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Using an Unsolved Problem to Motivate 
Student Interest in Mathematics 

 

Abstract 

This “in the classroom” note stems from using a spreadsheet to explore an open 
problem in mathematics by pre-college students of different grade levels. While being 
accessible to the upper elementary and middle school students, the activities 
suggested reveal the tool’s potential for some deeper investigations towards fostering 
student interest in more advanced mathematics. Due to a simple access to the problem 
combined with its rich spreadsheet-enhanced milieu for questioning and conjecturing, 
many collateral problems can be posed by teachers and their students alike. A 
possibility of extending and deepening one’s experience in mathematical observation 
and computational verification which goes beyond an average mathematics classroom 
and aimed at “special needs” of mathematically advanced students is discussed.  

Key words: spreadsheets, number theory, verification, observation, Collatz conjecture, 
Fibonacci numbers 

1. Introduction 
In mathematics, a problem-solver often deals with a statement which needs to be 
proved. When a proof is found, the statement is typically called a theorem; otherwise, 
the statement is called a conjecture. In mathematics education, we often ask students 
to find some evidence of the truth of a statement and eventually validate that a 
statement is true with a proof. In doing so, students use both informal and formal 
reasoning. For example, an elementary school student can be asked to prove that 
increasing an odd/even number by one yields an even/odd number. An informal 
reasoning may deal with representing an odd (or even) number through a collection 
of counters among which only one counter cannot find a pair (or all counters are 
paired). Therefore, adding just one counter to the former collection makes all counters 
paired; in the case of the latter collection, the added counter does not find a pair. The 
student sees that their action alters the binary label, paired – nonpaired, describing 
each collection and uses this observation as evidence that the statement to be proved 
is true. A more difficult task is to prove that the product of any two or more odd 
numbers yields an odd number. Because the problem involves multiplication, some 
(modern-day) students might try to use a calculator as a way of “proving” the last 
statement. They can multiply two odd numbers, say, 83 and 13 to get 1079 and check 
that the last number is not divisible by two. Trying other similar examples, they might 
become convinced through empirical evidence that the statement is true. Their use of 
a calculator does not provide a proof, though. Rather, it is a proof-related activity 
associated with verification [5]. In high school geometry, especially with the advent of 
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dynamic geometry software, students’ justification activities have gravitated away 
from formal proof towards visual justification [12]. Likewise, outside the geometry 
curriculum, the activity of computational verification has become one of the functions 
of proof that replaced deductive reasoning with empirically based justification of 
mathematical statements [14]. Therefore, an important role of a mathematics teacher 
using technology in the classroom is to make sure students understand the difference 
between computational verification and mathematical proof. 

A conceptually different task is to find out whether the statement that any natural 
number greater than two can be represented as a sum of consecutive natural numbers 
is true. The use of the word any is critical in the formulation of the task as already the 
number four provides a counterexample to this statement. Working on an informal, 
hands-on demonstration of the counterexample, a student may find it not possible to 
put four counters in two or more groups the cardinalities of which differ by one 
counter. Unlike the first two tasks, a single counterexample is enough to refute the 
statement through verification. 

As the last example illustrated, the activity of verification of a mathematical statement 
can bear fruit by providing a counterexample to the statement. Yet, a counterexample 
is not always easy to find. For example, the equality 1445 = 275 + 845 + 1105 + 1335 [20, 
p. 46], found through a computer search, serves as a counterexample to the statement 
(known as Euler’s conjecture which, if true, would have proved Fermat’s Last 
Theorem) that it is not possible to represent a perfect n-th power through the sum of 
fewer than n like powers, so that already the equation a3 = b3 + c3 does not possess 
integer solutions because the third power of an integer, due to Euler’s conjecture, 
cannot be represented by fewer than three third powers of integers. At the same time, 
one can see that the fifth power of 144 is represented through the sum of four fifth 
powers of other integers. The computational complexity of this counterexample can 
be demonstrated by trying to use a spreadsheet (Figure 1), albeit, most likely, with no 
success, to find the quadruple (27, 84, 110, 133) through randomly generating, say, 104 
quadruples of integers using the random number generator RANDBETWEEN(1, 150) 
to see whether the sum of the fifth powers of those integers is the fifth power of a 
larger integer and repeating such random trial and error approach another 104 times. 
The programming of the spreadsheet of Figure 1 is included in the Appendix. 

