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An Excel Spreadsheet and VBA Macro for Model Selection and Predictor 

Importance Using All-Possible-Subsets Regression 
 

Abstract 

Two of the most challenging aspects of teaching regression analysis pertain to model 

selection and the relative importance of predictors. All-possible-subsets (APS) 

regression is a particularly useful tool for addressing both of these topics. When using 

regression analysis to analyze customer satisfaction data in marketing analytics courses, 

an Excel spreadsheet for implementing APS regression has led to fruitful discussions 

regarding: (1) which predictor variables should be retained in the regression model, and 

(2) which predictor variables are most useful for explaining the dependent variable. The 

spreadsheet, which uses a VBA macro to run APS regression via sweep operations on 

the correlation matrix, is scalable for up to p = 20 predictors and reports the best subset 

for all subset sizes on the interval 1 ≤ q ≤ p. The selection of an appropriate value for q is 

facilitated by R2 and Mallows’ Cp information. Relative predictor importance is 

established via a general dominance measure obtained from the APS regression. 

Keywords: Spreadsheets, VBA, all-possible-subsets, model selection, predictor 

importance, customer satisfaction 
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1. Introduction 

This paper focuses on the multiple linear regression model of the form:  

 yi =  0+  1xi1 + ... + pxip + i, for 1  i  n, (1) 

where n is the number of cases, P = {x1, ..., xp} is a set of p  2 candidate predictor 

variables, xij is the measurement for case i on predictor variable j, yi is the dependent 

variable measurement for case i, 0 is an intercept term, j (1≤ j ≤ p) are slope coefficients, 

and i is the error term for case i. Although Excel spreadsheet tools are readily available 

for model fitting, hypothesis testing and diagnostics for regression analysis [20], the 

particular interest herein is on the related topics of model selection and relative 

predictor importance. 

Model selection (also known as subset selection or variable selection) in regression 

analysis is concerned with the choice of q (1  q  p) predictors from the full set (P) of 

candidate predictors. Methods for model selection include stepwise regression [9], all-

possible subsets (APS) regression [11, 17, 23, 27], branch-and-bound programming [5, 

10], the garotte [3], and the lasso [30]. Miller [21] provides an extended treatment of 

many of these methods. Predictor importance is concerned with determining a ranking of 

the predictors with respect to their influence on the dependent variable. Numerous 

measures of predictor importance have been proposed. Bivariate correlations, partial 

correlations, and standardized regression coefficients are among the simplest measures, 

but more sophisticated indices are also available. Thorough evaluations of predictor 

importance measures have been provided by Nimon and Oswald [22] and Grömping 

[14]. 

APS regression can provide a unifying framework for model selection and 

predictor importance analyses [22]. To facilitate model selection, for each possible 

subset size, q, APS regression obtains the subset that maximizes R2. The selection of the 

best value of q can then be based on a variety of alternative indices, such as adjusted-R2 

[31], Akaike’s [1, 2] information criterion (AIC), Schwartz’ [26] Bayesian information 
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criterion (BIC), and Mallows’ Cp [19]. APS also facilitates the measurement of relative 

predictor importance by enabling the computation of the general dominance index [6, 

18]. The first step in computing the general dominance measure is to find the average 

improvement in explained variation associated with each predictor for each subset size. 

The general dominance measure for a given predictor is then computed as the average 

over all subset sizes. The sum of the general dominance measures over all predictors 

has the desirable property of equaling R2. 

Although APS regression can enhance student understanding of model selection 

and predictor importance for a variety of application contexts, the particular interest 

here pertains to its use in marketing research/analytics courses at both the graduate and 

undergraduate levels. In particular, we focus on the well-established use of regression 

analysis in the study of customer satisfaction [7, 13, 16, 25]. In our marketing analytics 

courses, we have commonly analyzed customer satisfaction data using regression 

analysis via SPSS. However, an enhanced understanding of model selection and 

predictor importance has been accomplished using an Excel spreadsheet that includes a 

VBA macro for implementing APS regression. The distinct benefits of the APS analysis 

are: 

(1) A clear communication that there are 2p possible regression models (or 2p – 1 if the 

model with no predictors is ignored) for a set of p predictors and that, for a given subset 

size q, there are p!/(q!(p-q)!) models.  

