1

Pn
j=i+1(rij � r) and the average, which is the sum divided by n(n� 1)=2; are zeros,

the sign of the weighted sum and the sign of the weighted average will depend on the weights

involved.

To �nd the sign of the weighted sum, let us �rst sort the n(n � 1)=2 individual values of
rij in an ascending order. Notice that sorting rij is equivalent to sorting the corresponding

values of (rij � r): If there is any negative value of rij; as r is positive, the corresponding

[rij(1 � r2ij)](rij � rij) term will always be positive, thus contributing to the attainment of a

positive weighted sum. Strictly zero values of rij will have no contributions to the weighted

sum. The eventual sign of the weighted sum still depends on how the corresponding weight

rij(1 � r2ij) progresses from one sorted value of (rij � r) to the next. If the sorted values of

rij correspond to progressively higher weights, then the weighted sum will be positive. Here is

why:

Suppose for now that none of the values of rij are negative. As the sum
Pn�1

i=1

Pn
j=i+1(rij�r)

is zero, the average of the n(n � 1)=2 values of (rij � r) will also be zero. If it turns out that

rij(1�r2ij) always increases from one sorted value of (rij�r) to the next, the weighted average of
the n(n�1)=2 terms of (rij� r) will be greater than the average. In this scenario, the weighted
average will be positive. Then, the weighted sum, which is

Pn�1
i=1

Pn
j=i+1[rij(1 � r2ij)](rij � r);

will be positive as well.

Now, suppose instead that there are some negative values of rij:As the sum
Pn�1

i=1

Pn
j=i+1(rij�

r) is zero, the partial sum where each rij is positive will be positive. So will the average of the

terms involved in the partial sum. For the partial sum, each weight as provided by rij(1� r2ij)
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is positive. In the above-mentioned scenario, the weighted average of the terms involved will be

greater than the average. As the average is positive, the weighted average will also be positive.

Then, so will the part of the sum
Pn�1

i=1

Pn
j=i+1[rij(1� r2ij)](rij� r) where rij is positive. As the

part of the sum where rij is negative is positive, the sum of the two parts will be positive too.

To establish a su¢ cient condition of progressively higher weights for the sorted values of rij;

let f(x) = x(1� x2) be a continuous function of x; de�ned for 0 � x < 1: The �rst derivative
of the function is positive for 0 � x <

p
3=3 (� 0:5774); is zero for x =

p
3=3; and is negative

for x >
p
3=3: For a set of values of x matching the given set of sorted values of rij; the

corresponding values of rij(1 � r2ij) will increase from one sorted value of (rij � r) to the next,
provided that 0 � rij <

p
3=3: A direct implication is that, if none of the n(n � 1)=2 values

of rij are greater than
p
3=3; as the weighted sum

Pn�1
i=1

Pn
j=i+1[rij(1� r2ij)](rij � r) is positive,

bias correction will lead to a lower shrinkage intensity.

Does the above su¢ cient condition always hold? For implementing a portfolio selection

model, it is good practice to avoid considering, for the same portfolio, any securities whose

returns are highly correlated, as the e¤ectiveness of portfolio diversi�cation will be weakened by

the presence of such securities. Given this practice, sample correlations of returns for portfolio

decisions are mostly likely lower than
p
3=3; but higher sample correlations are still possible.

As long as the sample correlations involved are predominantly lower than
p
3=3; it is unlikely

that the outliers, which cause violations of the su¢ cient condition, will lead to a sign reversal of

the weighted sum
Pn�1

i=1

Pn
j=i+1[rij(1� r2ij)](rij� r): However, whenever the su¢ cient condition

is violated, it is advisable to check the impact of bias correction on the shrinkage results.

3 Shrinkage Towards a Zero Correlation Target

For a zero correlation target, which is an identity matrix, the corresponding analytical materials

also start with positive linear transformations of the return observations. With r substituted

by zero, equation (13) becomes

L(�) = E
nXn�1

i=1

Xn

j=i+1
[(1� �)rij � �ij]2

o
=
Xn�1

i=1

Xn

j=i+1
E
�
[(1� �)rij � �ij]2

	
: (60)

Noting again that E(x2) = V ar(x) + [E(x)]2; for any random variable x; we can write

L(�) =
Xn�1

i=1

Xn

j=i+1

n
V ar[(1� �)rij � �ij] +

�
E[(1� �)rij � �ij]

	2o
; (61)
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which, upon simpli�cations, leads to

L(�) =
Xn�1

i=1

Xn

j=i+1

�
(1� �)2V ar(rij) + [(1� �)E(rij)� �ij]2

	
: (62)

The optimal shrinkage intensity can be deduced from

dL(�)

d�
= �2

Xn�1

i=1

Xn

j=i+1

�
(1� �)V ar(rij) + [(1� �)E(rij)� �ij]E(rij)

	
= 0: (63)

The result is

� =

Pn�1
i=1

Pn
j=i+1

�
V ar(rij) + E(rij)[E(rij)� �ij]

	Pn�1
i=1

Pn
j=i+1 fV ar(rij) + [E(rij)]2g

: (64)

Equation (64) is much simpler than equations (23) and (24), as no more covariance terms

between any sample correlations are involved here.

