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An active learning exercise showing some fundamentals of financial
portfolio construction

Abstract
This paper focuses on a key statistical insight, namely, that the statistical variability of a sum of variables may
be substantially reduced by combining individual components that have low correlation. We demonstrate this
idea on a spreadsheet through the use of simulated data with associated statistics and scatter plots but note
that, in addition, these ideas have particular relevance in financial applications. We apply these variability
reducing principles in the field of finance to demonstrate, on a spreadsheet, the circumstances under which we
may get significant risk reduction in a portfolio of 2 shares, compared to holding only one share. However,
rather than simply coming up with a single “true” efficient frontier based on assumed “true” parameters, we
suggest using repeated sampling with realistic underlying parameters to simulate sets of share returns and risk
and then construct sets of simulated efficient frontiers. These sets of efficient frontiers reflect the underlying
uncertainty of future share returns and the variability of the returns. We can then embed the idea in students
that far from being an exact optimization problem, portfolio construction requires circumspection and a
subtle appreciation of statistical variability. This Excel-based didactic approach has been used to introduce
students to the principles of variance reduction and the construction of efficient frontiers in the portfolio
paradigm, as a component of Honours level courses in the department of Statistical Sciences at the University
of Cape Town. Students in these courses consistently found this spreadsheet-centred approach to be a very
useful active learning tool for understanding these principles.
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1 Introduction 
There are many didactical exercises which employ spreadsheets to good effect to 

handle the computational side of statistical analysis and to demonstrate results 

graphically; see, for example, [10] and the history of the use of spreadsheets [1]. 

However there are not many published exercises which showcase the extraordinary 

ability of spreadsheets to demonstrate the effects of the elusive statistical concept of 

random variation. Spreadsheets, through the medium of simulation, provide an 

environment for students to develop an appreciation of the effects of random 

variation that is simply not accessible through theory or through analysis of ‘static’ 

data sets, see, for example, [2] and [3]. This paper uses the simulation approach to 

first demonstrate the variability reduction when random variables are combined 

and then applies this simulation approach to constructing a portfolio of shares to 

demonstrate risk (proxied as standard deviation) reduction. Critically, in providing 

a ‘real world’ example of statistical theory in action, it showcases how important it 

is to look at portfolio construction in a simulated empirical paradigm rather than 

making the unrealistic assumption that financial parameters are known with 

certainty. It should be emphasized that, while students may well be familiar with 

the theory of variance/standard-deviation reduction (either through their Statistics 

studies or, as Economics students, through exposure to Markowitz’s approach to 

portfolio risk reduction through diversification), simulation is used here as a 

didactic tool to effect a deeper and more practical understanding of these theoretical 

concepts.  

 

This paper and active learning exercise is aimed particularly at students who are 

beginning a course in Portfolio theory and Econometrics within an honours degree 

in Applied Statistics in the Science Faculty at the University of Cape Town (UCT). 

The exercise is intended to show statistical theory in action, and critically, to 

indicate that there is a practical point to a piece of theory which we can use to 

advantage in a real life exercise in share portfolio risk reduction. A spreadsheet 

approach has been used to demonstrate financial concepts in this journal before. In 

two recent papers [6], [7] Kwan has considered the effect of shrinkage estimators for 

the correlation matrix of share returns and demonstrated how this approach can be 

used to strike a balance between the reduction of forecast errors and the retention of 

existing idiosyncratic correlation features. This paper considers the problem from a 

somewhat different perspective, focusing on the distributional characteristics of the 

problem by simulating different return realisations using a spreadsheet. It 

demonstrates to the student how a fixed set of underlying statistical parameters, 

including the correlation matrix, can be realized as a varying range of return 

outcomes pointing to a range of different investment decisions. 
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Moreover, the approach also demonstrates the fact that one can take advantage of 

knowledge of the correlation between individual share returns when constructing a 

portfolio of shares with the intention of reducing the risk (represented by the 

standard deviation of return) of the resultant portfolio. For example, returns from 

gold shares tend to correlate closely to changes in the gold price which in turn often 

moves counter cyclically with respect to the share returns of large American banks. 

