Demonstrating the Mechanics of Principal Component Analysis
via Spreadsheets

Abstract

Principal component analysis (PCA) is a popular multivariate statistical method that is
used for dimensionality reduction. When teaching PCA in a marketing research or
business analytics course, the mechanics of the analysis are often not communicated to
the students. Students observe computer output that contains information pertaining to
eigenvalues, component loadings, and rotated loadings, yet an understanding of how
these numbers were obtained is lacking. This paper presents an Excel workbook that
demonstrates the mechanics of PCA, which include (1) the construction of the
correlation matrix from the raw data, (2) the extraction of eigenvalues and eigenvectors
from the correlation matrix and the computation of the component loadings and
component scores, and (3) the rotation of the component loadings to improve

interpretability.
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1. Introduction

Spreadsheets have enormous practical value for communicating statistical methods and
concepts to students in the fields of business and economics. For example, Barr and
Scott [2, 3] described a variety of spreadsheet-based simulation tools and recently
reported a specific application in the context of portfolio construction [4]. Kwan [11, 12]
has demonstrated approaches for the shrinkage of covariance or correlation matrices to
a prespecified target matrix, which also has important applications to portfolio theory.
There are many other types of multivariate statistical procedures that center on the
analysis of covariance or correlation matrices, such as factor analysis, canonical
correlation, and structural equation modeling. Spreadsheet modeling can be
particularly useful for communicating a basic understanding of the mechanics of such
procedures to business students.

Principal component analysis (PCA) is a well-known multivariate statistical technique
that is used for data reduction and an excellent treatment of the topic is provided by
Jolliffe [9]. Given a data matrix, X = [xij], consisting of measurements for n observations
on p variables, the goal of PCA is to select a few linear combinations (i.e., components)
of the variables that explain most of the variation in the full data matrix. PCA is closely
related to several other multivariate techniques, such a singular-value-decomposition
[5, 8], exploratory factor analysis [16], multidimensional scaling [15], correspondence
analysis [7], and biplots [6].

Although widely used in many scientific disciplines, the particular focus herein is on
marketing applications. PCA has a rich history in the field of marketing research and its
importance as a data reduction tool also extends to business analytics. When taught in a
marketing research or business analytics course, PCA is generally implemented using a
statistical software package such as SPSS, SAS, or R. Unfortunately, although a business

student might leave the course with a reasonable understanding of the output produced



by a statistical software package, they seldom have a sufficient grasp of how the results
reported in that output were obtained. The goal of this paper is to rectify this problem
using a spreadsheet demonstration that highlights the mechanics of PCA, thus
providing an original, flexible and educational thrust that the major software packages
do not afford.

The Excel workbook for PCA consists of three worksheets. The first worksheet, which is
described in Section 2, is used to obtain the correlation matrix from the raw data. The
second worksheet, explained in Section 3, is used to extract the eigenvectors from the
correlation matrix. This is accomplished using the power method for finding the
dominant eigenvector and corresponding eigenvalue of a matrix. Approaches for
choosing the number of eigenvectors to retain are also described in this section. The
selected eigenvectors and their corresponding eigenvalues are used to compute the
principal component loadings (correlations between each variable and each component)
and principal component scores for the respondents in the sample are also computed.
The third worksheet, described in Section 4, is provided for the rotation of the
component loadings to improve their interpretability. Practical experience with the
Excel workbook and suggestions for adaptations and extensions are provided in Section

5.