If the bias in the estimation of �ij with E(rij) is ignored, equation (64) reduces to

� =

Pn�1
i=1

Pn
j=i+1 V ar(rij)Pn�1

i=1

Pn
j=i+1 fV ar(rij) + [E(rij)]2g

; (65)

which implies that 0 < � < 1; as expected. The estimated shrinkage intensity is

b� = Pn�1
i=1

Pn
j=i+1

dV ar(rij)Pn�1
i=1

Pn
j=i+1

hdV ar(rij) + r2iji ; (66)

where dV ar(rij) is estimated by using equation (34). If bias correction is based on equation (57),
we have

b� = Pn�1
i=1

Pn
j=i+1

hdV ar(rij)� b
ijiPn�1
i=1

Pn
j=i+1

hdV ar(rij) + r2iji (67)

instead, where b
ij is also given by equation (59).
From a computational standpoint, equation (58) accommodates equation (44) as a special

case, by substituting each b
ij term there with a zero. Likewise, equation (67) accommodates

equation (66) as a special case, with the same substitutions. Equation (58) also accommodates

equation (67) as a special case, by substituting the random variable r there with a zero (which

is non-random). This substitution leads to b�ij = dV ar(rij) in equation (58). In turn, equation
(44) accommodates equation (66) as a special case, by substituting the random variable r there

with a zero. All together, based on the analytical materials in this paper, we have four di¤erent

ways to shrink the sample correlation matrix, as there are two choices between shrinkage targets

and two choices regarding bias correction.
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4 An Excel Illustration

This section starts with a small scale example based on a small subset of the current Dow Jones

stocks and a short sample period. The example is intended to provide an Excel illustration of the

above-mentioned four di¤erent ways to shrink the sample correlation matrix of returns. From

a computational standpoint, there are three approaches to perform the same task. Speci�cally,

they include an approach not involving VBA, an approaches requiring a user-de�ned Excel

function coded in VBA, and a variation of the latter approach, which uses an Excel Macro to

prompt the user for inputs, instead of entering directly the set of arguments for the same Excel

function.

This section then uses the two VBA-based approaches to produce shrinkage results for the

current 30 Dow Jones stocks. The sample periods, all ending at December 2016, include T = 36;

48; 60; 72; and 84 months (ranging from three to seven years). By covering such sample periods,

we illustrate how the choice of the length of a sample period a¤ects the shrinkage results. The

same illustration will also give students a good idea of how the returns of major U.S. stocks are

correlated, how the choice of a shrinkage target a¤ects the end results, and to what extent is

bias correction relevant in practice.

4.1 A Small Scale Example

Figure 1, which is based on one of the two Excel �les accompanying this paper, illustrates the

computations involved in Sections 2 and 3, by using an example where n = 5 and T = 6: The

�ve Dow Jones stocks in the illustration are Apple (AAPL), American Express (AXP), Cisco

Systems (CISO), Proctor & Gamble (PG), and Visa (V). The six-month sample period is from

July to December 2016.

All formulas pertaining to the computations in Figure 1 can be found in the corresponding

Excel �le, and thus only some selected formulas are explicitly described below. The monthly

return observations for this small subset of Dow Jones stocks are shown in B3:F8, with the

corresponding ticker symbols and dates indicated in B2:F2 and A3:A8, respectively. As the six-

month sample period is obviously too short for the corresponding shrinkage results to be mean-

ingful, its use is primarily for illustrating the computations involved. Notice that the monthly

return observations in B3:F8 are displayed in a reverse chronological order, corresponding to
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Figure 1:   An Excel Illustration of the Computations Involved in Shrinkage of 

the Sample Correlation Matrix Towards a Constant Correlation Target or a Zero 

Correlation Target, with or without Bias Correction
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Figure 1:   An Excel Illustration of the Computations Involved in Shrinkage of 

the Sample Correlation Matrix Towards a Constant Correlation Target or a Zero 

Correlation Target, with or without Bias Correction (Continued)
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Figure 1:   An Excel Illustration of the Computations Involved in Shrinkage of 

the Sample Correlation Matrix Towards a Constant Correlation Target or a Zero 

Correlation Target, with or without Bias Correction (Continued)
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T = 6; 5; 4; : : : ; 1:

The �rst step of the computational task is to transform the return observations, so that

the transformed observations for each stock will have a zero mean and a unit standard devia-

tion. The transformed observations are displayed in B15:F20. The sample means and standard

deviations before and after the transformations are displayed in B10:F11 and B22:F23, respec-

tively. The transformed observations in B15:F20 are then used directly to produce the sample

correlation matrix, as displayed in B27:F31.