Hence gold shares are commonly seen as a hedge against poor overall performance 

of the world financial sector and banking shares. The actual details of algorithmic 

programming behind portfolio construction via spreadsheet methodology have 

been handled in the spreadsheet didactic literature (see for example [5]) but are not 

the focus of this paper. This paper focuses on the statistical principle that low 

correlation between variables reduces variability of the sum total of variables and 

applies this to a simple 2-share portfolio construction, allowing for a key statistical 

nuance. Namely, that in practice, when constructing portfolios, we never know the 

realised values of share price parameters and therefore cannot come to deterministic 

solutions regarding the optimal portfolio composition. A better approach is to 

consider simulated samples which reflect sampling variation in order to obtain a 

more realistic sense of the uncertainty surrounding investment decisions for the 

future. The example in this paper is deliberately kept at a simple 2-asset level. More 

complicated examples (3 or 4 or n-asset cases) have been considered, but the 

associated increase in the number of required parameter estimates, and the 

difficulty with the graphic representation of these more complicated cases tends to 

confound the didactic advantage of a visual spreadsheet approach. Restricting our 

analysis to the 2-asset case yields an effective graphical depiction of risk reduction 

on the spreadsheet, and allows the pertinent statistical principles to be clearly 

demonstrated and easily interrogated by students. 

 

1.1 The Paper Structure 

The paper is structured as follows. As a first didactic step we depict on the 

spreadsheet 2 simulated and correlated variables X and Y drawn from underlying 

exhibiting distributions with specified expected values, standard deviations and 

correlations. We consider specifically how the variance (and standard deviation) of 

the sum of the two variables compares with the sum of the variances (and standard 

deviations) of the individual components. We then apply these ideas to a simple 

portfolio problem with two shares and no risk-free rate by applying portfolio 

weights to the two shares which constitute the portfolio. We consider the risks and 

returns of this portfolio and how we may construct an efficient frontier to examine 

which share proportions could give an efficient frontier and how the shape of this 
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efficient portfolio changes as we vary the correlation between the share returns. We 

then pursue the fact that in practice we may be more interested in the set of empirical 

frontiers and simulate, under repeated sampling, empirical efficient frontiers which 

capture the type of overall variation of the realized efficient frontier that we may 

expect to encounter in practice. 

2 Demonstrating how the variability of the sum of 2 variables 

may be reduced by low correlation between them 

The first step in the teaching process is to demonstrate that the correlation between 

X and Y has another important statistical effect, namely it affects the extent to which 

the variability (either variance or standard deviation) of the sum of the two 

variables X and Y is different from the sum of the individual variabilities of X and Y 

considered separately. In many practical problems we are interested in how we may 

reduce variability. In a financial context where there is an incentive to reduce risk, 

which is measured by the standard deviation of return, we do this by combining 

variables with low correlation or combining uncorrelated scenarios. In particular, 

we will look below at how this affects portfolio construction (investing in different 

shares or in different countries). 

 

We first look at the statistical theory underpinning these important ideas. 

 

2.1 The Statistical theory behind variation reduction 

When random variables are added or combined together, the resulting variable has 

a variation which, inter alia, reflects the correlation between the variables. 

 

For random variables X and Y, we have 

 

( ) ( ) ( ) 2 ( , )Var X Y Var X Var Y Cov X Y+ = + + . 

 

Equivalently, if we let ρ be the correlation coefficient between X and Y, 

 

( ) ( )( ) ( ) ( ) 2 X YVar X Y Var X Var Y   + = + +  .   (1) 

 

We may therefore surmise that when 0,   

 

. 

 

 

( ) ( ) ( ) .Var X Y Var X Var Y+  +  
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Also, we may write from (1) that 

 
2 2

(X+Y) (X) (Y) (X)  (Y) = + + 2         .    (2) 

 

and, we may therefore surmise that, since 1   ,  

 
 

 

 

whatever the value of  . 