 

Figure 1. Random search for a counterexample to Euler’s conjecture. 
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Both computational and conceptual complexity of this counterexample, being 
indicative of the complexity of Fermat’s Last Theorem, should not be taken to mean 
that the activity of verification of mathematical statements, the proof of which is either 
unknown or too complex to be offered as a classroom activity, has to be avoided. On 
the contrary, there are notable cases when such an activity has to be recommended as 
a motivation for students to enjoy mathematics and ultimately to develop “the habits 
of mind of a mathematical thinker” [7, p. 19]. As was noted in [21, p. 187], “the fact 
that proof is important for the professional mathematician does not imply that the 
teaching of mathematics to a given audience must be limited to ideas whose proofs 
are accessible to that audience”. Because there are quite a few unsolved problems in 
contemporary mathematics [24], we can add to the last quote that teaching of 
mathematics may even be associated with ideas whose proofs are not known.  

In the age of technology, the activity of verification in a mathematics classroom can 
not only be enhanced by digital tools, but those tools can turn such activity into a deep 
conceptual exploration of complex yet grade-appropriate for understanding 
mathematical statements. Regardless, whether those statements have been proved or 
remain unproved, the use of technology enables many previously not thought of 
questions to be either answered or finding an answer to be considered as a genuine 
and even fun activity. For one, Fermat’s Last Theorem, the proof of which was found 
after some 350 years of efforts (including those of Euler), can be introduced by asking 
a question whether it is possible to extend the idea of representing a square as a sum 
of two squares to higher powers? One such technological tool the use of which allows 
for a kind of visualization of Fermat’s Last Theorem is a spreadsheet.  

This paper offers a possible use of a spreadsheet by schoolchildren in exploring one 
open problem in mathematics due to the ease of its formulation and relatively 
unsophisticated spreadsheet programming needed for its treatment. 

Although at the tertiary level the use of famous unsolved or solved problems as a 
motivation for the learning of mathematics is a well-known pedagogical approach [2], 
it is rare that schoolchildren, especially at the elementary level, get a taste of real 
mathematics dealing with problems that attracted mathematicians from over the 
world in search for proofs. Also rare are opportunities to explore problems which 
remain unsolved. Nonetheless, with the advent of digital technology, such 
opportunities have become available at the primary and secondary levels. For 
example, in the context of spreadsheets, Baker [4] discussed the Goldbach conjecture 
[22] and the Palindrome conjecture (Weisstein, 1999b) was discussed in [1].  

This classroom note deals with the so-called Collatz conjecture named after Lothar 
Collatz, a German mathematician (1910–1990) who is believed to be the first to come 
up with it in 1937, although, according to [16], no evidence could be found in Collatz’s 
publications. The introduction of this conjecture in terms of rules which allow one to 
build interesting number sequences, is accessible to even young learners of 



5 
 

mathematics who can be encouraged to try to guess, after initial explorations, what 
those sequences have in common. Yet, the conjecture turned out to be very difficult to 
prove and it has the status of an open problem although many renowned 
mathematicians have left their traces on its solution.  

The main argument of this paper is that students’ exploration of the Collatz conjecture 
using technology is pedagogically worthwhile. In particular, a potential of 
spreadsheets to enhance and deepen students’ mathematical investigations will be 
demonstrated. Before turning to the use of spreadsheets with schoolchildren, some 
historical roots of mathematicians’ work on the Collatz conjecture will be discussed.  