2. Obtaining the Correlation Matrix from the Raw Data

The first worksheet "HSM_Data’ of the Excel workbook PCA is shown in Figure 1. The
worksheet contains the raw data in the form of an n x p data matrix, X = [xj]. In the
example, the data are 7-point Likert-scale measurements for n = 30 respondents for each
of p = 6 variables (or scale item statements) pertaining to hedonic shopping motivations.
More specifically, the measurements correspond to each respondent’s level of

agreement with each of the six statements in Figure 1, where the measurements range



from 1= strongly disagree to 7 = strongly agree. The raw data occupy cells B2:C31 and
are shaded in yellow in Figure 1. Although the data are synthetic, they are based on
actual constructs and questionnaire items associated with an extensive study of hedonic
shopping motivations conducted by Arnold and Reynolds [1]. The means (%;) and
standard deviations (s;) of each of the variables (1 <j<p) are computed (they are
displayed in cells B33:G34 and shaded with a tan background in the worksheet). The
means and standard deviations are used to transform the raw data to an n x p matrix of
z-scores, Z = [zij], which is accomplished as follows:

zij= (xij—%;)/sj, V1<i<nand 1<j<p (1)
The z-scores, which occupy cells I12:N31 and are shaded in green in Figure 1, are then
used to compute the correlation matrix, R, as follows:

R =(1/(n-1))Z"Z. (2)

The correlation matrix (contained in cells I36:N41 and shaded in blue in Figure 1) is
computed with the aid of the MMULT function based on the z-score columns. The
correlation matrix could have been obtained directly using the Data Analysis Toolpack
capabilities of Excel. However, the use of the z-scores and MMULT function to compute
R is concordant with the goals of providing a thorough and detailed presentation of all
of the computation aspects of PCA. The correlation matrix R is copied (cell values only,

not the formulas) to the top left corner of the second worksheet “extract’.
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Figure 1: The hedonic shopping motivation data and corresponding correlation matrix.

3. Extraction of the Principal Components

In the “extract’” worksheet displayed in Figure 2, the correlation matrix R is in cells
A3:F8. The p x p correlation matrix is a real symmetric positive semidefinite matrix and,
therefore has real nonnegative eigenvalues that sum to the trace of R. Because the main
diagonal elements of the correlation matrix are all one, the trace of R is equal to the
number of variables, p. Moreover, based on the principles of eigen-decomposition, also
known as spectral decomposition, the correlation matrix can be written as a function of
its eigenvalues (A4,...,Ay) and eigenvectors (uy,...,up) as follows:

R=2,uuf +uuf + -+ i,u,u; =UAUT (3)
where A is a p x p diagonal matrix of containing the eigenvalues of R and U = [uy,...,up]
is the p x p matrix of corresponding eigenvectors. Without loss of generality, we will

assume that the eigenvalues are sequenced in nonincreasing order of magnitude (i.e., M1



> A2,..., = Ap1 2 Ay). The eigenvalues are measures of the explained variation in the
correlation matrix and, accordingly, the eigenvalue-eigenvector pairs associated with
the largest eigenvalues are those that make the greatest contribution to the
decomposition of R.

Rather than a complete decomposition of R as in Equation (3), in PCA we would like a
low-rank (g << p) approximation that explains the greatest amount of variation in R. The
underlying optimization problem associated with the first principal component, u, is as
follows:

Maximize: u'Ru 4)
Subject to: Subject to: uTu =1 5)
The Lagrangian function associated with the optimization problem is:
Maximize: L=u'Ru-A(u'u-1), (6)
The first order condition is:
OL/0u=2Ru-2\u=0or Ru=2\u (7)

which is an eigen-structure where 0 is a p x 1 vector of zeros, the Lagrange multiplier A
is the eigenvalue, and u is its corresponding eigenvector.

Although we know that there are typically p eigenvalues that solve the determinant
polynomial corresponding to Equation (7), we also know from the eigen-decomposition
in Equation (3) that it is the largest eigenvalue and its corresponding eigenvector that
will explain the most variation in R. Therefore, we want to find the largest (or dominant)
eigenvalue/eigenvector pair associated with Equation (7), that is, A = A1 and u = wi. Once
this pair is identified, the correlation matrix can be deflated by removing the
contribution from A1 and w1 using Equation (3). We use the notation R(g) to denote the

deflated correlation matrix associated with the elimination of variation stemming from



the first g principal components. After the first eigenvalue/eigenvector pair is extracted,
the correlation matrix is deflated via:

R(1)=R - Au,u’ (8)

The second eigenvalue/eigenvector pair (A2, uz) associated with R is the dominant
eigenvalue associated with R(1) and would then be extracted in similar fashion. Thus,
the process of extracting principal components from R is sequential [13, p. 98]. After the
extraction of (A2, uz2), deflation occurs by setting:

R(2) =R(1) - Au,u3, )
and the third eigenvalue/eigenvector pair (A3, us) associated with R would be extracted
as the dominant eigenvalue associated with R(2). We use this process in our Excel
spreadsheet to sequentially extract all of the eigenvalue/eigenvector pairs for R. Each
stage of the sequential extraction process is accomplished using successive
approximation via the power method [14].

The power method is one of the most conceptually straightforward approaches for
finding the dominant eigenvector and corresponding eigenvalue of a correlation matrix
(as well as other symmetric matrices). Using the power method, the eigenvector at
iteration k+1 (u*) is estimated from the multiplication of the eigenvector at iteration k
(u*) by R. That is, u¥*! = Ru*. To illustrate why this process will converge to the dominant
eigenvector, let us assume that the initial estimate (u’) is expressed as a linear
combination (with coefficients o, for 1 <j < p) function of the p eigenvectors of R as
follows: u’ = o1 + o2uz2 +...+ apup. For the first iteration, we would have u! = Ru® = cuRu:
+ ozRuz +...+ opRup and, because of the eigen-structure relationship Ru = Au, we can re-
write this as u! = Ru’ = culiu1 + az2deuz +...+ opAyup. Recalling that we have defined A1 as
the largest eigenvalue, it is helpful to re-write this as: u! = Ru® = Mifouu + az2(A2/A)uz +...+
op(Ap/A1)wp]. After m+1 iterations of the power method, we have: u™! = R™"u’ = (A1)"[ouu +

o2(A2/A1)muz +...+ ap(Ap/h)"up.]. In the limit, as m — oo, the terms (A2/A1)™,..., (Ap/A1)" go to



zero as long as A1 is strictly larger than all of the other eigenvalues. Assuming ou # 0, the
result is convergence to an eigenvector that is a multiple of the dominant eigenvector:
that is, u! = R™u’ = au1(A1)"w1. Faster convergence is generally achievable if the updated
eigenvector is normalized to unit length using the following equation:

k

4 Ru
uk+J. —

) (10)
[r anTr &

| (Ru®) (Ru™)

Thus, assuming A1 is strictly greater than all other eigenvalues, the power method
estimates the eigenvector via an iterative process of multiplying by R and normalizing
the result. Upon convergence of the estimation process to the eigenvector u, the
corresponding eigenvalue for an eigenvector can be obtained via the Rayleigh quotient

as follows:

A= i—{:", (11)
The Rayleigh quotient makes use of the facts that u is an eigenvector of R and Ru = Au.
Thus, the numerator of Equation (11) could be re-written as Au'u, which implies A = A. If
the eigenvector is unit length, then the denominator is one and the eigenvalue is equal
to the numerator, which is the objective function in Equation (4) and indicates that A =
u'Ru is the variance extracted.

For successive extraction of eigenvalues from correlation matrices, the convergence of
the power method to the dominant eigenvectors is generally rapid; however,
convergence can take more iterations as the ratio of the second largest eigenvalue to the
largest eigenvalue approaches one. For example, when computing the dominant
eigenvalue for R, the ratio of A2/A1 may have an effect on the rapidity of convergence.

When computing the dominant eigenvalue for R(1), it is the ratio of As/A2 that affects

convergence.
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Figure 2: The extraction worksheet with eigenvectors initialized to vectors of ones.