For computational convenience, two Excel functions for matrix operations (MMULT and

TRANSPOSE) are nested, so that the transpose of the 6� 5 matrix in B15:F20 can be multi-
plied to the matrix itself to produce a 5�5 matrix. Speci�cally, after selecting the block of cells
B27:F31 and entering the formula =MMULT(TRANSPOSE(B15:F20),B15:F20)/(COUNT(B15:

B20)-1), which is based on equation (11), we must press the Shift+Ctrl+Enter keys together

to obtain a 5 � 5 sample correlation matrix of returns. Here, the use of function COUNT is

for providing the number of return observations. The average of the sample correlations, as

shown in F32, is computed as the sum of the 25 cells in B27:F31 net of the sum of the diagonal

elements (which is 5); divided by the total number of o¤-diagonal elements (which is 20): Notice

that this approach is more convenient than taking the average of the 10 elements in the upper

triangle of the 5� 5 sample correlation matrix.
Three alternative approaches are used to compute the shrinkage intensity. The �rst approach

does not require the use of VBA. The two remaining approaches do; they di¤er in that one of

them computes the shrinkage intensity directly via a user-de�ned function, called SHRINK, and

the other one uses a Macro to prompt the user for inputs. Regardless of the approach involved,

the shrinkage intensity is computed in four di¤erent ways, as described in the �nal paragraph

of Section 3. The computed values of the shrinkage intensity based on the non-VBA approach

are displayed in B39, B41, B45, and B47. These values correspond to the four cases where a

constant correlation target or a zero correlation target is used, with or without bias correction

in each case. The computed values based on the two VBA approaches are displayed in the

corresponding cells in columns D and F.

As expected, the results from the three alternative approaches are consistent with each other.

The post-shrinkage correlation matrices based on the four computed values of shrinkage intensity

are displayed in B52:F56, B61:F65, B70:F74, and B79:F83. The corresponding post-shrinkage
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average correlations are displayed in F57, F66, F75, and F84. To show how di¤erent values of

the shrinkage intensity can be reached, let us start with the non-VBA approach in the following.

For n = 5; there are n(n � 1)=2 = 10 o¤-diagonal elements in the upper triangle of the

correlation matrix. Thus, the double summation
Pn�1

i=1

Pn
j=i+1

dV ar(rij) covers a total of 10
terms, for (i; j) = (1; 2); (1; 3); (1; 4); (1; 5); (2; 3); (2; 4); (2; 5); (3; 4); (3; 5); and (4; 5): For

each pair of i and j; we compute dV ar(rij) by using equation (34). The 10 computed values

of
PT

t=1(Wijt �W ij)
2; where T = 6; are displayed in I10:R10. Their sum, multiplied by

T=(T � 1)3 = 6=53; is
Pn�1

i=1

Pn
j=i+1

dV ar(rij); the result is displayed in I13.
The sum

P6
t=1(Wijt�W ij)

2 for each pair of i and j can be computed directly by using a cell

formula. We can either nest the Excel functions MMULT and TRANSPOSE for matrix oper-

ations or use the Excel function SUM for the sum of products. Let us use (i; j) = (1; 2) for an

illustration. The formula for I10 is either =MMULT(TRANSPOSE($B$15:$B$20*C$15:C$20-

$K$5/$K$2*C$27),$B$15:$B$20*C$15:C$20-$K$5/$K$2*C$27) or =SUM(($B$15:$B$20*C$15:

C$20-$K$5/$K$2*C$27)*($B$15:$B$20*C$15:C$20-$K$5/$K$2*C$27)). For either formula to

work as intended, the Shift+Ctrl+Enter keys must be pressed together. The part ($B$15:$B$20*

C$15:C$20-$K$5/$K$2*C$27) in either formula is to generate directly a column of numbers cor-

responding to W12t �W 12; for t = 1; 2; : : : ; 6; where W 12 = r12 � 5=6 according to equation
(26). The di¤erence in the two formulas is in how

P6
t=1(W12t �W 12)

2 is computed.

