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Abstract 

Sylvester’s criterion, which verifies the positive definiteness of any real symmetric 
matrix by examining the signs of all leading principal minors, is an excellent 
analytical tool. However, as noted by several authors in various academic fields, 
misapplications of the tool include its unjustified use for non-symmetric matrices 
and its unjustified extension for verifying the positive semidefiniteness of matrices. 
As remedies are available, this paper provides a pedagogic illustration that connects 
the corresponding tests for the positive definiteness and the positive 
semidefiniteness of a matrix to the underlying concepts. Drawing on standard 
materials in linear algebra, this paper uses self-contained Excel worksheets to 
illustrate the concepts involved and to generate matrices that are suitable for use in 
courses covering Sylvester’s criterion. This paper also suggests the use of some 
Excel-based exercises for students, as an alternative approach to cover the same 
topic. 

Keywords: positive semidefinite matrices, positive definite matrices, Sylvester's 
criterion 

 



Remedies for Misapplications of Sylvester�s Criterion:
A Pedagogic Illustration

1 Introduction

In linear algebra, an n � n real symmetric matrix A is said to be positive de�nite if, for any

arbitrary n � 1 matrix x with only real elements, excluding the case where all elements of x
are zeros, the scalar that x0Ax represents is always strictly positive. Here, x is also called an

n-element column vector, and the prime stands for matrix transposition. If x0Ax is always non-

negative instead, where x can have all zero elements, then A is said to be positive semide�nite.

Given the above de�nitions, a positive de�nite matrix is also a positive semide�nite matrix;

however, the converse of the statement is false.

According to Sylvester�s criterion, a real symmetric matrix is positive de�nite if and only if all

of its leading principal minors are positive. This matrix property is named after James Joseph

Sylvester (1814-1897). For an n�n matrix, there are n leading principal minors, each of which
is the determinant of the submatrix containing the �rst k rows and the �rst k columns of the

matrix, for k = 1; 2; : : : ; n: Implicitly, the n-th leading principal minor is the determinant of the

matrix itself. Various proofs of Sylvester�s criterion are available, though not entirely from the

mathematics literature (see, for example, Giorgi [2017] for a survey and Kwan [2010, Appendix

B] for a proof where the algebraic tools involved are con�ned to familiar matrix operations).

As a general rule in mathematical proofs, the conditions under which a statement holds

are precise. However, some users of Sylvester�s criterion who are primarily interested in its

applications have misinterpreted the conditions for its applicability, and its misapplications

have been reported in various academic �elds. A notable example is that, as the de�nition of

positive de�niteness need not require the matrix involved to be symmetric (see, for example,

Johnson [1970]), Sylvester�s criterion has been applied to non-symmetric matrices as well. In

an engineering note, Bose [1968] has illustrated with a 2 � 2 matrix that it is inappropriate to
apply Sylvester�s criterion directly to non-symmetric matrices.

In view of the relevance of positive semide�nite matrices in various academic �elds (see,

for example, Hiriart-Urruty and Malick [2012] for a review of its applications in optimization),

Sylvester�s criterion has been extended without justi�cation by some users for testing the positive
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semide�niteness of matrices. Speci�cally, a real symmetric matrix is deemed positive semide�-

nite if all leading principal minors are non-negative. Several authors have warned against using

Sylvester�s criterion in such a manner, by using 2 � 2 or 3 � 3 matrices as examples to reveal
some undesirable consequences (see, for example, Swamy [1973], Prussing [1986], Kerr [1990],

Bhatia [2007, Chapter 1, page 7], and Ghorpade and Limaye [2007]).

As no principal minor of a positive semide�nite matrix can be negative, Prussing [1986]

and Ghorpade and Limaye [2007] have correctly called for the examination of the signs of all

principal minors of the symmetric matrix considered when testing its positive semide�niteness.