An initial estimate of the first eigenvector (u) is placed in cells H3:H8. I usually just start
off with all ones in these cells. Cells I3:I8 contain the vector formed by the Ru product.
The value in cell I10 is the constant u"Ru. Again, if u is normalized, then this quantity is
equal to the eigenvalue estimate. Cells J3:J8 contain Ru after it has been normalized to
unit length. This is the updated eigenvector. Clicking on the button “Update
Eigenvector 1” simply reads the cell values in J3:J8 and re-pastes them in cells H3:H8 to
obtain the updated eigenvector for the next iteration. Tapping on this button once
(assuming the initial eigenvector of all ones in Figure 2) yields the result in Figure 3. As
we continue to tap this button, we can see the eigenvalue get larger. After 15-20 taps,
the changes tend to be small. We can continue tapping until the values in H3:H8 and
J3:J8 have stabilized (in other words the values in these two cell ranges do not change).
The results after convergence are shown in Figure 4. The first eigenvalue is A = 2.86408

and its corresponding eigenvector is shown in cells J3:J8.
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Figure 3: The extraction worksheet after tapping the “Update Eigenvector 1” button
once.
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Figure 4: The extraction worksheet after convergence of the first eigenvector/eigenvalue
pair.
Now that the first eigenvalue and eigenvector have been extracted, the correlation

matrix is deflated using Equation (8). The deflated correlation matrix is in cells A14:F19.

Once again, the initial estimates for the eigenvector are all ones in cells H14:H19.



Tapping the “Update Eigenvector 2” button will lead to convergence of the estimation
of the second eigenvalue and eigenvector in a manner similar to the first. The result is

shown in Figure 5. The second eigenvalue is A = 1.93877 and its corresponding

eigenvector is shown in cells J14:J19.
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Figure 5: The extraction worksheet after extraction of the first two components.

Continuing in this manner, the remaining four eigenvalue/eigenvector pairs are
extracted in rows 34 to 76 of the worksheet. Cells A80:F85 show the fully delated
correlation matrix after extraction of all six components. The six eigenvalues are copied
into cells U2:U7 so as to facilitate the production of a scree plot, which is shown in
Figure 6. The sharp elbow in the plot suggests that two components should be extracted
because of the huge drop in the size of the third eigenvalue in comparison to the
second. Two components would also be chosen based on the popular default rule (e.g.
in SPSS) for correlation matrices of selecting all components with eigenvalues greater
than one. The first two components explain just over 80% of the variation in the data

set.
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Figure 6: A scree plot of the eigenvalues.
The 2 x 2 diagonal matrix (D) in cells C23:D24 contains the square roots of the
eigenvalues on the main diagonal. The two columns of the 6 x 2 matrix (Uz) in cells
F23:F28 are the two eigenvectors. The matrix product G = U:D yields the 6 x 2 matrix of
component loadings in cells 123:128. These (unrotated) loadings, which are interpreted as
correlations between the six items and the two components, are visually displayed in
the correlation circle plot in Figure 7. Five of the six variables (all but x2) have fairly high
positive loadings on component 1. Similarly, four of the six variables (all but x1 and xs)
have fairly high positive loadings on component 2. Moreover, the component loadings
all fall between 0.4 and 0.8 in absolute value. Ideally, we would like to have a simple
structure whereby the values in each column are close (in absolute value) to either zero
or one. This makes it easy to ascertain which variables correspond most heavily to each
component. Therefore, in section 4, we will copy these component loadings into the

next worksheet (‘rotate’) and rotate them to see if we can improve interpretability.
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Figure 7: Correlation circle plot for the unrotated component loadings.