For a constant correlation target, the quadruple summation
Pn�1

i=1

Pn
j=i+1

Pn�1
k=1

Pn
`=k+1

dCov
(rij; rk`) consists of 100 terms, with (i; j) = (1; 2); (1; 3); (1; 4); (1; 5); (2; 3); (2; 4); (2; 5); (3; 4);

(3; 5); and (4; 5); and with the same coverage for (k; `): To use equation (41) for computingdCov(rij; rk`); the corresponding sumP6
t=1(Wijt �W ij)(Wk`t �W k`) for each case of (i; j) and

(k; `) is computed �rst. The 100 sums are displayed in the 10� 10 block I17:R26.
To illustrate the computations involved, let us consider the case where (i; j) = (1; 2) and

(k; `) = (4; 5); as displayed in R17. The cell formula there can be either =MMULT(TRANSPOSE

($B$15:$B$20*$C$15:$C$20-$K$5/$K$2*$C$27),$E$15:$E$20*F$15:F$20-$K$5/$K$2*F$30) or

=SUM(($B$15:$B$20*$C$15:$C$20-$K$5/$K$2*$C$27)*($E$15:$E$20*F$15:F$20-$K$5/$K$2

*F$30)), depending on how
P6

t=1(W12t�W 12)(W45t�W 45) is computed. Analogous to the sam-

ple variance in I10, the parts ($B$15:$B$20*$C$15:$C$20-$K$5/$K$2*$C$27) and ($E$15:$E$20

*F$15:F$20-$K$5/$K$2*F$30) in either formula in R17 are for generating the columns of num-

bers (W12t�W 12) and (W45t�W 45); respectively, for t = 1; 2; : : : ; 6: The sum of the 100 terms
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in I17:R26, multiplied by T=(T � 1)3 = 6=53; is
Pn�1

i=1

Pn
j=i+1

Pn�1
k=1

Pn
`=k+1

dCov (rij; rk`); the
result is displayed in I29. Notice that, for a zero correlation target, the computations leading

to this quadruple summation are unnecessary.

To compute the four values of b�; for the two alternative shrinkage targets with or without
bias correction in each case, values of

Pn�1
i=1

Pn
j=i+1(r�rij)2;

Pn�1
i=1

Pn
j=i+1 r

2
ij;
Pn�1

i=1

Pn
j=i+1(r�

rij)(rij)(1� r2ij)=[2(T � 3)]; and �
Pn�1

i=1

Pn
j=i+1 r

2
ij(1� r2ij)=[2(T � 3)] are also required. These

four double summations, for n = 5; can be computed by �rst setting up the following three rows

of numbers: rij; (r� rij); and rij(1� r2ij)=[2(T � 3)] for the 10 cases of (i; j) as described earlier.
They are displayed in I33:R35. The corresponding values of the four double summations are

displayed in K38, N38, K41, and N41.

These values can be reached by either nesting the Excel functions MMULT and TRANSPOSE

for matrix operations or using the Excel function SUM for the sum of products as described

earlier. For example, to compute
Pn�1

i=1

Pn
j=i+1(r�rij)(rij)(1�r2ij)=[2(T�3)] in K41, the formula

can be either =MMULT(I34:R34,TRANSPOSE(I35:R35)) or =SUM(I34:R34*I35:R35). The

computed values of b� based on equations (44), (58), (66), and (67) are displayed in B41, B39,
B47, and B45, respectively. This step completes the illustration of the non-VBA approach.

A crucial point in the determination of the shrinkage intensity is that, for a �nite sample

of return observations for n securities, each of the n(n� 1)=2 sample correlations in the upper
triangle of the sample correlation matrix, which is subject to estimation error, is in itself a

random variable from a statistical standpoint. For a zero correlation target, the determination

of the shrinkage intensity requires that the n(n�1)=2 sample variances of such random variables
be computed. For a constant correlation target, however, the corresponding task requires also

that the [n(n� 1)=2]2 sample covariances between such random variables be computed.

In the former case, the computational task can be achieved in three nested loops, with the

innermost loop providing the sample variance for each combination of securities as speci�ed

in the remaining loops. In the latter case, �ve nested loops are also required, as four loops

are needed to select pairs of random variables for sample covariance computations. The VBA

coding here has captured such features.

To compute b� with a VBA approach, we can, in principle, use directly the return observations
in B3:F8 as the only input. However, the VBA coding is much less tedious, if we use instead,

as inputs, both the transformed observations in B15:F20 and the sample correlation matrix in
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B27:F31, as well as the user�s choice of the shrinkage target and of bias correction. The VBA

coding is primarily for the most tedious case, where both shrinkage of the sample correlation

matrix is towards the constant correlation target and the bias is corrected. The corresponding

results for the three remaining cases where a zero correlation target is used and/or the bias

is ignored can be reached, by bypassing any tedious but unnecessary computations and by

multiplying the less tedious but unnecessary computational components with zeros.

The VBA code for the user-de�ned function SHRINK can be accessed by selecting the menu

item Visual Basic under the Developer tab. The function has four arguments, with the �rst

two arguments being the locations of the cells for the transformed observations and the sample

covariance matrix, and with each of the remaining arguments being a binary (0; 1) choice in

how b� is computed. Among the four cells in D39, D41, D45, and D47, the formula in D39,

for example, which is =SHRINK(B15:F20,B27:F31,1,1), indicates that a constant correlation

target is used and that bias is corrected. Any changes to the binary codes in the third and

fourth arguments will lead to changes in how b� is computed, and the corresponding results are
displayed in D41, D45, and D47.