A principal minor of an n�n matrix A is the determinant of a p� p matrix, for p = 1; 2; : : : ; n;
which is generated by deleting (n� p) rows of A and the corresponding (n� p) columns of A;
where the deleted rows and columns need not be contiguous. To generate a complete set of

principal minors of A; as each row can be either retained or deleted, there are 2n such choices

before ruling out the case where none of n rows is retained. For an n�n matrix, while there are
only n leading principal minors, there are 2n�1 principal minors. As 2n increases exponentially
with n; to verify the positive semide�niteness of A by checking the signs of all principal minors

is a tedious task if n is large. However, it is still practically feasible to perform such a task for

pedagogic purposes by using some small-scale matrices, such as cases where 2 � n � 5:
It is worth noting that the relevance of positive de�nite and positive semide�nite matri-

ces is not con�ned to those academic �elds where misapplications of Sylvester�s criterion have

been reported. For example, in some �nance courses covering portfolio optimization models

for assisting investment decisions, students learn about the importance of verifying the positive

de�niteness and the positive semide�niteness of the covariance matrix of returns used for the

models involved (see, for example, Kwan [2010, 2018] for some relevant analytical issues). Co-

variance matrices are real symmetric matrices. With A and x representing an n�n covariance
matrix and an n-element column vector of portfolio weights, respectively, the scalar x0Ax is the

variance of portfolio returns, which is a risk measure. As variance can never be negative, the

positive semide�niteness of A is required. A positive de�nite A implies that there is always

some risk that cannot be diversi�ed away in a portfolio setting.

Small-scale covariance matrices are suitable for illustrative purposes. They are often based

on arti�cial data with the implied correlations of returns all con�ned in the permissible range

of �1 to 1: However, as such a requirement alone does not ensure the positive de�niteness and
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the positive semide�niteness of the covariance matrices involved, proper veri�cation will still be

necessary. Further, when a portfolio optimization model is implemented empirically, as the true

variances and covariances of asset returns are unknown, they must be estimated. Covariance

matrices estimated with past asset return observations under the assumption of stationary joint

distribution of returns � commonly known as sample covariance matrices � are always positive

semide�nite, and invertible sample covariance matrices are always positive de�nite. However,

as results from portfolio optimization models are highly input sensitive, revisions to sample

covariance matrices are often deemed necessary. If some elements of a sample covariance

matrix have been revised for potential improvements, the positive de�niteness and the positive

semide�niteness of the resulting matrix will have to be examined before it can be used for

implementing any portfolio optimization model.

For courses covering Sylvester�s criterion, it is bene�cial to students if the misapplications

as noted above and the corresponding remedies are also part of the coverage. A task for

each instructor involved, therefore, is to generate various real matrices for use in illustrative

examples, exercises, and examination questions, unless the same matrices generated by others

are used repeatedly instead. Matrices where arbitrary values are assigned to the individual

elements tend to be neither positive de�nite nor positive semide�nite. To generate a real

symmetric matrix that is known in advance to be positive de�nite, positive semide�nite, or

neither does require the use of an algebraic relationship for the matrix, its eigenvalues, and the

corresponding orthonormal eigenvectors. (What eigenvalues, eigenvectors, and orthonormal

eigenvectors represent, as well as how a set of linearly independent eigenvectors can be made

orthonormal, are provided in Section 3 and Appendices A and B.) Although such an algebraic

relationship is usually part of the standard coverage in linear algebra courses, its coverage in this

paper will help students recognize its relevance in the context of applications and misapplications

of Sylvester�s criterion.

The use of Excel�s matrix tools � either for a self-contained Excel worksheet or in combina-

tion with computational results from some free online resources � can facilitate the attainment

of various real matrices. (A description of such online resources will be provided later in this

paper, when the context becomes clearer.) Indeed, once the above-mentioned algebraic relation-

ship has been identi�ed, the use of Excel�s matrix tools can lead to as many suitable matrices as

needed for pedagogic purposes. Illustrations based on the matrices thus generated, with each
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matrix containing some speci�c algebraic properties, can also improve the depth of coverage of

Sylvester�s criterion in the courses involved.

The remainder of this paper is organized as follows: Section 2 illustrates in more detail

the misapplications of Sylvester�s criterion as noted earlier, with the example from Bose [1968]

and a common example from Prussing [1986], Bhatia [2007], Ghorpade and Limaye [2007], and

Hiriart-Urruty and Malick [2012]. Section 3 covers, in several subsections, the core analytical

materials of this paper. In addition to generating real symmetric matrices known in advance to

be positive de�nite, positive semide�nite, or neither, based on a speci�c algebraic relationship,

this section provides a simple remedy for the type of misapplications noted by Bose [1968], as well

as a simple way to recognize some real symmetric matrices that are neither positive de�nite nor

positive semide�nite. This section also illustrates how some non-symmetric matrices suitable

for pedagogic illustrations in courses where Sylvester�s criterion is covered can be generated.