 

We have thus shown that for two random variables X and Y with standard 

deviations ( )X  and ( )Y , the standard deviation of their sum, denoted by ( )X Y +  

can be written in terms of the component standard deviations, ( )X  and ( )Y  as 

well as the correlation between X and Y, denoted by  .We have also shown that the 

standard deviation of the sum of X and Y is, in fact, smaller than the sum of the 

individual standard deviations of X and Y, whatever their correlation. Using these 

formulae we may demonstrate how the variability of a combination of variables 

may be significantly less than the variability of the component parts. 

 

 

In the case when X and Y are (continuously compounded) share returns, and 

weighted 1w  and 2w  in a portfolio of two shares (such that the weights add up to 

1.0), we may write: 

 

1 2

2 22 2
( ) ( )( ) 1 2 1 2 ( ) ( )  w   2  X Yw X w Y X Yw w w     + = + +   (3) 

 

 

We will then take this argument one step further in section 3 and demonstrate how 

the risk of a portfolio of two shares may be reduced through combining the two 

shares.  

 

 

2.2 Demonstrating the variable reduction idea on the spreadsheet 

We showed above that the variance of a sum of two variables will be less than the 

variances of the components when 0   but that the standard deviation of a sum 

( ) ( ) ( )X Y X Y  +  +  
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of two variables is always less than or equal to the standard deviation of the 

components. In order to demonstrate these variance reductions in an empirical 

framework, we now give some theoretical backdrop as to how one might generate 

bivariate data with any given mean, variance and correlation. 

We assume that X and Y are normally distributed, and, in order to sample from this 

bivariate distribution (X, Y) we use the Cholesky decomposition method (see, for 

example, [4]). 

For the simple 2-variable case where the correlation matrix 
1

1





 
 =  

 
 we will 

have 
2

1 0

(1
L

 

 
=  
 − 

 

Then 
*2 2 *

1 0

1 1

XX X

Y X X X   

      
= =         − + −      

 where, say, X is drawn from 

some distribution and *X  is independently drawn from the same distribution. Then 

the generated Y will be from the same distribution and have an expected correlation 

of   with X. This Cholesky decomposition allows us to generate a bivariate 

distribution 
X

Y

 
 
 

with correlation matrix  . Note that Y and X can then be suitably 

scaled and mean shifted so as to have individually any mean and variability 

(variance or standard deviation) required, allowing us to generate a bivariate 

distribution 
X

Y

 
 
 

with any given parameters , , , andX Y X Y     . 

In our spreadsheet exposition, we could let: 

 cell C2 = X  , cell C3 = X  ; E2 = Y  , cell E3 = Y  and cell G2 =   

Then the scaled, and mean shifted, Cholesky decomposition for a normally 

distributed bivariate distribution translates on the spreadsheet to: 

 

X [cell C7] = $C$2+NORMINV(RAND(),0,1)*$C$3 , and  

Y[cell D7] = $E$2+$E$3*($G$2*(C7-$C$2)/$C$3+SQRT((1-$G$2^2))*(NORMINV(RAND(),0,1))) 

 

where NORMINV(RAND(), 0, 1) is the Excel formula which generates independent 

drawings from a N(0, 1) distribution. 
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We can now generate a range of examples, but the one generated here is instructive. 

It assumes the means and variances (and standard deviations) of both X and Y 

separately are equal at 0 and 1 respectively and considers 3 different randomly 

sampled cases where the true value of rho equals, -0.5, 0.0, and 0.5 respectively. We 

also list the implied values for the standard deviation of X+Y and the regression 

coefficients alpha and beta. We can then simulate sets of estimates for the case n 

equal 50, for these three different values of rho. . We can then capture the stochastic 

nature of the simulated data through tabulating the empirical mean, variance and 

correlation of sets of 50 points of the generated data. In the tables below we first 

give the true parameters assumed (and an example of the true implied parameters 

for the case rho = -0.5) as well as a particular set of empirical estimates for the 3 

cases rho equals, -0.5, 0.0, and 0.5 
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Table 1: Assumed Parameters (in red) and implied parameters in blue 

Case of rho = -0.5 

True Values Assumed (and implied true Std.Dev.(X+Y), Cov(X, Y), α, β)