A variant of the above approach, which requires the user-de�ned function SHRINK, is to use

an Excel Macro to prompt the user for the four arguments of the function. The VBA code is

listed under the subroutine �Sub ViaFunction().� The Macro has been set up for the keyboard

shortcut Ctrl+s. If the shortcut key is lost, it can easily be reinstated by selecting the menu

item Macro under the Developer tab and entering the shortcut key again in Options.

Once the keys Ctrl+s are pressed, the user is prompted the following, which is the �rst of

the �ve prompts: �Select the Cells Containing All Transformed Observations.� The response

ought to be B15:F20. The user is then prompted the following: �Select the Cells Containing

the Sample Correlation Matrix.� The response ought to be B27:F31. The next two prompts,

�Shrinkage Target? 1 for Constant Correlation Target; 0 for Zero Correlation Target�and �Bias

Correction? 1 for Yes; 0 for No,�require a binary response in each case. Finally, the user is

prompted the following: �Select the Cell for Displaying the Output.� For example, if the

responses to the third and fourth prompts are both 1; then the response to the �nal prompt is

F39. Other responses to the last three of the �ve prompts correspond to the displays in F41,

F45, and F47.
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4.2 Shrinkage Results Based on the Current 30 Dow Jones Stocks

We now turn our attention to shrinkage estimation of the 30� 30 correlation matrix of returns.
It is for the full set of Dow Jones stocks and for di¤erent lengths of the sample period, ranging

from T = 36 to T = 84 at 12-month intervals, all having December 2016 as the �nal month

of return observations. Table 1 summarizes the pre-shrinkage and post-shrinkage results. As

indicated in the introductory section, the choice of the length of a sample period is often a

trade-o¤ between satisfying the stationarity assumption of the joint probability distribution of

returns and reducing the estimation errors. By estimating the correlation matrix with past

return observations, we implicitly accept the stationarity assumption, even for a sample period

that is as lengthy as 84 months. No attempt is made here to establish the optimal length of a

sample period from a statistical standpoint.

Table 1: A Summary of Pre-Shrinkage and Post-Shrinkage Results for the Current

30 Dow Jones Stocks Based on Di¤erent Numbers of Monthly Return Observations

# of Monthly Return Observations 36 48 60 72 84
(A) Sample Correlations
Average 0:3391 0:3259 0:3079 0:3202 0:3564
Maximum 0:8957 0:8805 0:8653 0:8669 0:8523
Minimum �0:2229 �0:1392 �0:2173 �0:1425 �0:0452
# of Sample Correlations Above

p
3=3 33 25 16 25 30

Percentage (out of 435) 7:59% 5:75% 3:68% 5:75% 6:90%
# of Negative Sample Correlations 22 17 24 18 1
Percentage (out of 435) 5:06% 3:91% 5:52% 4:14% 0:23%

(B) Estimated Shrinkage Intensity
Constant Correlation Target
Bias Corrected 0:4654 0:4249 0:3702 0:3279 0:3269
Bias Ignored 0:4703 0:4288 0:3739 0:3309 0:3291

Zero Correlation Target
Bias Corrected 0:1957 0:1606 0:1432 0:1152 0:0856
Bias Ignored 0:2048 0:1677 0:1491 0:1202 0:0899

(C) Post-Shrinkage Average Correlation
Constant Correlation Target
Bias Corrected 0:3391 0:3259 0:3079 0:3202 0:3564
Bias Ignored 0:3391 0:3259 0:3079 0:3202 0:3564

Zero Correlation Target
Bias Corrected 0:2727 0:2736 0:2638 0:2833 0:3259
Bias Ignored 0:2696 0:2713 0:2620 0:2817 0:3244
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4.2.1 Panel (A): Sample Correlations

Table 1 has three panels. As shown in Panel (A), the average sample correlations (r) for

T = 36; 48; 60; 72; and 84 are between 0:3079 and 0:3564; with the lowest and highest averages

corresponding to T = 60 and 84; respectively. Among the �ve overlapping sample periods,

the range of sample correlations for T = 36; from �0:2229 to 0:8957; is the widest; in contrast,
the corresponding range for T = 84; from �0:0452 to 0:8523; is the narrowest. While the

highest sample correlations, which range from 0:8523 to 0:8957; are all between Goldman Sachs

(GS) and JPMorgan Chase (JPM), the lowest sample correlations, which range from �0:0452
to �0:2229; are between various other companies.
Both the number of sample correlations exceeding

p
3=3 and the number of negative sample

correlations, among the 435 o¤-diagonal elements in the upper triangle of the 30�30 correlation
matrix � which are relevant in determining how bias correction a¤ects the shrinkage results, as

explained in Subsection 2.5 � are also included in Panel (A). So are the corresponding �gures

in percentage terms. Only a small number of the sample correlations (for no more than 7:59% of

the 435 elements) is above the
p
3=3 threshold, for any length of the sample period considered.