Further, in support of the approach by Prussing [1986] and Ghorpade and Limaye [2007] for

verifying the positive semide�niteness of any given real symmetric matrix, this section provides

analytical justi�cation for examining the signs of all principal minors as well.

Section 4 provides an Excel-based illustration, which is intended to achieve two related

pedagogic objectives. The �rst objective is to illustrate a direct connection between whether a

given matrix is positive de�nite, positive semide�nite, or neither and the eigenvalues, which can

be deduced from the matrix itself. Such a connection will help students understand more fully

the usefulness of Sylvester�s criterion, as well as its limitations. The second objective pertains

to generating real symmetric matrices and related non-symmetric matrices given the eigenvalues

and the corresponding eigenvectors. The use of Excel tools will allow students to focus on the

underlying concepts without being distracted from the computational chores involved. Finally,

Section 5 concludes this paper.

As the analytical materials in Section 3 and Appendices A and B are essential for the coverage

of Sylvester�s criterion and remedies for its misapplications, the two pedagogic objectives of

Section 4 can also be achieved via some Excel-based exercises for students. The exercises can

be set up in such a way that students not only will generate some small-scale matrices based on

some eigenvalues and the corresponding eigenvectors, but also will perform positive de�niteness

and positive semide�niteness tests for matrices provided by others. Such exercises can help

students connect directly the analytical tools involved and the underlying concepts.
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2 Simple Illustrations of Two Common Misapplications
of Sylvester�s Criterion

Real Non-Symmetric Matrix: The matrix in the example provided by Bose [1968] is

B =

�
2 3
0 1

�
: (1)

As each leading principal minor is 2 and thus is strictly positive, the use of Sylvester�s criterion

would erroneously indicate the positive de�niteness ofB: Such a test result is erroneous because,

for

x =
�
1 s

�0
; (2)

where s is a real number,

x0Bx =
�
1 s

� � 2 3
0 1

� �
1
s

�
= 2 + 3s+ s2 = (s+ 1)(s+ 2) (3)

is negative for �2 < s < �1; con�rming that B cannot be positive de�nite.

Real Symmetric Matrix: Unlike the correct use of Sylvester�s criterion to con�rm the

positive de�niteness of a symmetric matrix, its use to con�rm the positive semide�niteness

instead, by requiring that all leading principal minors be non-negative, is a conjecture that can

easily be refuted. In the common example from Prussing [1986], Bhatia [2007], Ghorpade and

Limaye [2007], and Hiriart-Urruty and Malick [2012], as

A =

�
0 0
0 �1

�
; (4)

both leading principal minors are zeros and thus non-negative. However, the use of Sylvester�s

criterion in such a manner would erroneously con�rm its positive semide�niteness.

For

x =
�
r s

�0
; (5)

where r and s are any real numbers, as

x0Ax =
�
r s

� � 0 0
0 �1

� �
r
s

�
= �s2; (6)

which is negative for s 6= 0; the above conjecture of A being positive semide�nite must be

false. Further, the three principal submatrices of A are [0] ; [�1] ; and A itself, for which

the corresponding determinants are 0; �1; and 0: Such a result can also be used to reject the
positive semide�niteness of A:
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3 Some Relevant Matrix Materials

The �ve subsections below cover those analytical materials that are directly related to the ped-

agogic objectives of this paper. They include the following: (i) a remedy for misapplying

Sylvester�s criterion to non-symmetric matrices, (ii) justi�cation for immediate rejections of the

positive de�niteness and the positive semide�niteness of real symmetric matrices with some spe-

ci�c features, without having to apply Sylvester�s criterion explicitly or the remedy according

to Prussing [1986] and Ghorpade and Limaye [2007], (iii) a procedure to orthonormalize lin-

early independent eigenvectors for generating suitable symmetric matrices for use in applying

Sylvester�s criterion, (iv) a simple approach to generate suitable non-symmetric matrices for

further illustrations, by drawing on the analytical materials in (i); and (v) justi�cation for the

examination of the signs of all principal minors for verifying the positive semide�niteness of

a given matrix. To avoid digressions, some analytical materials, though also relevant for the

pedagogic objectives of this paper, are provided in Appendices A and B instead.