(2) The provision of the best subset for each possible subset size, along with the 

corresponding R2 and Mallows’ Cp information. 

(3) A recognition that stepwise regression does not always obtain the best number of 

predictors. 

(4) A recognition that the q-predictor model obtained via stepwise regression is not 

necessarily the q-predictor subset yielding the largest R2. 
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(5) Building on (2), (3), and (4), there is an understanding that there can often be many 

competing models yielding roughly the same R2, which can make it difficult to establish 

which predictors are most important. 

(6) A recognition that standardized slope coefficients are not necessarily the best 

indicators of the relative importance of predictors. 

(7) An understanding that APS regression also yields general dominance measures for 

establishing the relative importance of the predictors. 

2. Background 

2.1. Customer Satisfaction in Marketing Research 

Students taking an undergraduate course in marketing research or a graduate 

course in marketing analytics have typically had an undergraduate statistics course 

where regression analysis was covered. Nevertheless, some reminders of the basics of 

regression analysis and pertinent issues such as assumptions, diagnostics, outliers, and 

multicollinearity are advisable. Emphasis swiftly moves to the analysis of customer 

satisfaction data, where it is clarified that multiple regression is primarily used in an 

explanatory rather than a predictive role. That is, the focus is typically on the 

identification of the key drivers of customer satisfaction rather than actual forecasts of 

customer satisfaction. 

2.2. All-Possible-Subsets Regression 

All-possible-subsets regression is explained at a conceptual level using a small 

number of candidate predictors. For example, for p = 4, the 24 = 16 possible subsets are: 

, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, 

{1, 2, 3, 4}. The students immediately recognize that it would be possible to run APS 

regression for small p; however, it is clarified that the VBA/spreadsheet implementation 

is possible for roughly p = 20, where the number of possible subsets is just over one 

million. 
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It is explained to the students that the playing field is level for subsets of the 

same size and, therefore, the subset yielding the largest value of R2 can be identified as 

the “best subset” for each q (1 ≤ q ≤ p). However, because the addition of a variable to a 

regression model cannot possibly reduce R2, we need some basis for comparing the best 

subsets across different q. One simple approach is to choose q based on inspection of the 

R2 values. That is, a good value of q is one where the improvement in R2 when moving 

from q-1 to q is large but the improvement when moving from q to q+1 is small. It is then 

noted that this type of ad hoc rule is often both impractical and suboptimal, but that 

some formal indices are available. The particular measure used in the APS regression 

approach is Mallows’ Cp:  

 Cp(Pq) = [SSE(Pq)/MSE(P)] – (n – 2(q+1)), for 1  q  p,  (2) 

where Pq is the best subset of q predictors, SSE(Pq) is the error sum of squares for the 

regression using only the predictors in Pq, MSE(P) is the mean squared error associated 

with the full regression model using all candidate predictors. We adopt the convention 

used by Olejnik et al. [23] that the subset yielding the minimum value of Cp(Pq) is 

selected, while recognizing that it is also desirable for Cp(Pq) to be close to q + 1. 

2.3. Predictor Importance 

Students are advised that a simple and intuitive ranking of the predictors can be 

based on their bivariate correlation with the dependent variable. However, such an 

approach completely ignores the multivariate nature of the regression analysis. Perhaps 

a better approach is to establish a ranking based on the standardized regression 

coefficients, which are immediately available from SPSS output; however, the use of 

this measure has also been criticized. An index defined by the product of the bivariate 

correlation and the standardized regression coefficient, which was originally proposed 

by Hoffman [15] and is often associated with the work of Pratt [24], has also been 

proposed and is favorably viewed by some researchers [28, 29]. The APS 
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implementation allows for the use of far richer measure, the general dominance index 

[6, 18], which has been well-received in the literature [14, 22]. 

3. The SWEEP Algorithm 

The primary engine for running APS regression is a SWEEP algorithm that 

operates on the (p+1)  (p+1) correlation matrix, R, associated with the p predictors and 

the dependent variable (by convention, the dependent variable corresponds to row p+1 

and column p+1 of the matrix). SWEEP algorithms have been widely used for subset 

selection problems in regression [5, 10, 11], as well as other variable-selection 

optimization problems in multivariate statistics [4, 8]. An excellent tutorial on the 

history and applications of the SWEEP algorithm is provided by Goodnight [12]. 