2. Formulation of the Collatz conjecture and its history 
 Another name of the Collatz conjecture used in the literature is the 3n + 1 problem. It 
deals with a sequence defined as follows. Start with any positive integer n and if n is 
an even number divide it by two to get n/2; otherwise, multiply n by three and add 
one to get 3n + 1. Whatever the outcome, apply the same rule to either n/2 or 3n + 1. 
The conjecture states that regardless of the starting number n, the sequence always 
converges to a three-cycle 4, 2, 1. Put another way, the sequence always reaches the 
number 1 from which it goes to 4 followed by 2 and 1, thus repeating the cycle (4, 2, 
1). For example, as shown in the spreadsheet of Figure 2, starting from the number 7, 
the cycle (4, 2, 1) is reached on the 14th iteration. A simple formula that does 
computations is shown in the formula bar of the spreadsheet. 

 

 

Figure 2. The number 7 is attracted by the cycle (4, 2, 1). 
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The problem is said to be circulated in the 1950s by “word of mouth”, among others, 
during the 1950 International Congress of Mathematicians [16]. Yet, it appeared to be 
somewhat disconnected from the mainstream of mathematical theories and until 
1970s no printed publication dealt with it. It was first published by Coxeter [8] based 
on his 1970 lecture, yet as a “piece of mathematical gossip” [16, p. 6]. It was further 
publicized by Gardner [11] in his Scientific American column. The interest to the 
problem has grown connecting it to another class of problems “studying sets of 
integers closed under iteration of affine maps” [16, p. 6]. This is how the problem 
initially believed to be a pure curiosity gradually became a part of investigation of 
mathematicians linking it to number theory, dynamic systems and theory of 
computation [16].  

Labelle [15] asks why the problem is so interesting citing its unpredictable behavior 
in terms of the sequence generated by different numbers which looks very random. 
For example, the number 27 which is relatively small requires 112 steps before it gets 
into the loop 4, 2, 1 whereas the number 84 requires only 10 steps to reach the number 
1 counting 84 as the first step (Figure 3). Labelle [15] also mentions the number 
15,733,919 which was tried by a computer program resulting into a sequence of 705 
iterations before it reaches 1. This randomness in the behavior, according to [15] makes 
the conjecture very difficult to prove. In addition, a call for computing technology to 
help with investigations brings about a lot of difficulties related to decidability of 
associated algorithms [15].  

 While the investigation of mathematics involved in the (still ongoing; it attracts such 
renowned mathematicians as Terence Tao, see, for example, 
https://www.irishtimes.com/news/science/maths-prodigy-terence-tao-does-battle-
with-conjecture-1.4373396) search for a proof (or impossibility to produce one) is too 
complicated for schoolchildren, they can still ask some deeper questions and make 
investigations, especially when being supported by such a commonly available tool 
as a spreadsheet. They can also make some small discoveries which could nurture 
their interest in studying more advanced mathematics.  

For instance, the length of the sequence is of course a very interesting aspect to 
investigate. While it is quite easy to determine the shortest length (yet still interesting 
to do), the search for the longest paths would be an open-ended problem that also can 
be investigated (for example, the number 27 produced a very long sequence, can this 
one be increased?). Is there something to do with parity (odd vs even number), 
divisibility, etc.? What is the biggest number one can get in the sequence? The biggest 
amplitude (increase in value)? In the next section, we will show some possibilities of 
investigation of these and eventually other questions using a spreadsheet. 