3.1 Real Non-Symmetric Matrices

For an n � n real non-symmetric matrix B and any n-element column vector x with all real

elements, the matrix product x0Bx � which is a 1� 1 matrix � is the same as its transpose.

As we can write

x0Bx = (x0Bx)0 = x0B0x (7)

and then

2x0Bx = x0(B +B0)x = x0Ax; (8)

where

A = B +B0; (9)

B is positive de�nite (positive semide�nite) if A is positive de�nite (positive semide�nite).

Further, as A is symmetric, Sylvester�s criterion can be used to verify whether A is positive

de�nite, thus allowing us to reach the corresponding conclusion about B itself.

If it turns out that B is positive de�nite, it must also be positive semide�nite, as the

occurrence of x0Bx = 0 corresponds to the trivial case where x has all zero elements. However,

if the application of Sylvester�s criterion leads to the rejection of the positive de�niteness of
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A; all we can infer from the result is that B is not positive de�nite. To verify the positive

semide�niteness of B still requires the subsequent analytical materials in this section, unless

we simply treat the remedy provided by Prussing [1986] and Ghorpade and Limaye [2007] as a

recipe that works well.

In the example provided by Bose [1968],

A = B +B0 =

�
2 3
0 1

�
+

�
2 0
3 1

�
=

�
4 3
3 2

�
(10)

being symmetric, Sylvester�s criterion is applicable. As the two leading principal minors of A

are 4 and �1; the positive de�niteness of A is rejected. Thus, so isB: AsA has three principal

submatrices, consisting of [4] ; [2] ; and A itself, for which the corresponding determinants are

4; 2; and �1; its positive semide�niteness must be rejected according to the recipe. The same
conclusion applies to B as well.

3.2 Real Symmetric Matrices with Zero or Negative Diagonal Ele-
ments

If a real n � n symmetric matrix A has at least one zero diagonal element, the matrix cannot

be positive de�nite. Suppose that the (i; i)-element of A is zero. For any n-element column

vector x where the only non-zero element is in its i-th entry, we always have

x0Ax = 0; (11)

which directly leads to the rejection of the positive de�niteness ofA: If so, an explicit application

of Sylvester�s criterion to verify this rejection is unnecessary.

If A has at least one negative diagonal elements instead, the matrix can neither be positive

de�nite nor positive semide�nite. If so, neither an explicit application of Sylvester�s criterion

for verifying its positive de�niteness nor the use of the remedy as proposed by Prussing [1986]

and Ghorpade and Limaye [2007] for verifying its positive semide�niteness is necessary. To see

this, suppose that the (i; i)-element of A; denoted as aii; is negative. All that we have to do is

to attempt an n-element column vector x where all elements are zeros, except for its non-zero

i-th entry, denoted as xi: In such a case, as

x0Ax = aiix
2
i < 0; (12)
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A can be neither positive de�nite nor positive semide�nite. Notice that the 2�2 real symmetric
matrix in equation (4) is a simple example that covers both situations above.

The same conclusion about A can also be reached, if the inverse of A exists and has at least

one negative diagonal element. To see this, let us denote the (i; i)-element of A�1; which is

negative, as cii: AsAA�1 is an identity matrix, we can write, for an arbitrary n-element column

vector x;

x0A�1x = x0A�1(AA�1)x = y0Ay; (13)

where

y = A�1x: (14)

We can choose x in such a way that all of its elements are zeros, except for its non-zero i-th

entry, denoted as xi: As there is a corresponding y; for which

y0Ay = x0A�1x = ciix
2
i < 0; (15)

A can be neither positive de�nite nor positive semide�nite.

3.3 Symmetric Matrix Corresponding to Given Eigenvalues and Lin-
early Independent Eigenvectors

For the purpose of generating a symmetric matrix A by using its n eigenvalues and the corre-

sponding n linearly independent eigenvectors, an orthonormalization procedure for such eigen-

vectors is required. See Appendix A for a brief introduction to eigenvalues and eigenvectors.

See also Appendix B for the detail of the orthonormalization procedure. In essence, we let

�1; �2; : : : ; �n be the n eigenvalues and x1;x2; : : : ;xn be the corresponding linearly independent

eigenvectors and write

Axi = �ixi; for i = 1; 2; : : : ; n; (16)

succinctly as

AX =X�: (17)

Here, � is an n� n diagonal matrix with the individual diagonal elements being �1; �2; : : : ; �n;
and

X =
�
x1 x2 � � � xn

�
(18)
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is an n � n matrix, where each column i is the corresponding eigenvector xi: If XX 0 is an

identity matrix, X is said to be orthonormal.