For T = 36 to T = 72; there are also some comparable numbers of negative sample correla-

tions. As there are many more sample correlations that are below the
p
3=3 threshold, we can

safely expect bias correction to have a net negative e¤ect on the shrinkage intensity, in view of

the explanation in Subsection 2.5. Indeed, the shrinkage results for either a constant correlation

target or a zero correlation target, as shown in Panel (B), do con�rm this negative e¤ect of bias

correction.

4.2.2 Panel (B): Estimated Shrinkage Intensity

Panel (B) also shows that, for either shrinkage target with or without bias correction, an in-

crease in the length of the sample period (T ) always corresponds to a decrease in the estimated

shrinkage intensity (b�): While the e¤ect of bias correction on b� is small, the corresponding
e¤ect of the choice of the shrinkage target is far more substantive. With bias corrected, b� for a
constant correlation target decreases from 0:4654 to 0:3269; as T increases from 36 to 84: For

a zero correlation target, the corresponding decrease in b� is from 0:1957 to 0:0856 instead.

In the following, we �rst explain why b� decreases with increasing T: To explain why b� is
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higher for a constant correlation target than for a zero correlation target requires a discussion

of the results in Panel (C). Thus, the latter explanation will be provided later. To explain

why b� decreases with increasing T; a key point is that, as T increases, the individual sample
correlations tend to be closer to the corresponding true but unknown correlations. Intuitively,

as T increases, the need for quality improvements in the individual sample correlations from

shrinkage will lessen, thus resulting in progressively lower values of b�:
Here is a more detailed explanation based on the analytical materials in Sections 2 and 3:

For ease of exposition, we start with the case where a zero correlation target is used. As the

e¤ect of bias correction on the shrinkage results tends to be marginal, the corresponding detailed

explanation is omitted. Under the stationarity assumption of the joint probability distribution

of returns, increases in T are expected to cause each dV ar(W ij); for i = 1; 2; : : : ; n � 1 and
j = i+1; i+2; : : : ; n; to vary in a less drastic manner, when compared with what such increases

will a¤ect the corresponding dV ar(rij): This is all because of the multiplicative factor T=(T �1)2
that directly connects dV ar(W ij) and dV ar(rij) in equation (32).
For T = 36; 48; 60; 72; and 84; the values of T=(T�1)2 are 0:02939; 0:02173; 0:01724; 0:01428;

and 0:01219; respectively. In an ideal scenario where there are no changes in dV ar(W ij) as T

increases, the values of dV ar(rij) at T = 48; 60; 72; and 84 will be 73:94%; 58:65%; 48:60%; and
41:49%; respectively, of its value at T = 36: In a more realistic scenario, however, there will

be changes in dV ar(W ij) as T increases. Even so, a downward trend in dV ar(rij) can still be
expected. This is because the strong attenuation e¤ect of T=(T �1)2 as T increases will prevent
a reversal of the downward trend from happening.

Given how the individual values of dV ar(rij) varies with T in general, the double summationPn�1
i=1

Pn
j=i+1

dV ar(rij) is also expected to exhibit a downward trend as T increases. As long as
the stationarity assumption holds, the individual values of r2ij are expected to vary, but not in

a drastic way, as T increases; so are the double summation
Pn�1

i=1

Pn
j=i+1 r

2
ij in the denominator

on the right hand side of equation (66). Again, it is the strong attenuation e¤ect of T=(T � 1)2

on
Pn�1

i=1

Pn
j=i+1

dV ar(rij) that determines how the estimated shrinkage intensity b� based on
equation (66) varies with T:

To explain why b� decreases as T increases, let us consider the function g(x) = x=(x + c);

where both the variable x and the constant c are positive. The �rst derivative of g(x); which

is c=(x+ c)2; is also positive. An implication is that a decrease in x corresponds to a decrease
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in the function. Equation (66) has the same analytical form as g(x); with x representingPn�1
i=1

Pn
j=i+1

dV ar(rij) and c approximating Pn�1
i=1

Pn
j=i+1 r

2
ij: If an increase in T leads to a

decrease in
Pn�1

i=1

Pn
j=i+1

dV ar(rij); it will also lead to a lower b�; provided thatPn�1
i=1

Pn
j=i+1 r

2
ij

varies only moderately without a trend, so that it can be approximated by a positive constant.