The SWEEP algorithm transforms a given (p+1)  (p+1) matrix R into a new 

matrix S using the following process. 

Step 1. Select one of the predictor variables h (1 ≤ h ≤ p) for sweeping.  

Step 2. Set the pivot element as  = 1/rhh. 

Step 3. Set sij = rij – rhjrih for all 1 ≤ i  h, j  h ≤ p+1. 

Step 4. Set shj = rhj for all 1 ≤ j  h ≤ p+1. 

Step 5. Set sih = -rih for all 1 ≤ i  h ≤ p+1. 

Step 6. shh = . 

Step 7. R = S. 

A predictor variable, h, is selected for a SWEEP operation in Step 1. Step 2 defines the 

pivot element as the inverse of the main diagonal element of R corresponding to 

predictor h (i.e.,  = 1/rhh). Step 3 computes all elements of S that do not correspond to 

either row h or column h. Step 4 computes the row h elements of S, with the exception 

of the main diagonal element in that row (i.e., column h in row h). Step 5 computes the 

column h elements of S, with the exception of the main diagonal element in that column 

(i.e., row h in column h). Step 6 sets the value for column h of row h in S. Step 7 resets R 
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to S, which enables the exact same set of steps to be repeated for sweeping other 

variables in or out. 

The SWEEP worksheet in the APS workbook (see Figure 1) provides a small 

numerical example to illustrate the algorithm. The problem consists of n = 17 

respondents measured on p = 3 predictors (x1, x2, x3) and a dependent variable (y). The 

raw data are provided in cells B2:E18 of the workbook. The means and standard 

deviations of the dependent variable and predictors are computed in cells B20:E21 to 

facilitate the computation of z-scores for each variable. The z-scores, which are obtained 

by differencing the raw variable measures from the mean and dividing by the standard 

deviation, are displayed in cells B24:E40. Defining the 17  4 matrix in these cells as Z, 

the correlation matrix is computed as R = (1/17)ZTZ. This is accomplished using the 

MMULT function in Excel and the (p+1)  (p+1) correlation matrix, R, is contained in 

cells H1:K4. The element in row p + 1, column p + 1 of the matrix (i.e., cell K4) is of 

particular interest because one minus this value is equal to R2 for the regression model. 

Because none of the predictors have been swept at this point, cells H1:K4 corresponds to 

an absence of predictors in the model and, therefore, R2 = 1 – 1 = 0. 

 
Figure 1: A worksheet containing a small example to illustrate the sweep operator. 
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The matrix in cells H6:K9 was obtained by setting h = 1 at Step 1 and applying 

the remaining steps of the SWEEP algorithm. Sweeping on the variable x1 provides the 

R2 value for the regression model for y using only x1 as predictor, which is equal to one 

minus the value in cell K9 (i.e., 1 - .5800 = .4200). To verify this result, the data analysis 

toolpack in Excel was used to run regression analysis on the raw data and the results 

are displayed in cells M1:R18. The value of R2 = .4200 in cell N5 confirms the results 

obtained by the SWEEP algorithm. 

Next, the predictor x2 was swept into solution by setting h = 2 and applying the 

SWEEP algorithm to the matrix in cells H6:K9. The result is the matrix in cells H11:K14, 

which corresponds to the two-predictor model associated with x1 and x2. The value of R2 

for this model is found by taking one minus the value in cell K14 (i.e., 1 - .2112 = .7888). 

The verification of this result was performed using the data analysis toolpack and the 

results are displayed in cells M20:R38. The value of R2 = .7888 in cell N24 confirms the 

SWEEP algorithm results. 

The predictor x3 was swept into solution by setting h = 3 and applying the 

SWEEP algorithm to the matrix in cells H11:K14. The result is the matrix in cells 

H16:K19, which corresponds to the full regression model with all three predictors (x1, x2, 

x3). The value of R2 for the full regression model is obtained by taking one minus the 

value in cell K19 (i.e., 1 - .1457 = .8543). The verification of this result was performed 

using the data analysis toolpack and the results are displayed in cells M40:R59. The 

value of R2 = .8543 in cell N44 confirms the SWEEP algorithm results. 