The orthonormalization of the original set of linearly independent eigenvectors can be achieved

by using the well-known Gram-Schmidt process (see, for example, Strang [2016]), which is named

after J�rgen Pedersen Gram (1850-1916) and Erhard Schmidt (1876-1959). Upon the comple-

tion of the Gram-Schmidt process, XX 0 will become an identity matrix, which implies that

X 0 =X�1: (19)

It follows that

A =X�X�1 =X�X 0: (20)

As

A0 = (X�X 0)0 =X�X 0 = A; (21)

the symmetry of A thus generated is assured. Any changes in � and the corresponding X

resulted from the orthonormalization procedure will lead to a di¤erent A: Such symmetric

matrices thus generated are suitable examples for use in illustrating positive de�niteness and

positive semide�niteness tests.

Notice that, for a small-scale case such as n = 4; the orthonormal matrix X can also be

obtained directly. Speci�cally, the use of a Hadamard matrix � which is named after Jacques

Solomon Hadamard (1865-1963) � will directly lead to an orthonormal matrix. By de�nition,

each element of an n�n Hadamard matrix, if the matrix exists, must be 1 or �1; and each pair
of di¤erent rows of the matrix must be orthogonal vectors. For example,

H =

2664
1 1 1 1
1 �1 1 �1
1 1 �1 �1
1 �1 �1 1

3775 (22)

is a 4� 4 Hadamard matrix, as
HH 0 = 4I; (23)

where I is a 4 � 4 identity matrix. Thus, if � is a 4 � 4 diagonal matrix, H=2 can be used
directly as X in equation (21) for the purpose of generating a 4� 4 symmetric matrix A; that
is, there is no need to go through the Gram-Schmidt process for the same purpose. However,

11



for other small-scale cases such as n = 3; 5; 6; or 7; the corresponding Hadamard matrices do

not exist.

Notice also that, for the purpose of generating an n � n symmetric matrix A; the starting
point can still be n eigenvalues and the corresponding linearly independent eigenvectors, but with

the technical detail of the Gram-Schmidt process bypassed entirely as well. This is because, for

small-scale cases, several online Gram-Schmidt calculators are available; for example, eMathHelp

and dCode o¤er free orthonormalization for three vectors and for two, three, and four vectors,

respectively.1 If such online resources are utilized, the users will still have to perform subsequent

computations to reach the corresponding symmetric matrix A via equation (21).

3.4 Non-Symmetric Matrices Generated from a Given Symmetric
Matrix

Once we have generated a real symmetric matrix by following the procedure as described in the

preceding subsection and in Appendix B, we can obtain as many real non-symmetric matrices

as needed for the purpose of testing their positive de�niteness or positive semide�niteness. To

see how, suppose that a real n� n symmetric matrix A has already been generated. Let S be

an arbitrary n � n real skew-symmetric matrix, which is a matrix where all diagonal elements
are zeros and the (i; j)-element, denoted as sij; is the negative of sji; for i; j = 1; 2; : : : ; n and

i 6= j: With S being skew-symmetric, we always have

S0 = �S: (24)

Now, let

B =
1

2
A+ S: (25)

As

B0 =
1

2
A0 + S0 =

1

2
A� S; (26)

we always have

B +B0 = A; (27)

1The corresponding electronic links are https://www.emathhelp.net/calculators/linear-algebra/gram-
schmidt-calculator/ and https://www.dcode.fr/gram-schmidt-orthonormalization .
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regardless of the choice of S for the purpose of generating the corresponding B: We have

established in equation (8) from Subsection 3.1 that, for any real n-element column vector x;

2x0Bx = x0Ax: (28)

An implication is that the positive de�niteness (positive semide�niteness) of A indicates the

same about B and that, if A is not positive de�nite (positive semide�nite), neither is B: As

the choice of S is arbitrary for the same real symmetric matrix A; we can generate as many

non-symmetric matrices as needed for pedagogic purposes.