Whereas the correlation circle plot in Figure 7 affords a visual display of the
relationship between the variables and the two components, Figure 8 is a component
score plot that provides a visual display of the n = 30 respondents in the component
space. The component scores are computed by multiplying the 30 x 6 matrix of z-scores
(Z) in cells BA4:BF33 by the 6 x 2 matrix containing the first two eigenvectors (U2 = [u1
u2]) in cells BH4:BI9. This matrix multiplication is accomplished using the MMULT
function and the resulting 30 x 2 matrix of raw component scores are contained in cells
BK4:BL33. Labels are provided in the plot of these component scores in Figure 8 to
identify the respondent associated with each data point. For example, the label “R29’
indicates the position of the component score for respondent #29. This respondent
provided extreme answers for all six variables (i.e., a response of 1 for x2 and a response
of 7 for the remaining variables and is, therefore, well separated from other respondents
in the plot. Ideally, we would like to be able to identify groupings of the respondents

(perhaps just by examining the respondents that fall in each quadrant) and characterize



them based on the two dimensions of the plot. Unfortunately, this is difficult because

the components are difficult to define based on the loadings.
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Figure 8. A plot of the raw principal component scores.
We know from the eigenvalues that the first two principal components explain (2.86408
+1.93877)/6 = 80.048% of the variation in the data. However, we can also see this more
concretely from the component scores. To begin the process, we compute the total
variation in the data by computing the sum of squares for the z-scores in cells BA4:BF33
(note that the mean of the z-scores is zero and, therefore, these are squared deviations
from the mean). The sum of these squared values, which represents the total variation
in the data, is computed to be 174 in cell CD3 using the SUM function. The squared
component scores are computed in cells BN4:BO33. The sum of squared values for
components 1 and 2 are 83.058 and 56.224, respectively as shown in cells CD6:CD?7. The
sum for the two components is 139.283 as shown in cell CD9. The percentage of
variation in the full data set that is explained by the two components is 139.283/174 =
80.048%. Moreover, the first and second components explain 83.058/174 = 47.7% and
56.224/174 = 32.3% of the variation, respectively.



4. Rotation of the Component Loadings

In the ‘rotate” worksheet displayed in Figure 9, the matrix of unrotated component
loadings (G) has been pasted into cells E6:F11. We seek to find a rotation of this
coordinate system to a new set of coordinates, H= GW, that is more interpretable. The
counterclockwise angle of rotation (8, in degrees) is placed in cell A5. The 2 x 2 rotation
matrix, W, is in cells A7:B8. To understand the rationale for the rotation matrix, W, it is
helpful to think of a coordinate pair (g1, g2) for the unrotated loadings in terms of polar
coordinates (d, ¢), where d = /g7 + g2 and @ = arccos(d/1) if g2 > 0 and ¢ = -arccos(d/g1)
if g2 <0. The unrotated component loading coordinates can then be expressed in terms
of the polar coordinates as:

g1 =dcos@ (12)

g2 =dsing (13)
Likewise, recognizing that the counterclockwise angle of rotation will be 6, the

coordinate pair (1, h2) for the rotated loadings in terms of polar coordinates will be:
h1 = dcos(p-0) (14)
h2 = dsin(¢-0) (15)
Based on the trigonometric rules for compound angles, (14) and (15) can be rewritten as:
hi = dcospcosd + dsinpsin® (16)
h2 = dsinpcosb — dcos@sind (17)
Equations (12) and (13) can be used to simplify Equations (16) and (17) as follows:
h1 = g1cosH + g2sin6 (18)

h2 = —g1sin® + g2c0s0 (19)

More generally, in matrix notation:

_ cos 8 —sin
[h1 h2] = [g1 §2] cin & e B (20)



The 2 x 2 matrix on the right side of Equation (20) is the rotation matrix in cells A7:B8.
The matrix of rotated component loadings, H=GW is computed using this matrix and
the values are displayed in cells H6:111. Because the angle of rotation in cell A5 is set to
zero in Figure 9, H = G. Plots of the unrotated and rotated loadings are displayed at the
bottom of Figure 9.
The student can manually change the angle of rotation in cell A5 and the rotated
loadings in H will be updated automatically. Alternatively, an optimal selection of the
angle of rotation can be made based on the well-known varimax criterion developed by
Kaiser [10].