At this point, all three predictor variables have been swept into the model. 

Choosing one of these variables and applying the SWEEP algorithm again will sweep 

that variable out of the model. To illustrate, we selected variable x1. The predictor x1 was 

swept out of solution by setting h = 1 and applying the SWEEP algorithm to the matrix 

in cells H16:K19. The result is the matrix in cells H21:K24, which corresponds to the 

two-predictor model associated with x2 and x3. The value of R2 for this model is found 
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by taking one minus the value in cell K24 (i.e., 1 - .9153 = .0847). The verification of this 

result was performed using the data analysis toolpack and the results are displayed in 

cells M61:R79. The value of R2 = .0847 in cell N65 confirms the SWEEP algorithm results. 

The numerical example in the SWEEP worksheet shows that the SWEEP 

algorithm is an efficient approach for obtaining the R2 values associated with different 

regression models. Variables can be swept in (or out) of the model very rapidly. Such an 

approach is far less computationally intensive than running a separate regression 

analysis for each possible subset. The VBA macro in the APS workbook uses the SWEEP 

algorithm to conduct a systematic evaluation of all possible subsets in an efficient 

manner. 

4. The Illustration 

4.1. The Data Set and SPSS Results 

The example used for illustration consists of n = 60 respondents measured on p = 

10 Likert-scale questions regarding a dining experience at a restaurant. Although the 

VBA macro is dimensioned to accommodate up to n = 2500 cases and p = 20 predictor 

variables, a 10-variable set of candidate predictors seemed reasonable to illustrate the 

principles of model selection and predictor importance. Using fewer candidate 

predictors might result in a problem that lacks a sufficient degree of multivariate 

complexity, whereas using more might create an overload for students for whom this is 

their first exposure to the relevant topics.  

The students are told that a marketing research firm is interested in determining 

the key drivers of overall customer satisfaction at a popular restaurant, and that linear 

regression will be used to determine which drivers are most important. Data were 

collected from n = 60 patrons of the restaurant. The metric dependent variable, y, is 

overall satisfaction, which is measured on a scale of 0 to 100 with larger values 

indicating greater satisfaction. The firm is considering 10 candidate independent 

variables to predict overall satisfaction. Each candidate predictor variable is a Likert 
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scale response to a statement ranging from 1 = strongly disagree to 7 = strongly agree.  

The 10 predictor statements are shown in Table 1 

Table 1: Predictor variables for the example. 

x1 = the side dishes and salads are delicious 

x2 = the entrées are delicious 

x3 = the desserts are delicious 

x4 = parking at the restaurant is ample 

x5 = the lighting in the restaurant is appropriate 

x6 = the noise level in the restaurant is not distracting to me 

x7 = the wait for beverage service is excessive 

x8 = the wait for food service is excessive 

x9 = the wait for the check is excessive 

x10 = restaurant service personnel are courteous and friendly 

 

The full regression model for the customer satisfaction data was fit using SPSS. 

The value of R2 is .5837 and the overall F-test for the regression model is significant (p-

value < .01). Table 2 provides the estimates of the slope coefficients, the standardized 

regression coefficients, t-statistics and significance levels for the predictor variables. 

Interestingly, only one of the 10 predictors (x10) is statistically significant. Moreover, the 

signs of some of the slope coefficients are discordant with theoretical expectations. For 

example, variable x6 has a negative slope coefficient despite the fact that a positive 

coefficient should be expected (i.e., the more someone agrees with the statement that 

the noise level is not distracting, the higher satisfaction should be). 