3.5 Signs of Individual Principal Minors and the Positive Semide�-
niteness of a Real Symmetric Matrix

Suppose that a given n� n real symmetric matrix A is partitioned as follows:

A =

�
A11 A12

A21 A22

�
; (29)

where A11; A12; A21; and A22 are (n� p)� (n� p); (n� p)� p; p� (n� p); and p� p matrices,
respectively, with p being any integer among 1; 2; : : : ; n� 1: For each p; the n-element column
vector x is partitioned conformally as

x =

�
x1
x2

�
; (30)

where x1 and x2 are (n � p)-element and p-element column vectors, respectively. If x1 is set

to be a vector of zeros, we can write

x0Ax =
�
x01 x02

� � A11 A12

A21 A22

� �
x1
x2

�
= x02A22x2: (31)

WithA partitioned in the above manner,A22 can be viewed as a principal submatrix resulted

from the deletion of its �rst (n�p) rows and its �rst (n�p) columns. The corresponding principal
minor is jA22j : If jA22j < 0; A22 must have at least one negative eigenvalue. If so, A22 cannot

be positive semide�nite. Further, in view of equation (31), neither can A:

The above idea can be extended, by allowing any of the (n � p) deleted rows and the
corresponding (n�p) columns not to be contiguous. All that we have to do is to set the elements
of x corresponding to the deleted rows (or columns) of A to zeros. Let xp be the p-element

column vector that contains the remaining elements of x: Let also App be the corresponding
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p � p principal submatrix of A after such row and column deletions, with jAppj being the
corresponding principal minor.

For each p; there are �
n

n� p

�
=

�
n

p

�
=

n!

(n� p)!p! (32)

ways to delete (n�p) rows and the corresponding (n�p) columns for obtaining a p�p principal
submatrix App: In each case, we have

x0Ax = x0pAppxp: (33)

If jAppj < 0; App cannot be positive semide�nite, and neither can A:

Suppose that the positive de�niteness of a given n�n real symmetric matrix A has already

been rejected according to Sylvester�s criterion. Suppose also that none of the leading principal

minors of A is negative. Then, to verify the positive semide�niteness of A requires that

the 2n � 1 principal submatrices be examined. If the determinant of any of these principal

submatrices is negative, the positive semide�niteness of A must be rejected as well.

4 An Excel-Based Illustration

As indicated in the Introduction, there are two related pedagogic objectives of the Excel-based

illustration. The Excel worksheets for Figures 1 and 2 are for illustrating these two objectives

separately. Speci�cally, Figure 1 is focused on tests of the positive de�niteness and the pos-

itive semide�niteness of a given matrix; Figure 2 is focused on generating a matrix given its

eigenvalues and the corresponding eigenvectors instead.

Although both �gures are based on 4� 4 matrices, the corresponding Excel worksheets can
easily be revised to accommodate a 3� 3 case or a 5� 5 case. In either case, the corresponding
changes to the worksheet for Figure 1 will be straightforward. For changes to the worksheet

for Figure 2 for the 5� 5 case, the cell formulas for orthonormalizing the given eigenvectors via
the Gram-Schmidt process will inevitably be more tedious.
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4.1 Figure 1

The 4� 4 real symmetric matrix for the illustration in Figure 1 is

A =

2664
1 1 1 1
1 1 1 1
1 1 0:8 0:4
1 1 0:4 0:5

3775 ; (34)

which is a variant of the 3� 3 real symmetric matrix

Z =

24 1 1 1
1 1 1
1 1 a

35 ; (35)

where a = 0 or a < 1; as considered in di¤erent notations by Swamy [1973], Prussing [1986],

and Kerr [1990]. As none of the diagonal elements of A is zero or negative, we must rely

on the usual procedures to verify whether the matrix is positive de�nite, positive semide�nite,

or neither. With the second leading principal minor being zero, it is obvious that A cannot

be positive de�nite according to Sylvester�s criterion. The next step is to verify the positive

semide�niteness of A; this task requires that the signs of the 15 (= 24 � 1) principal minors be
examined.

In Figure 1, the 15 principal submatrices are displayed in B8:E53. The computations of

the corresponding principal minors in G8:G53 are straightforward. The principal minors corre-

sponding to the four single-element submatrices require no computations. The computations for

the remaining principal minors are by using the Excel function MDETERM for determinants.

The four leading principal minors, as displayed in B8, B16:C17, B34:D36, and B50:E53, are

shaded. They are 1; 0; 0; and 0; indicating that A cannot be positive de�nite, as expected. As

the lowest value of the 15 principal minors is �0:5; as displayed in H6, the positive semide�nite-
ness of A must also be rejected. Such results imply that at least one of the four eigenvalues of

A is negative; however, an examination of the signs of the four leading principal minors alone

has been unable to reveal such a feature. (See the fourth property in Appendix A.)