3. Introducing the rule: initial steps in conjecturing  
Using a ‘low entry – high ceiling’ strategy for mathematical enrichment activities 
accessible for all students, Collatz conjecture was explored by one of the authors with 



7 
 

schoolchildren of ages 9 – 13 in a number of Canadian schools as part of enriching and 
challenging activities [10], [17]. Prior to the use of a spreadsheet, the students were 
asked to explore all numbers in the range 1 through 10 according to the following rule: 
choose a number and if it is even, divide it by 2; if it is odd, multiply it by 3 and add 
1; step by step apply the same rule to a so developed number and continue until they 
recognize something special. Very soon, all students reported repetition of the (4, 2, 1) 
triple. Then they were asked to describe how the process of arriving to this triple was 
different for each starting number. Already, some observations were made, 
comparing the number 8 (directly going down, 4, 2, 1, to stop at 1) with the number 9 
which produces quite a long sequence (28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 10, 5, 16, 
8, 4, 2, 1). Collectively, by checking all numbers from 1 to 10, students see that the rule 
always produces the triple (4, 2, 1) at the end of the sequence. They become curious to 
know if this is true for larger numbers and can be motivated to continue investigating 
for integers greater than 10. 

After exploring integers greater than 10 (something that is still possible to do with 
paper-and-pencil) and coming to the same conclusion that the sequence seems to 
always end with the triple (4, 2, 1), students were making observations based on this 
initial investigation. For instance, some of them shared that an odd number in the 
sequence is always followed by an even number (e.g., the number 7 produces 3 × 7 +1 = 22) and once a power of two is reached, it descends along the smaller powers of 
two to stop at 1 (e.g., the number 16 (= 24) goes down through 8, 4, 2, 1).  

Other questions were discussed prompting further investigation. For example: Does 
it (descending to 4, 2, 1) always work? Here, trying to find one number to disprove 
conjecture leads to a need to use technology; but some observations could (and did) 
eventually narrow the search. For example, if the number is already in the sequence 
generated by a smaller number, there is no need to check it: based on the sequence for 
the number 9, the students recognized that 52 does not need to be checked. These 
small yet surprising discoveries seemed to trigger student interest to go further. At 
that point, a spreadsheet shown in Figure 2 was useful to model the behavior of the 
sequences for different starting numbers, thus increasing opportunities for new 
questions and discoveries. Following are examples of such open-ended questions that 
could be investigated by students.  

1. Is an even number a good candidate for a longer sequence? An odd number? 
A number divisible by 3? What would be other ‘good’ candidates?  

2. How ‘high’ can the sequence go? (This means the largest number in a sequence). 
3. What would be the biggest increase (drop) from one number to the next one?  
4. What are consecutive numbers that produce a ‘summit’ (big increase – big drop 

– big increase)? 
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Then, the students already familiar with a spreadsheet (Figure 2), were introduced to 
the more complex spreadsheet pictured in Figure 3 to refine and deepen their 
investigations.  

4. Deepening investigation: some possible paths using a spreadsheet 
Using a spreadsheet, one can do much more than just generate the sequences 
converging to the three-cycle 4, 2, 1. It can interactively record and, most importantly, 
save another sequence – the number of steps, S(n), it takes the process to reach the 
cycle starting from number n. For example, as shown in the spreadsheet of Figure 3, 
the number 10 (cell B2) is attracted by the three-cycle after four steps (cell E2). 

 

 

Figure 3. The number 10 reaches the number 4 in four steps. 

 

 

Figure 4. Coming to 40 from different sides. 
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Below is a list of challenging questions that can be explored by students under the 
guidance of their instructor using the spreadsheet of Figure 3. Although challenging 
questions mostly come from teachers as ‘more knowledgeable others’, in the digital 
era, such questions also can be asked by capable and aspiring students, whose “special 
need” should not be neglected. Starting from seemingly low-level questions requiring, 
nonetheless, high level thinking, one should not consider such questions as coming 
from nowhere as they are naturally afforded by the students’ appropriate use of 
technology. Students’ ability to control a digital tool by modifying numeric data 
involved enables them to reconstruct the entire thinking about a problem and, 
through this process of reconstruction, to begin asking questions. In particular, 
classroom teaching, enhanced by the appropriate use of spreadsheets, should be 
organized along the lines of pedagogy that motivates students to ask questions and 
expects teachers, by providing prompts, to assist them in finding answers.  