velize [z nh -2 (2 ha)], 1)
where g is the number of selected components (in this example, g = 2). Kaiser [10]
developed the raw varimax criterion in Equation (21) with the goal of producing an
orthogonal rotation of the component axes so as to induce a simple structure in the
rotated loadings. For this criterion, simplicity is operationalized as the variance of the
squared loadings. Maximizing this quantity has a propensity to drive the loadings toward
zero or one in absolute value, which makes it easier to ascertain the variables that
correlate strongly with each component.
Kaiser also proposed a normalized varimax criterion that is particularly relevant in the
context of factor analysis. The normalized version adjusts the formula in Equation (21)
to account for the communality of each variable (i.e., the variance in the variable that is
accounted for by the common factor). Because PCA makes no distinction between
common and specific factors, communality and the normalized varimax criterion are
not relevant in the context of PCA. Although other options for rotation of the loadings
are available, varimax is one of the most common and easiest to implement. The values
in cells K6:013 are scratch computations used to facilitate the computation of the value

of the varimax criterion, which is in cell J2.
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Figure 9: The ‘rotate” worksheet prior to varimax rotation (rotation angle 6 = 0).

The Excel Solver (using 0 = 0° as the initial value in cell A5) was used to find the angle
of rotation that maximizes the value of the varimax criterion in cell J2. The results are
displayed in Figure 10. The optimal counterclockwise angle of rotation is 6 = -37.9° (i.e.,
a clockwise rotation of 6 = 37.9°). The rotated loadings have changed dramatically and
the correlation circle plot of these loadings in Figure 11 now shows that the variables
tend to be associated with one of the two components but not both. Cells 016:017 show
that unrotated loading vectors are orthogonal (g] g, = 0) but the rotated loadings are
not (h{h, = 0). Moreover, it is noteworthy that, although the total variation explained
by the two components is unchanged, the relative contribution of the explained
variation for the two components is more equally distributed. That is, for the unrotated
loadings it is noted that 2.86048 + 1.93877 = 4.80285 and for the rotated loadings 2.51495
+2.28790 = 4.80285.
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Figure 10: The ‘rotate’ worksheet after varimax rotation (optimal angle -37.9°).
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Figure 11. A correlation circle plot for the rotated loadings.

When examining the rotated loadings, it is evident that the variables x1, x2, and xs have

large absolute values on component 1 and small absolute values on component 2. The

reverse is true for the other three variables x3, x4, and xs. Accordingly, the interpretation



of the rotated components is much cleaner. As observed from Figure 1, Likert-scale
items x1, x2, and x5 all pertain to shopping with other people; whereas items x3, x4, and xs
are related to shopping for other people. In the language used by Arnold and Reynolds
[1], component 1 would be identified as a social shopping construct and component 2 as a
role shopping construct.

The cell values of the rotation matrix from the ‘rotate” worksheet were copied to cells
BQ4:BR5 of the ‘extract’ worksheet to facilitate a rotation of the principal component
scores. The rotated component scores in cells BT4:BU33 were obtained using the
MMULT function. Cells CD12:CE15 verify that the rotated components still explain
80.048% of the variation in the data, but that the relative contribution of the two
components has changed. A plot of the rotated principal scores is displayed in Figure
12. Once again, labels for each respondent are provided in the plot to facilitate
interpretation. Respondents with large positive scores on component 1 are those who
might generally perceived as social shoppers, whereas those respondents with large
negative scores on component 1 have no proclivity for social shopping. Respondents
with large positive scores on component 2 are role shoppers whereas those with large
negative scores on component 2 are more averse to role shopping.