To connect directly the rejection of the positive semide�niteness of A to the signs of its four

eigenvalues requires that they be determined �rst. For the 4 � 4 real symmetric matrix A in

equation (34), combining equations (A5), (A6), and (A8) in Appendix A. leads to

(��)4 + 3:3(��)3 � 1:16(��)2 � 0:52(��) + 0 = 0 (36)
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1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

A B C D E F G H
Symmetric Matrix A 1 1 1 1

1 1 1 1
1 1 0.8 0.4
1 1 0.4 0.5

Principal Minor, Lowest 0.5

Principal Submatrices 1 Principal Minors 1

1 1

0.8 0.8

0.5 0.5

1 1
1 1 0

1 1
1 0.8 0.2

1 1
1 0.5 0.5

1 1
1 0.8 0.2

1 1
1 0.5 0.5

0.8 0.4
0.4 0.5 0.24

1 1 1
1 1 1
1 1 0.8 0

1 1 1
1 1 1
1 1 0.5 0

1 1 1
1 0.8 0.4
1 0.4 0.5 0.26

1 1 1
1 0.8 0.4
1 0.4 0.5 0.26

1 1 1 1
1 1 1 1
1 1 0.8 0.4
1 1 0.4 0.5 0

Figure 1: An Excel-Based Illustration of Positive Definiteness and Positive
Semidefiniteness Tests for a Given Real Symmetric Matrix.
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or, equivalently,

�
�
�3 � 3:3�2 � 1:16�+ 0:52

�
= 0: (37)

As expected, the coe¢ cient of the (��)3 term in equation (36), which is 3:3; is the trace of A:

Also as expected is that the constant term on the left hand side of the same equation, which

is zero, is the determinant of A: In equation (37), one of the four eigenvalues is zero, and the

remaining three eigenvalues are �0:54803; 0:26480; and 3:58323; which have been solved and
veri�ed by using the free online cubic equation calculators o¤ered by CalculatorSoup or keisan.2

(See the �rst three properties in Appendix A.)

The validity of equation (37) has also been con�rmed, as the four eigenvalues based on it all

satisfy the characteristic equation, which is equation (A5) in Appendix A. The computations

of

jA� �iIj =

��������
(1� �i) 1 1 1
1 (1� �i) 1 1
1 1 (0:8� �i) 0:4
1 1 0:4 (0:5� �i)

�������� ; (38)

where �1; �2; �3; �4 are the four solved eigenvalues, are by using directly the Excel function

MDETERM. As one of the four eigenvalues based on equation (37) is zero, A�1 does not exist,

thus con�rming thatA cannot be positive de�nite. Further, as one of the remaining eigenvalues

is negative, the positive semide�niteness of A must also be rejected, thus con�rming the same

conclusion as reached earlier. (See the fourth property in Appendix A.)

The same worksheet for Figure 1 can also be used for any 4 � 4 real symmetric matrices.
Further, for the same matrix A in equation (34), by letting the skew-symmetric matrix be, for

example,

S =

2664
0 0:2 �0:1 0:1

�0:2 0 0:1 �0:2
0:1 �0:1 0 0:3
�0:1 0:2 �0:3 0

3775 ; (39)

we can deduce � via equation (25) in Subsection 3.4 of the preceding section � a non-symmetric

matrix

B =

2664
0:5 0:7 0:4 0:6
0:3 0:5 0:6 0:3
0:6 0:4 0:4 0:5
0:4 0:7 �0:1 0:25

3775 ; (40)

2The corresponding electronic links are https://www.calculatorsoup.com/calculators/algebra/cubicequation.php
and https://keisan.casio.com/exec/system/1181809414 .
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for which equation (27) holds. Notice that a di¤erent choice of S will result in a di¤erent B:

As explained earlier, to address the concern raised by Bose [1968], the use of same worksheet

for Figure 1 to check the positive de�niteness or the positive semide�niteness of B ought to be

via B+B0 instead. Notice also that the end results pertaining to the positive de�niteness and

the positive semide�niteness of B +B0 will be una¤ected by the di¤erent choices of S:

4.2 Figure 2

We now turn our attention to generating a matrix given its eigenvalues and the corresponding

eigenvectors. Of special interest, therefore, is how the same 4� 4 real symmetric matrix A in

equation (34) can be generated from knowing its eigenvalues and the corresponding eigenvectors,

instead of modifying an available 3 � 3 real symmetric matrix from the literature. In the

illustration in Figure 1, as no eigenvectors have been deduced, they must be determined �rst.