1. Does zero appear only once in this sequence? 
2. Is it possible to have two (three, four, five, and so on) equal numbers as 

consecutive terms of this sequence? What are these numbers? 
3. How many steps does the n-th power of 2, n > 2, require reaching the cycle 

(4, 2, 1)? 
4. What is the difference between the number of steps found for the numbers 

341 and 85? 
5. What is the smallest five-term sequence of consecutive numbers each of 

which has the same number of steps to reach the number 4? What is the first 
number they all meet in this process? 

6. How to explain the equality S(13) = S(80)? (Figure 4). 
7. It is known that S(11) = 12. Find the smallest n > 11 such that S(n) = 12. 
8. Without developing the entire path starting from the number 85, determine 

the number of steps required reaching the cycle (4, 2, 1). 
9. Without developing the entire path starting from the number 341, 

determine the number of steps required reaching the cycle (4, 2, 1). 
10. Which monotonically increasing sequence an have the number of steps S(an) 

forming the sequence of consecutive natural numbers starting from the 
number 1? How can such sequence be described by a formula? 

11. Find a formula for a sequence an so that S(an+1)=S(an)+2. 

The last two questions appear being the most challenging ones on the above list and, 
following advice of one of the reviewers, the authors provide answers to them. To 
answer question 10, one can use the spreadsheet of Figure 3 (changing the value of the 
slider-controlled cell B2 and analyzing entries of cell E2 recorded in column G) from 
where the following equalities can be written down: S(1) = 1, S(2) = 2, S(5) = 3, S(10) = 
4, S(20) = 5, S(40) = 6, S(80) = 7, S(160) = 8. Thus, the first eight terms of the sequence an 
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sought are: 1, 2, 5, 10, 20, 40, 80, 160. One can recognize a pattern in the development 
of this sequence: every term beginning from a4 is twice the previous term. Thus, the 
sequence an have can defined as follows:  𝑎ଵ = 1, 𝑎ଶ = 2, 𝑎ଷ = 5, 𝑎௡ = 2𝑎௡ିଵ, 𝑛 ≥ 4.    (1) 

A more sophisticated way to describe sequence (1) is to use a closed formula involving 
the greatest integer function (available in the tool kit of spreadsheet formulas, so it can 
be verified through spreadsheet modeling) 𝑎௡ = 𝐼𝑁𝑇ሺ5 ∙ 2௡ିଷ), 𝑛 = 1, 2, 3, … .    (2) 

To answer question 11, one can use the result of question 10 and develop the following 
equalities: S(1) = 1, S(5) = 3, S(20) = 5, S(80) = 7, S(320) = 9. From here, the sequence 1, 
5, 20, 80, 320, ... sought in question 11 can be written down and then generalized to the 
form 𝑎ଵ = 1, 𝑎ଶ = 5, 𝑎௡ = 4 ∙ 𝑎௡ିଵ, 𝑛 ≥ 3.   (3) 

A more sophisticated way to describe sequence (3) is to use the formula 𝑎௡ = 𝐼𝑁𝑇ሺ5 ∙ 4௡ିଶ), 𝑛 = 1, 2, 3, … ,    (4) 

which, once again, can be easily modeled within a spreadsheet. As an aside, note that 
finding formulas (2) and (4) can be due to the use of the On-line Encyclopedia of 
Integer Sequences (OEIS®). This, however, is beyond the scope of this classroom note. 