We now extend the above explanation to the case where a constant correlation target is used

instead. Equation (44), which is used to estimate the corresponding shrinkage intensity, also

has the same analytical form as g(x): The di¤erence here is that x represents
Pn�1

i=1

Pn
j=i+1 b�ij

and c approximates
Pn�1

i=1

Pn
j=i+1(r�rij)2; which under the stationarity assumption is expected

to vary only moderately without a trend as T changes. Thus, what needs to be established

here is that
Pn�1

i=1

Pn
j=i+1 b�ij � which is known to be positive, as shown in Subsection 2.4 �

has a downward trend as T increases. The same connection between dV ar(W ij) and dV ar(rij) in
equation (32) also exists between dCov(W ij;W k`) and dCov(rij; rk`) in equation (40). It is still
the same dominating multiplicative factor T=(T �1)2 that causes b�ij and thenPn�1

i=1

Pn
j=i+1 b�ij

to decrease as T increases, thus resulting in a downward trend in the estimated shrinkage

intensity.

4.2.3 Panel (C): Post-Shrinkage Average Correlation

Panel (C) shows, under the column for each T; the post-shrinkage average correlation for each

of the four cases covered in Panel (B). For a constant correlation target, the post-shrinkage

average correlation remains the same as the corresponding average sample correlation, regardless

of whether the bias is corrected or ignored. For a zero correlation target, in contrast, the post-

shrinkage average correlation is lower.

The result that shrinkage of the sample correlation matrix towards a constant correlation

target has no e¤ect on the average correlation is as expected. This is because shrinkage esti-

mation in the context of this paper is about taking a weighted average of the sample correlation

matrix and the target matrix. The average of all o¤-diagonal elements of the sample correlation

matrix is r: So is the average of the corresponding elements in a constant correlation matrix,

which serves as the target matrix here. Regardless of the weights that are assigned to the two

matrices, the average of all o¤-diagonal elements of the resulting matrix must also be r:

The matrix that is used as a zero correlation target for shrinkage estimation is an identity

matrix. Taking a weighted average of the sample correlation matrix and an identity matrix,
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which has all zero o¤-diagonal elements, will lead to a matrix with uniformly attenuated o¤-

diagonal elements. Thus, the post-shrinkage average correlation will inevitably be lower than

the original average of the sample correlations. This is what is shown in the last two rows of

Panel (C).

The ranges of post-shrinkage correlations can easily be deduced from the displayed informa-

tion in Table 1. Given the nature of shrinkage estimation, such ranges will always be narrower

than the corresponding ranges of the sample correlations. For example, as indicated earlier,

the highest sample correlation, which is between Goldman Sachs (GS) and JPMorgan Chase

(JPM), is 0:8957 for T = 36: Let us label it as rGS;JPM : For a constant correlation target where

r = 0:3391; the estimated shrinkage intensity b� with the bias corrected is 0:4654: The corre-
sponding post-shrinkage correlation is b�r + (1� b�)rGS;JPM = 0:4654� 0:3391 + (1� 0:4654)�
0:8957 = 0:6367; which is closer to r than rGS;JPM is. Also for T = 36; the lowest sample correla-

tion is between DuPont (DD) and Wal-Mart (WMT); it is �0:2229: Let us label it as rDD;WMT :

For the same shrinkage target with the bias corrected, the corresponding post-shrinkage corre-

lation is b�r + (1 � b�)rDD;WMT = 0:4654 � 0:3391 + (1 � 0:4654) � (�0:2229) = 0:0386; which
is closer to r than rDD;WMT is. Accordingly, the range of post-shrinkage correlations, 0:5981

(= 0:6367 � 0:0386); is much narrower than the original range of sample correlation, 1:1186
[= 0:8957� (�0:2229)]:
We now return to Panel (B) and explain why the use of a zero correlation target, instead of

a constant correlation target, always leads to a lower estimated shrinkage intensity. Regardless

of which shrinkage target is involved, the true but unknown correlation of returns �ij between

each pair of securities, i and j; is always present in the quadratic loss function. The sample

correlation rij; with or without some minor adjustments, is used for its estimation, depending on

whether the bias is corrected or ignored. Either way, given the objective of expected quadratic

loss minimization, the post-shrinkage correlations are not supposed to be far away from the

corresponding sample correlations. For a zero correlation target, however, the greater the

shrinkage intensity, the more attenuated will be the individual correlations, and the further

away will be the post-shrinkage correlations from the corresponding sample correlations. Thus,

there is a natural tendency to avoid assigning an excessive weight on the shrinkage target; that

is, the resulting b� will tend to be lower.
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5 Concluding Remarks and Suggestions for Instructors

This paper has extended the introduction to shrinkage estimation in Kwan (2011). The ex-

tension is on shrinking the sample correlation matrix of returns towards a constant correlation

target, as justi�ed in Ledoit and Wolf (2004) and Kwan (2008). The extension is intended to

be simpler than the corresponding approach in Kwan (2008), which has also used the same tar-

get for shrinkage estimation without relying on any asymptotic properties of the �nite samples

involved. Shrinkage targets based on other structured correlation matrices, which are more

re�ned analytically, have not been attempted in this paper.