E (X) 0.0 E (Y) 0.0 Corr (X,Y) -0.50

Std. Dev (X) 1.0 Std. Dev (Y) 1.0 Std.Dev(X+Y) 1.00

Alpha 0.00 Beta -0.50 Cov(X,Y) -0.50  
 

Table 2: Set of Empirical Estimates for Case of rho = -0.5  

Estimates (50 pts) X Y X+Y

Mean -0.126 0.138 0.013

Variance 0.730 0.822 0.603

Standard Deviation 0.854 0.907 0.776

Cov(X,Y) -0.475 Corr(X,Y) -0.613

Alpha 0.057 Beta -0.650  
 

Table 3: Set of Empirical Estimates for Case of rho = 0.0 

Estimates (50 pts) X Y X+Y

Mean 0.211 -0.242 -0.031

Variance 0.750 0.877 1.573

Standard Deviation 0.866 0.937 1.254

Cov(X,Y) -0.027 Corr(X,Y) -0.034

Alpha -0.234 Beta -0.036  
 

Table 4: Set of Empirical Estimates for Case of rho =+0.5  

Estimates (50 pts) X Y X+Y

Mean 0.107 -0.055 0.052

Variance 1.378 1.354 4.607

Standard Deviation 1.174 1.164 2.146

Cov(X,Y) 0.937 Corr(X,Y) 0.686

Alpha -0.128 Beta 0.680  
 

There are several important conclusions we can now reach: 

We have shown that the theoretical variance of the sum of X and Y is less than the 

sum of variances when rho is less than 0. Repeated sampling over sets of 50 points 

will show this to be the case in practice as well. The student will also observe how 

empirical estimates of the correlation estimate for 50 data points under repeated 

sampling, as well as estimates for the mean, standard deviations and variances, will 

vary with repeated sampling.  
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We may show, in a similar vein, that the standard deviation of the sum of X and Y is 

always less than the sum of the standard deviations (whatever the correlation 

between X and Y) and we may demonstrate this fact empirically. 

 

3 The Portfolio problem in Finance 

We now turn our attention to a practical example from the field of finance; the 

construction of a simple portfolio of two shares with some expected set of returns, 

standard deviation of returns and correlation between the shares. The simulation 

has particular relevance in this application as the variability of the outcome can be 

demonstrated with respect to the original assumptions. By starting off with, for 

example, share A with expected return of 1% (per month) and standard deviation of 

return 1%, combined with share B which has an expected return of 1.5% (per 

month) with standard deviation of return 1.5%, we can demonstrate the observed 

return and risk of a portfolio (of the two shares) as we vary the weights of the 

individual shares in the portfolio. 

 

3.1 The Efficient Frontier of the Portfolio 

A plot of the returns and risks together for portfolios resulting from different 

weights (or proportions) of share A and share B allows us to demonstrate the so-

called efficient frontier ([8], [9]). If we were able to ascertain the true expected return 

and risk, this would give us the theoretical efficient frontier. 

From the theory above (see equation (3)) we may infer that as long as the share 

returns are not perfectly correlated, then the standard deviation of the portfolio 

return of a combination of A and B (and hence the associated risk) will be reduced. 

In this case, we assume the correlation between the share returns (labelled X and Y) 

is zero. Working with the true expected values, we first explore the combination of 

return and risk (standard deviation of return) associated with different portfolios 

comprising a% of A and (100-a)% of B, where 1000  a to construct Table 5 below. 
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Table 5: Table of values for constructing an Efficient Frontier 

 

True Values Port. Components Corr(X,Y) 0.0

E(X) 1.0 Std. Dev (X) 1.0

E(Y) 1.5 Std. Dev (Y) 1.5

Wt(A) Wt(B) True Port. Ret True Port. Risk

0% 100% 1.50 1.50

10% 90% 1.45 1.35

20% 80% 1.40 1.22

30% 70% 1.35 1.09

40% 60% 1.30 0.98

50% 50% 1.25 0.90

60% 40% 1.20 0.85

70% 30% 1.15 0.83

80% 20% 1.10 0.85

90% 10% 1.05 0.91

100% 0% 1.00 1.00  
 

From Table 5 we see that for the range of weights considered, the standard 

deviation (Risk) of portfolio return is minimized when Wt(A) is 70% and Wt(B) is 

thus 30%. 