Respondent 29 (R29 in the plot in Figure 12) has the largest positive score on component
1 and largest positive score on component 2 and, therefore, this person is both a social
and role shopper. This customer strongly agreed (Likert scale response of 7) with all of
the role shopping statements (x3, x4, x6), as well as the two social shopping statements
(x1, x5) that pertained to shopping with others. Concordantly, the respondent strongly
disagreed (with a Likert scale response of 1) with the social shopping statement
pertaining to shopping alone (x2). At the other corner of the plot, respondent 26 (R26) is
someone who is neither a role shopper nor a social shopper. This individual strongly

disagreed (Likert scale responses of 1 or 2) with all of the role shopping statements and



the two social shopping statements associated with shopping with others. Respondent
26 generally agreed (Likert scale response of 5) with the statement on shopping alone.
Respondent 1 (R1) is a fairly solid social shopper but not a role shopper. This individual
strongly agreed (Likert scale response of 6) with the statements pertaining to shopping
with others (x1, x5), but generally disagreed (Likert scale response of 3) with the
statement pertaining to shopping alone (x2). By contrast, R1 generally disagreed (Likert
responses of 2 or 3) with all three of the role shopping statements (x3, x4, xs). Respondent
11 (R11) is a fairly solid role shopper but not a social shopper. This individual agreed
(Likert scale responses of 5 or 6) with the statements pertaining to shopping for others
(3, x4, x6). However, R11 disagreed strongly (Likert responses of 1 or 2) with the
statements pertaining to shopping with others (x1, x5), but strongly agreed (Likert scale
response of 7) with the statement pertaining to shopping alone (x2).

Extreme respondents such as R1, R11, R26, and R29 help to characterize the boundaries
of the component score plot. It is also interesting to observe those respondents with
very similar component scores. For example, {R2, R7, R10, R12} form a tight cluster of
similar individuals who are generally not inclined to be either social or role shoppers.
For all of these respondents, their Likert scale responses to statements x1, x3, x4, x5, and xs
never exceed four. Moreover, with the exception of statement xs, where R2 responded
with a Likert scale measure of 1 and R12 with 3, the difference between the Likert scale
responses for all pairs of these four respondents never differed by more than one-unit

for any of the other statements.
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Figure 12: A plot of the rotated principal component scores

5. Practical Experience and Extensions

I have used the Excel workbook for PCA for three different courses: (1) an
undergraduate marketing research course, (2) a masters level course in marketing
analytics, and (3) a Ph.D. seminar in quantitative methods. Naturally, the coverage of
the content in the workbook is apt to vary depending on the level of the course. The
rigor of the presentation at the masters level typically falls somewhere between the
undergraduate and Ph.D. level and is contingent on other factors such as class size. At
the undergraduate level, the focus might be restricted to the generation of the
correlation matrix, the scree plot of the eigenvalues for choosing the number of
components, the correlation circle plots of the loadings, and the plot of the principal
component scores. The coverage of the eigen-decomposition would likely be avoided in
an undergraduate business course, but not necessarily a course in a more scientific
discipline such as engineering. The details of the rotation of the loadings might also be

skipped; however, over the years, I have found that many undergraduates are



interested in having at least some rudimentary understanding of how the rotation
process works.

At the PhD level, the entire content of the Excel workbook for PCA is presented. The
PhD students are expected to have some knowledge of the fundamentals of linear
algebra. I have typically required students to do some small matrix analysis examples
by hand (i.e., matrix and vector products, inverse, determinants, eigenvalues and
eigenvectors) to develop an understanding. The extraction of the eigenvalues and
eigenvectors for a six-by-six correlation matrix, however, is virtually impossible by
hand. However, the template shows how the power method can do this efficiently and,
therefore, the Ph.D. students have some idea as to how eigen-decomposition is done by
computer. The feedback that I received has been quite positive, as the students are
generally appreciative of gaining a more rigorous understanding of the methodology.
Perhaps the most natural extension of the Excel workbook for PCA is to exploratory
factor analysis. This would require the incorporation of an approach for computing the
communality associated with each variable, which can be accomplished in different
ways. Communality may also affect the nature of the varimax rotation. As noted
previously, varimax rotation with Kaiser normalization may be preferable for factor
analysis and is the default setting in some software packages (e.g., SPSS). Another
important extension would be to adapt the workbook to generate biplots. Whereas PCA
is based on the eigen-decomposition of the correlation matrix, biplots are grounded in
the singular-value-decomposition [5] of the raw 1 x p data matrix. Singular-value-
decomposition enables the extraction of eigenvector pairs for respondents and
variables, thus enabling them to be plotted simultaneously in a two-dimensional space.
There have been some important advancements in the design of biplots [6] that should
also be taken into consideration when extending the PCA workbook for this interesting

topic.