Given the pedagogic objectives of the extension, the analytical materials involved have been

presented in considerable detail, as the intended readers of this paper include also students.

Special attention has been on reducing the analytical and computational burden of the tasks

involved, whenever possible, while still maintaining an analytical emphasis. In particular, by

assuming that insights of �nancial analysts can lead to improvements in the quality of the

estimated variances, this paper has been able to bypass the usual statistical issues pertaining to

the estimation of the individual correlations via the use of the corresponding sample variances

and covariances, as encountered in Kwan (2008).

The idea of shrinkage estimation is very simple; in the context here, it is about taking a

weighted average of the sample correlation matrix and the target matrix. The weight that is

assigned to the latter matrix is known as the shrinkage intensity. By using a constant correlation

target, we seek to achieve a balance between reducing the overall estimation errors and main-

taining some existing idiosyncrasies in the individual correlations. However, to achieve such a

balance analytically is a tedious task, even for this seemingly simple target. Thus, Excel has

played an important pedagogic role in this paper. Central to the Excel illustration in this paper

is the user-de�ned function SHRINK for computing the shrinkage intensity. The function not

only can accommodate the zero correlation target in Kwan (2011), but also can allow the user to

correct the statistical bias for using the sample correlations as estimators of the corresponding

true correlations.

The use of Dow Jones data in this paper is intended to illustrate how the returns of U.S.

major stocks are correlated and how shrinkage estimation a¤ects the sample correlation matrix

of returns. Students can gain some valuable hands-on experience with shrinkage estimation, by
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replicating some of the results in Table 1 with the Dow Jones data in one of the two Excel �les

accompanying this paper. For example, to replicate the results there for a 48-month sample

period, all that is required is to lengthen the 36-month sample period there by 12 months and

to repeat the same Excel-based computations.

In advanced investment courses that cover portfolio theory in depth, students are taught the

importance of having high quality input parameters for implementing portfolio selection models.

However, the issue as to how input quality can be improved is either addressed only brie�y or

considered to be beyond the scope of the courses involved. As a result, although students are

made aware of the existence of the issue, they may not be taught how to address it properly

in practical settings. The hands-on experience with shrinkage estimation that students gain

from using the Dow Jones data will enable them to understand better not only the statistical

techniques involved, but also the underlying concepts of portfolio investments. The latter

bene�t is equally important from a pedagogic perspective, as the reliance on matrix algebra in

the coverage of portfolio theory for analytical convenience tends to mask the intuition of the

portfolio concepts involved.

There are exchange-traded funds (ETF�s) that track the Dow Jones Industrial Average

(DJIA). There are also investment strategies based on the Dow Jones stocks, one of which

� commonly known as Dogs of the Dow � is to invest in 10 of the Dow Jones stocks with

the highest dividend yields. Students learn from mean-variance portfolio theory that, the

lower the correlations of returns between securities, the greater are the bene�ts from portfolio

diversi�cation. Given the high correlations between some Dow Jones stocks as shown in the

above-mentioned Excel �le, it may seem counter-intuitive to students who have learned portfolio

concepts that DJIA-based ETF�s, which contain some highly correlated stocks, are of interest

as investment portfolios to many investors.

In addition to discussions of the issue in class, instructors can also assign Excel-based projects

for students to investigate whether investing in subsets of the Dow Jones stocks, especially those

with high-correlation cases removed, can result in better portfolio performance in terms of risk-

return trade-o¤. The Dow Jones data in the above-mentioned Excel �le, augmented to include

some former Dow Jones stocks and/or to increase the number of return observations if necessary,

are suitable for use in such projects. To incorporate shrinkage estimation into such projects,

students can compare investment results based on pre-shrinkage and post-shrinkage correlation
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matrices for various subsets of the Dow Jones stocks.

Finally, some remarks on computational times are in order. It takes much more computer

time to produce the shrinkage results for a constant correlation target than for a zero correlation

target. This is because, in VBA coding for the former case, �ve nested loops are required in

the computation of the shrinkage intensity and, for the latter cases, only three nested loops are

required. Suppose that, in both cases, the number of securities is n and the number of return

observations is T: To go through �ve nested loops requires [n(n�1)=2]2T steps of computations;
to go through three nested loops, only [n(n�1)=2]T steps are involved. For n = 30 and T = 36;
for example, the corresponding numbers are 6; 812; 100 and 15; 660; for n = 30 and T = 84; they

are 15; 894; 900 and 36; 540 instead. In terms of computational times, it takes in the former

case 2 minutes 17 seconds and 5 minutes 18 seconds (on a desktop computer at 3:16 GHz and

4:00 GB RAM) for the user-de�ned function SHRINK to compute the shrinkage intensity for

T = 36 and T = 84; respectively. In contrast, in the latter case, the corresponding task can be

completed almost instantaneously for either sample period.
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