 

The values in Table 5 are plotted in Figure 1 and Figure 2 below (blue lines) 

 
Portfolio Return against Weight(A)

Wt(A) % shown,  Wt(B)% = 100 - Wt(A)
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Figure 1: “true” Portfolio returns against weight of share A 
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Portfolio Risk against Weight(A)

Wt(A) % shown,  Wt(B)% = 100 - Wt(A)
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Figure 2: “true” Portfolio Risk against weight of share A 

 

If we keep the expected returns and standard deviations the same but vary the 

correlation (say to -0.5) we would observe that the reduction of risk effect becomes 

more marked. We now combine Figures 1 and 2 onto a single diagram (Figure 3) 

which displays the return and risk associated with differently weighted portfolios 

into a single diagram. Note that the lower section of this frontier is dominated by 

the upper section and thus , the lower section is not efficient. For ease of graphical 

exposition on the spreadsheet we will plot these frontiers with both lower and 

upper parts. 

 

Optimising a Portfolio with 2 shares

 Wt(A) % shown,  Wt(B)% = 100 - Wt(A)
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Figure 3: The “true” Efficient Frontier (showing also dominated portfolios 

below the efficient frontier). 
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An investor would be seeking to maximise return and minimise risk. In terms of 

return, depending on the expected return of share A and B, as the portfolio contains 

more of the share with the higher expected return, so the return of the portfolio will 

increase and vice versa as one adds less of that share. So the direction of return is 

monotonic (increasing in the direction of increased proportions of the share with the 

higher expected value). However, the story with the risk associated with the 

portfolio is different. This is generally not monotonic in changes in portfolio 

composition. As noted above, diversification often can be seen to bring risk down so 

that by combining two shares in the portfolio one can increase return and reduce 

risk, up to a certain point. Beyond this point, the addition of increased proportions 

of a second share requires an increase in risk for increased return. 

The result is that a section of the consolidated risk return curve is “dominated”; in 

other words, for (certain) given levels of risk there will be two different 

combinations of X and Y (portfolios) that yield this level of risk: one will give a 

higher return than the other. The one with the higher return is clearly the preferred 

portfolio; the other is “inefficient”. The efficient frontier can thus be used to form 

optimal portfolios under various criteria such as providing the weights which 

would give the minimum total risk portfolio.  

 

Students may experiment with different correlations to examine how the effect 

becomes more marked as the correlation reduces to -1. In Table 6 below we keep the 

expected monthly returns and risks the same but change the correlation to -0.5. 
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Table 6: Table of values for true Efficient Frontier  

True Values Port. Components Corr(X,Y) -0.5

E(X) 1.0 Std. Dev (X) 1.0

E(Y) 1.5 Std. Dev (Y) 1.5

Wt(A) Wt(B) True Port. Ret True Port. Risk

0% 100% 1.50 1.50

10% 90% 1.45 1.30

20% 80% 1.40 1.11

30% 70% 1.35 0.94

40% 60% 1.30 0.78

50% 50% 1.25 0.66

60% 40% 1.20 0.60

70% 30% 1.15 0.61

80% 20% 1.10 0.70

90% 10% 1.05 0.84

100% 0% 1.00 1.00  
 

The more negatively correlated the component shares are, the better the reduction 

in risk. However, even when there is positive correlation between the shares or 

when there is zero correlation, there is often some value to diversification across 

two shares, provided the one share is not very much more risky than the other. 

 

We will now show that repeated sampling drawn from the (assumed normal) 

distribution will give us multiple empirical sets and give us some idea of how 

variable the empirical efficient frontiers will be for some given underlying expected 

return and risk characteristics. Moreover, we may show firstly which weighted 

combination of A and B would be expected to be appropriate for producing a 

portfolio with optimal characteristics (for example minimizing total risk of the 

portfolio) for the true expected case but secondly how variable these weights may 

be when we consider a number of empirical efficient frontiers. 