In addition to exploratory factor analysis and biplots, there are several other possible

extensions of the Excel workbook for PCA. Many of these possibilities hinge on the fact

that the key engine of the workbook is the use of the power method for eigenvalue and

eigenvector estimation. Eigen-structure problems also arise in a variety of related

multivariate statistical methods, such as multiple discriminant analysis, canonical

correlation, and multidimensional scaling. The development of spreadsheet solutions

for these and other applications is an interesting avenue for future research.

References

[1]

2]

3]

[4]

[5]

[6]
[7]

[8]

[9]

Arnold, M. J., & Reynolds, K. E. (2003). Hedonic shopping motivations. Journal of
Retailing, 79, 77-95.

Barr, G., & Scott, L. (2011). Teaching statistics in a spreadsheet environment using
simulation. eJournal of Spreadsheets in Education, 4(3), Article 2. Available at:
http://epublications.bond.edu.au/ejsie/vol4/iss3/2. [Accessed 17 August 2018].

Barr, G., & Scott, L. (2015). Spreadsheets and simulation for teaching a range of
statistical concepts. In: H. MacGillivray, B. Phillips, M. Martin, ed., Topics from
Australian conferences on teaching statistics: OZCOTS 2008-2012, 1st edition, New
York: Springer, pp 99-117.

Barr, G. D., & Scott, L. (2018) An active learning exercise showing some
fundamentals of financial portfolio construction, efJournal of Spreadsheets in Education
Vol. 10(3), Article 5. Available at:
https://epublications.bond.edu.au/ejsie/vol10/iss3/5 [Accessed 17 August 2018]

Eckart, C., & Young, G. (1936). The approximation of one matrix by another of
lower rank. Psychometrika, 1, 211-218.

Gower, J. C., & Hand, D. J. (1996). Biplots. London: Chapman and Hall.

Greenacre, M. J. (1984). Theory and applications of correspondence analysis. London:
Academic Press.

Johnson, R. A., & Wichern, D. W. (2007). Applied multivariate statistical analysis (6
edition). Upper Saddle River, NJ: Pearson Prentice Hall.

Jolliffe, I. T. (2002). Principal component analysis (2 ed.). New York: Springer.



[10] Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor analysis.
Psychometrika, 23, 187-200.

[11]Kwan, C. C. Y. (2011). An introduction to shrinkage estimation of the covariance
matrix: A pedagogic illustration. efJournal of Spreadsheets in Education, 4(3), Article 6.
Available at https://epublications.bond.edu.au/ejsie/vol4/iss3/6/ [ Accessed 17
August 2018].

[12]Kwan, C. C. Y. (2017). Shrinkage of the sample correlation matrix of returns
towards a constant correlation target: A pedagogic illustration based on Dow Jones
stock returns, efJournal of Spreadsheets in Education, 10(1), Article 3. Available at
http://epublications.bond.edu.au/ejsie/vol10/iss1/3 [Accessed 17 August 2018]

[13] Lattin, J., Carroll, J. D., & Green, P. E. (2003). Analyzing multivariate data. Pacific
Grove, CA: Thomson.

[14]Lay, D. C,, Lay, S. R., & McDonald, J. J. (2015). Linear algebra and its applications (5%
edition). New York: Pearson.

[15]Okada, A., & Tsurumi, H. (2012). Asymmetric multidimensional scaling of brand
switching among margarine brands. Behaviormetrika, 30, 111-126.

[16] Spearman, C. (1904). General intelligence, objectively determined and measured.
American Journal of Psychology, 15, 201-292.