Table 2: Regression coefficients for the full regression model (SPSS results) 

Model   

Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

 

 

 

 

 

 

 

(Constant) 26.8449 11.6630   2.3017 .0256 

x1 2.7464 1.5306 .2635 1.7943 .0789 

x2 2.8106 1.6715 .2819 1.6814 .0990 

x3 2.2305 1.6671 .2155 1.3380 .1871 

x4 .0045 2.0555 .0004 .0022 .9983 

x5 3.1823 1.6766 .3200 1.8980 .0636 

x6 -2.2068 1.9650 -.2109 -1.1231 .2669 

x7 .7639 1.6636 .0790 .4592 .6481 
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x8 -2.0005 1.6010 -.1989 -1.2496 .2174 

x9 -1.6029 1.1427 -.1630 -1.4028 .1670 

x10 3.8911 1.2138 .3664 3.2058 .0024 

Stepwise regression was applied using SPSS and the results are provided in 

Table 3. The stepwise approach resulted in a four-predictor subset (x1, x2, x8, x10) with R2 

= .5176. All four predictors were significant at the  = .05 level and have the correct 

theoretical sign. 

Table 3: Regression coefficients for the stepwise regression model (SPSS results) 

Model   

Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

 (Constant) 33.4128 8.1683   4.0906 .0001 

x2 2.9541 1.2906 .2963 2.2889 .0259 

x10 3.8765 1.0337 .3650 3.7502 .0004 

x1 3.4081 1.3915 .3270 2.4492 .0175 

  x8 -2.0796 1.0151 -.2068 -2.0487 .0453 

4.2. The APS Worksheet and VBA Macro 

Figure 2 provides a screenshot of the Excel spreadsheet for APS regression. The 

number of candidate predictors is entered in cell E1 and the sample size in cell E2. The 

sample measurements for the 10 predictors and the dependent variable must begin in 

cells B15 and V15, respectively. The button “Run All-Possible-Subsets” runs the VBA 

macro for APS when clicked. The VBA macro reads n, p, the predictor variable data 

matrix (X) and the dependent variable (y) from the worksheet and constructs a p+1 

correlation matrix for the predictors and dependent variables. Sweep operations on the 

correlation matrix are used to compute the value of R2 for all possible subsets. 



13 
 

 
Figure 2: The APS regression worksheet. 

The cells highlighted in yellow are output regions for the VBA program. 

Beginning in cells Y9 and Z9, for each subset size, the R2 and Mallows Cp values are 

reported, respectively. Beginning in cell AA9, the selected variables are identified (1 if 

selected, 0 otherwise). For example, the best four-predictor subset consists of {x1, x3, x5, 

x10}. This four-predictor subset yields R2 = .5223 and Cp = 6.2333. A plot of the number of 

predictors versus Mallows’ Cp is shown in Figure 3. The general dominance measures of 

predictor importance begin in cell B9. The sum of these values is displayed in cell C8 

and it is noted that this sum is equal to the R2 value for the full (10-predictor) regression 

model (see cell Y18). 

4.3. Model Selection 

The SPSS stepwise regression solution consists of four predictors; however, the 

Mallows’ Cp results from the APS regression analysis suggest that four is probably not 

the best number of predictors. The Cp index is minimized at q = 5 predictors. Moreover, 

the value of Cp = 5.7720 for q = 5 predictors is quite close to the number of parameters in 

the regression model (5 + 1 = 6), which also lends support for q = 5 predictors. The APS 
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results also reveal that, even if a four-predictor subset is desired, the stepwise 

regression subset {x1, x2, x8, x10} is inferior to the APS subset {x1, x3, x5, x10} with respect to 

explained variation. The stepwise regression subset yields R2 = .5176, whereas the APS 

subset yields R2 = .5223. 

 

Figure 3: Plot of Mallows’ Cp values vs. number of predictors. 

To summarize, there are three salient findings from the model selection analysis. 

First, stepwise regression does not necessarily produce the maximum R2 value for the 

number of predictors that it selects. Second, stepwise regression does not necessarily 

lead to the best choice for the number of predictors. Third, there is the potential for 

rather different subsets to yield very similar values of R2. For example, the stepwise and 

APS results reveal that, augmenting {x1, x10} with {x3, x5} results in an R2 value that is 

only better by .0047 than the R2 achieved when augmenting with {x2, x8}. Accordingly, 

model selection results alone are not sufficient to establish which variables are more 

important than others. 
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4.4. Predictor Importance 

Based on the absolute magnitude of the standardized regression coefficients from 

the full regression model in Table 2, the rank order of the predictors from greatest to 

least with respect to importance is x10, x5, x2, x1, x3, x6, x8, x9, x7, x4. This is a somewhat 

perplexing ranking, as it would seem highly unlikely that the lighting in the restaurant 

(x5) would be the second most important driver of satisfaction. The food-quality items 

(x2, x1, x3) are placed after lighting in the third through fifth positions. Another puzzling 

aspect of the predictor ranking is that the waiting time measures (x8, x9, x7) occupy three 

of the last four positions in the ranking. 