5. Fibonacci numbers emerge 
It is interesting to note that through exploring the 3n + 1 problem, students can see 
another context where Fibonacci numbers emerge. As one practicing middle school 
teacher once inquired, “The wonder of the Fibonacci numbers ... they pop up everywhere ... 
and what does it mean?” This wonder of mathematical concepts, whether mathematical 
or not, appearing in seemingly unrelated contexts was noted already by Dewey [9, p. 
86] who emphasized the educational importance of an “empirical situation in which 
[familiar] objects are differently related to one another”. In the specific context of 
mathematics, Pólya [19, p. 15] argued that “One of the first and foremost duties of the 
teacher is not to give his students the impression that mathematical problems have 
little connection with each other, and no connection at all with anything else”. This 
unexpected appearance of Fibonacci numbers means that the notion of mathematical 
connections is truly the most common thread permeating the entire school 
mathematics curriculum. Indeed, the starting odd number always generates an even 
number (see the first two tasks mentioned in the introduction); the starting even 
number generates either an even number or an odd number. Consider Figure 5 in 
which the process is presented in the form of a tree diagram: An even number when 
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divided by two yields either even or odd number; an odd number when multiplied 
by three and increased by one yields an even number. 

 

Figure 5. The tree diagram develops like Fibonacci numbers. 

 

This observation can be expressed through the diagram: 𝐸 + 𝑂 → 2𝐸 + 𝑂 → 3𝐸 + 2𝑂 → 5𝐸 + 3𝑂 → 8𝐸 + 5𝑂 → ⋯  
Here, the elements develop as Fibonacci-like numbers starting from E and O. By 
assigning to the letters E and O the numeric value 1, we have the sequence 2, 3, 5, 8, 
13, ... . That is, the first step in the tree diagram is described by the third Fibonacci 
number 𝐹ଷ = 2, the second step by the fourth Fibonacci number 𝐹ସ = 3 , and so on. Let 
us assume that step n in the tree diagram is described by the Fibonacci number 𝐹௡ାଶ =𝐹௡ାଵ + 𝐹௡ , where 𝐹௡ାଵ  and 𝐹௡ describe the number of possibities for even and odd 
numbers, respectively. Then, on step n + 1 there are 𝐹௡ାଵ possibilities for even numbers 
from evens on step n and 𝐹௡ possibilities for even numbers from odds on step n. 
Therefore, there are 𝐹௡ାଶ = 𝐹௡ାଵ + 𝐹௡ possibilities for even numbers and 𝐹௡ାଵ possibilities for odd numbers on step n + 1 in the tree diagram. Therefore, the 
sum 𝐹௡ାଶ + 𝐹௡ାଵ = 𝐹௡ାଷ  represents the total number of possibilities on step n + 1. This 
testing of “transition from n to n + 1” [19, p. 111] represents the inductive step in a 
mathematical induction proof that on step n in the tree diagram of Figure 5 there are 𝐹௡ାଵ possibilities for even numbers out of 𝐹௡ାଶ total possibilities. 
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Recognizing a connection that exists between Fibonacci numbers and the 3n + 1 
problem, students (at the middle and secondary school levels) may become interested 
to use the spreadsheet of Figure 3 in finding the number of steps it takes a Fibonacci 
number to reach the (4, 2, 1) cycle. For example, the number 3 requires 5 steps, the 
number 5 requires 3 steps, the number 8 requires 1 step, the number 13 requires 7 steps 
and the number 21 requires 5 steps. A simple question is: How can one describe these 
findings mathematically? Is there something special about the number of steps? 
Furthermore, it can be seen that the number 55 (the 10th Fibonacci number) requires 
110 steps. Is there something interesting about the latter finding? Thinking about such 
simple questions/problems, as was already mentioned in the introduction, develops 
“the habits of mind of a mathematical thinker” [7, p. 19]. In this regard, almost a 
century ago, in the general context of education, Dewey [9] delineated one’s love to 
think as an interest in solving a problem. Mathematics provides ample opportunities 
for fostering one’s natural curiosity. 