 

3.2 Sampling from the true distribution to form empirical estimates 

Of course, in practice, we never know what the exact movement of a share will be at 

any point in time (i.e. the movements are subject to random variation and are thus 

stochastic) so although we can mathematically calculate the theoretical returns and 

risk for a portfolio, the empirical (observed on the spreadsheet) share returns and 

risks will be subject to random variation. One approach to assessing the effect of 

random variation on an efficient frontier is to perform a standard sensitivity 

analysis, varying the input parameters and then considering the impact on the 
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optimal weights and hence the frontier. In this paper, we adopt the alternative 

approach of simulating different underlying data sets sampled from distributions 

which are characterized by a given set of parameters. Under the assumption of 

normality, we sample returns from a normal distribution with the given expected 

values, to form empirical sets of share return data and demonstrate to students the 

range of possibilities for return and risk which could occur in practice. The number 

of data points sampled may be set to any value but for demonstration purposes here 

we sample 50 data points and compute the empirical average return and risk from 

these sampled 50 data points. 

 

We can then superimpose various sampled empirical efficient frontiers on the true 

efficient frontier plotted assuming perfect foresight (that is, computed using the true 

expected returns and risks). In Figure 4 the sampled empirical frontier is plotted in 

red. The red frontier constitutes the summary results from a random sample of 

share returns and their associated risk.  

 

Optimising a Portfolio with 2 shares
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Figure 4: “true” Efficient Frontier (blue) with a simulated Efficient Frontier 

imposed (red) (showing also dominated portfolios below the efficient frontier) 

 

We now show how repeated sampling may change the empirical frontiers (red) 

relative to the fixed true frontier (blue) and show 3 further cases (Figures 5, 6 and 7) 

where in each case the expected frontier remains fixed, but the empirical frontier 

varies randomly as it would do in practice.  
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Optimising a Portfolio with 2 shares
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Figure 5: “true” Efficient Frontier (blue) with a (further) simulated Efficient 

Frontier imposed (red) (showing also dominated portfolios below the efficient 

frontier) 

 

Optimising a Portfolio with 2 shares
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Figure 6: “true” Efficient Frontier (blue) with a (further) simulated Efficient 

Frontier imposed (red) (showing also dominated portfolios below the efficient 

frontier) 
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Optimising a Portfolio with 2 shares
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Figure 7: “true” Efficient Frontier with a (further) simulated Efficient Frontier 

imposed (showing also dominated portfolios below the efficient frontier) 

 

3.3 Repeating the Simulation Process to capture the Distribution of Empirical 

Portfolio Weights 

One can then repeat the portfolio estimation process for the same set of fixed 

underlying parameters, but with different simulated data. To demonstrate this, 20 

sets of data were generated with 50 (bivariate) point sets and the 50 associated 

efficient frontiers generated. These can be accessed on the associated spreadsheet, 

with each generated frontier on a separate page. A useful didactic feature of this 

analysis should be a discussion around the distribution of the portfolio weights, and 

one of particular interest is the distribution of weights associated with the minimum 

risk portfolio. One can then generate different empirical renditions of the 

distribution by simply pressing the F9 (recalculate) key, and the one depicted below 

represents one particular rendition. In addition, we show a distribution for the 

empirical minimum risk itself. Again, of course, this constitutes a random rendition 

of the empirical distribution and different renditions can be seen by pressing the F9 

key. The distribution of weights (for A) shown in Figure 8 is intuitive, with most 

(optimal) weight measures falling close to a 60% weight for share A (and hence a 

40% weight for share B). 
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Figure 8: A Rendition of the distribution of Empirical Weights for Share(A) 

associated with the minimum risk portfolio.  

 

As mentioned above, we also include one of the generated distributions for the 

empirical value of the actual minimum risk over the sample of 20 simulations. 
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Figure 9: The distribution of the Empirical Minimum Risk values. 
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Again, the distribution of the values themselves are intuitive, and as expected the 

empirical values in Figure 9, are centred between 0.55 and 0.65. 