Contrastingly, based on the general dominance measures from the APS solution, 

the rank order of the predictors would be: x2, x1, x3, x10, x7, x8, x5, x9, x6, x4. This ranking is 

far more logical. The food-quality items occupy the first three positions in the ranking. 

The fourth position is occupied by the courteousness of the server measure (x10). Three 

of the next four positions are occupied by the waiting time measures (x7, x8, x9). Three of 

the last four positions are occupied by the aesthetic measures (x5, x6, x4). 

The key takeaways from the predictor importance analysis are twofold. First, it 

would be a mistake to rely solely on p-values or standardized regression coefficients 

from the full regression model to establish the relative importance of predictors. 

Second, APS regression provides a well-established measure for ranking predictors 

that, in this example, led to a far more interpretable ranking. The ranking obtained from 

the general dominance measures reflects the primacy of the food-quality items (x1, x2, x3) 

and the secondary importance of the service-quality measures (courtesy measure x10 

and promptness measures x7, x8, x9). The aesthetic measures pertaining to parking (x4), 

lighting (x5), and noise level (x6) are of lesser importance. 

5. Experience with the Excel Workbook 

I have used components of this Excel workbook in undergraduate marketing 

research courses, masters level courses on marketing analytics, and Ph.D. seminars for 
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quantitative methods in marketing. The computational aspects of the SWEEP algorithm 

are not discussed in the undergraduate and masters level courses. However, the 

efficient nature of this approach for evaluating all possible subsets can be discussed at 

the doctoral level. At all levels, however, there is considerable interest in the restaurant 

satisfaction example. Students are particularly intrigued by the fact that a popular 

software system (e.g., SPSS) can produce results that are both suboptimal and 

potentially misleading. The suboptimality is easily demonstrated by the fact that the 

four-predictor subset obtained via stepwise regression is not the four-predictor subset 

that maximizes R2. The misleading nature of the regression coefficients and significance 

tests for the full regression model also leads to fruitful discussions. The concept of 

running all possible subsets of predictor variables can be explained with relative ease to 

the students, as can the large number of possible subsets when p is large. 

Upon completion of the APS analysis, several limitations pertaining to the 

software program can be provided to the class. The extent to which these issues are 

addressed may differ between undergraduate and graduate courses. With respect to 

model selection, three limitations are particularly relevant. First, Mallows’ Cp is not the 

only possible measure for choosing the number of variables. Other options include the 

adjusted R2, AIC, and BIC. Second, it might be advantageous to generate the top three 

or four models for each subset size for comparison purposes. Third, the all-possible 

subsets algorithm becomes computationally infeasible for large p. Computation time 

and storage requirements roughly double as p is increased by one. The VBA macro runs 

almost instantaneously for the dining experience example where there are p = 10 

predictors. However, it required 17.5 minutes for a customer satisfaction dataset with p 

= 20 predictors. Currently, the VBA macro is dimensioned for up to n = 2500 cases and p 

= 20 predictors. Branch-and-bound programming can be used for subset selection for p ≤ 

50 when using compiled code in Fortran or C. For interpreter code as in VBA, scalability 

is apt to be more problematic. Moreover, because branch-and-bound programming 
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circumvents the explicit enumeration of all possible subsets, it would not allow the 

predictor importance indices to be computed. 

This exercise is also useful for demonstrating that examination of bivariate 

correlations or standardized regression coefficients is not an advisable method for 

measuring the relative importance of predictors. The general dominance measure is 

arguably one of the best alternatives. Nevertheless, students could be made aware that 

there are a variety of predictor importance measures that have been described in the 

literature and that no single measure can be judged the best for all circumstances [22]. 
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