6. Conclusion 
This classroom note stemmed from using a spreadsheet with students of different ages 
in exploring the 3n+1 problem (known as the Collatz conjecture). Being posed in the 
first part of the 20th century, the problem introduces a simple rule for forming number 
sequences that seem to be always terminating with a loop (4, 2, 1). Despite the 
simplicity of the rules, this conjecture still remains unproved despite significant efforts 
of professional mathematicians. It presents an example of an open-ended task 
attractive for students even at the elementary level, especially with the use of 
technology (e.g., a computer spreadsheet) that enhances investigations. Using a 
spreadsheet, one creates modeling data enabling many questions to be raised that 
would not be feasible otherwise [6]. A classroom activity associated with exploration 
of the behavior of sequences generated by different starting numbers prompts 
questions leading to a variety of conjectures. In turn, the verification of conjectures can 
develop students’ interest in mathematics. While triggering a positive relationship to 
mathematics in all students, especially at a younger age, these experiences can lead 
some of them to more advanced mathematical studies [3], [13]. 

The role of a teacher in such a classroom is critical for motivating students’ questioning 
and prompting further investigations. But with each new question asked and tried by 
students (with the help of a teacher when needed), students learn the art of asking 
mathematical questions and looking for the answers by experimenting and modeling 
(a process where technology can be particularly useful). Therefore, some unexpected 
(by both students and teachers) observations and questions can arise. In that way, 
mathematics learning enhanced by the use of a spreadsheet becomes a reciprocal 
process when students learn from teachers and teachers learn from students. The more 
a teacher learns today from students, the more tomorrow’s students would learn from 
the teacher and through such learning reciprocity both parties epistemically develop, 
hopefully bringing mathematics closer to the solution of unsolved problems.  
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Appendix 
The notation (A1): is used to present a formula defined in cell A1. 

Programming of the spreadsheet of Figure 1. 
Column A includes the first 104 natural numbers. Cell I1 is controlled by a slider 
allowing one to generate consecutive natural numbers in the range [1, 104]. Each click 
of the slider generates a new combination of random numbers in columns B, C, D, and 
E. 

(B2), (C2), (D2), (E2): =(RANDBETWEEN(1,150))^5 – replicated down to row 104. 

(F1): =IF(INT((SUM(B1:E1))^0.2)=(SUM(B1:E1))^0.2, 1, " ") – replicated down to row 
104. The formula generates the number 1 (as a marker) in the case when the sum of 
four fifth powers of randomly generated integers is the fifth power itself. Note that 
the range [B1:E1] is entered with the fifth powers of the quadruple (27, 84, 110, 133) 
the sum of which is equal to 1445 (see the counterexample to Euler’s conjecture 
mentioned in the Introduction); thus, cell F1 generates the number 1 as a confirmation 
of the existence of the counterexample. 

(G1): =IF(I$1=A1,F1,G1) – replicated down to row 104. The formula includes circular 
reference, that is, a reference to the cell in which it is defined; this technique allows for 
the preservation of the results displayed in column G as the value of the slider-
controlled cell I1 changes. 

(H1): =COUNTIF(G1:G10000,1). The formula counts the number of ones (markers) 
appearing in column G. 

Programming of the spreadsheet of Figure 3. 
(A1): =1, (A2): = A1+1 – replicated down to cell A1001. 

(B2) is slider-controlled cell, the range is from 0 to 1000. 

(B3): =IF(MOD(B2, 2)=0, B2/2, 3*B2+1) – replicated down to cell B1001. 

(E2): =IF(B2=0," ", IF(B2=4, 0, XLOOKUP(4, B$2:B$1001,A$2:A$1001)-1)) – this formula, 
by using the XLOOKUP function instructs the spreadsheet to look for the number 4 in 
column B and display the corresponding number in column A diminished by one 
thereby calculating the number of steps needed to reach the number 4 by starting with 
a number displaying in cell B2. 

(G2): =IF(B$2=0, " ", IF(B$2=A2, E$2, G2)) – replicated down to cell G1001; this formula, 
by using a circular reference, that is, referencing a cell in which the formula is defined, 
makes it possible to preserve results in column G obtained at each step of changing 
the content of the slider-controlled cell B2. 