 

4. Student reaction to the exercise as a means for demonstrating variability 

reduction and the application to share portfolio outcomes  

This spreadsheet based, active learning approach has been demonstrated to Honours 

(post-graduate fourth year) students in the courses Econometrics and Portfolio Theory in 

the department of Statistical Sciences at UCT over the three year period from 2014 to 

2016. It generally requires three teaching sessions to adequately cover these concepts; at 

least one lecture for the correlation concepts and two for the portfolio concepts. The 

students found the visual demonstration of variance reduction when random variables 

were combined enlightening – it was a concept that they had been taught from a 

mathematical perspective in their undergraduate curriculum but felt that the simulation 

approach was key to establishing a deeper and more solid understanding of the concept. 

The approach consolidated the fact that knowledge of the true correlation, mean and 

variance of two random does not give a deterministic estimation outcome but a whole 

range of possible estimation outcomes. This leads to an understanding that the estimated 

correlation coefficient between two random variables is a random variable, itself. 

However, the portfolio example had particular didactic traction in the repeated sampling 

context. Students were familiar with the idea of risk reduction through portfolio 

construction but had focused on the idea of deterministic portfolio optimization with a 

particular data set yielding a particular optimization result. That is they had not absorbed 

the key idea that the efficient frontier itself is subject to random variation and that any 

optimization process has to be seen in the context that the optimization result itself is 

simply one result drawn from a distribution. Some specific comments from students 

were collected over a three-year period from 2014 to 2016 and are included below. 

 

4.1 Specific comments from students for the courses Econometrics and Portfolio 

Theory in Applied Statistics Honours programme at UCT 

Econometrics 2014 

Think the interactive mode very helpful. The effect of changing correlation on the 

portfolio efficient frontier very nice to see visually. 

Energising to see these things visually. Tired of notes and boards. Nice to play with it 

myself. 

Liked the mix of seeing the Maths on the one-side and the visual demonstration on the 

other. 

Econometrics 2015 

Chalk and cheese difference in teaching. Really helped understanding. 
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Never properly understood where that frontier came from and the fact that it moves for a 

given correlation is interesting. 

Love visual approaches. Really understand how the efficient frontier works now. 

Tried it out myself at home. Actually really good. 

Econometrics 2016 

Think we should do more visual demonstrations. Really gets ones attention. 

Portfolio simulation something I had never thought of. Interesting! 

Maths approach very dull compared to this visual approach. 

Portfolio Theory 2015 

Definitely helpful to see where the efficient frontier comes from. 

The Maths behind the efficient frontier impossible to understand but this really helps. 

Have never seem portfolio frontier dome like this – excellent teaching tool. 

Portfolio Theory 2016 

The frontier demo was a hit. Much better than doing via a text book. 

Interesting the sensitivity of portfolio selection to underlying parameters. Thought that 

very good. 

Really nice that we were given the program to use ourselves. 

 

5 Conclusions 
We have lead students through a set of useful statistical paths and associated insights. 

Firstly, we demonstrate the fact that statistical variability may be reduced by combining 

entities that have low correlation. In particular, when 2 variables are combined which are 

less than perfectly positively correlated the standard deviation of the sum will always be 

less than the sum of the standard deviations of the 2 variables by themselves. This key 

idea is particularly relevant to the field of Finance, where risk is often proxied by 

standard deviation of return. We consider 2 sets of share returns and their associated risk 

and apply these ideas to the construction of a 2 share portfolio and demonstrate how we 

may construct an efficient frontier; that is a set of weighted combinations of the 2 shares 

such that the combination has maximum possible return for each risk. We enhance this 

idea with an important fact, namely that, in practice, we never know what the realized 

share returns and risks will be, even though we may be able to form estimates of their 

expected values. The share returns and risks will always be subject to random and 

unpredictable variation and thus the efficient frontier looking forward is not a fixed 

deterministic quantity but a whole range of possibilities. 

We show that by simulating efficient frontiers through repeated sampling from some 

assumed set of underlying share return parameters the efficient frontier can display 

considerable variation itself. This is important for embedding the idea that the process of 

share selection for a portfolio using Markowitz principles is not a precise exercise but one 

which requires circumspection as share returns and share return variability are not 
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predictable with any precision but subject to the vagaries of random variation. The 

spreadsheet teaching approach to the issue of risk reduction, as well as efficient frontier 

simulation, has been well received by students in senior courses and seen as a refreshing 

and energizing change from the standard text-book-based presentation.  
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