A set of four eigenvectors x1; x2; x3; and x4 corresponding to �1; �2; �3; and �4; respectively,

can be determined from equation (16), where n = 4:

As it turns out that the three eigenvectors corresponding to the three non-zero eigenvalues of

the same matrix A in equation (34) are already orthogonal, they are unsuitable for illustrating

the Gram-Schmidt process. Thus, it is better that the illustration in Figure 2 be based on a

di¤erent set of input data. However, the worksheet showing how the same matrixA in equation

(34) has been generated, from knowing its eigenvalues and the corresponding eigenvectors, is

still in the Excel �le accompanying this paper.

The Excel worksheet for Figure 2 is self-contained; that is, no online Gram-Schmidt calculator

has been used. An obvious advantage of using a self-contained Excel worksheet is that there is

no need to copy the online results manually to the worksheet for any subsequent computations.

Figure 2 shows how both a 4 � 4 real symmetric matrix A and a related real non-symmetric

matrix B; as mentioned at the end of the preceding subsection, can be generated. The given

data, including the eigenvalues �1; �2; �3; �4; the corresponding linearly independent eigenvectors

v1;v2;v3;v4; and the skew-symmetric matrix S; are displayed in B25:E28 as its four diagonal

elements, in B1:E4 as its four columns, and in H30:K33, respectively. The cells containing such

data are shaded. Notice that, on purpose, the four eigenvectors in B1:E4 are not based on a

Hadamard matrix, although the Excel worksheet can accommodate such a matrix as given data

for the same cells.
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1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

A B C D E F G H I J K
Original Vectors v 1 0 0 2

1 1 0 0
0 1 1 0
0 0 1 0

Lengths 1.414 1.414 1.414 2

Orthogonal Vec. W 1 0.5 0.333 0.5
1 0.5 0.33 0.5
0 1 0.333 0.5
0 0 1 0.5

Lengths 1.414 1.225 1.155 1

Orthonormal Vec. X 0.707 0.41 0.289 0.5 Transpose, X' 0.707 0.707 0 0
0.707 0.408 0.29 0.5 0.41 0.408 0.816 0

0 0.816 0.289 0.5 0.289 0.29 0.289 0.866
0 0 0.866 0.5 0.5 0.5 0.5 0.5

Product XX' 1 0 0 0
0 1 6E 17 0
0 6E 17 1 2E 16
0 0 2E 16 1

Diag. Mat. Lambda 1 0 0 0
0 3 0 0
0 0 0 0
0 0 0 2

Symmetric Mat. A 1.5 0.5 0.5 0.5 Skew Sym Mat. S 0 0.3 0.1 0.1
0.5 1.5 0.5 0.5 0.3 0 0.15 0.2
0.5 0.5 2.5 0.5 0.1 0.15 0 0.2
0.5 0.5 0.5 0.5 0.1 0.2 0.2 0

Lead. Prin. Min., A 1.5 Non Sym. Mat. B 0.75 0.05 0.35 0.15
2 0.55 0.75 0.4 0.05

4.5 0.15 0.1 1.25 0.05
4E 16 0.35 0.45 0.45 0.25

Figure 2: An Excel-Based Illustration of the Attainment of a Real Symmetric
Matrix and a Related Non-Symmetric Matrix Given the Eigenvalues and the
Corresponding Linearly Independent Eigenvectors of the Former Matrix.
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The length of each eigenvector in B6:E6 is the square root of the sum of squares of the

four individual elements of the eigenvector involved. The orthogonal vectors w1;w2;w3;w4

and the corresponding orthonormal vectors x1;x2;x3;x4; as displayed in B8:E11 and B15:E18,

respectively, have been obtained via the Gram-Schmidt process as described in Appendix B.

The di¤erence between these two sets of vectors is that the latter set has been normalized so

that each vector is of unit length. This is indicated by XX 0 being an identity matrix, as

displayed in B20:E23, where

X =
�
x1 x2 x3 xn

�
: (41)

To avoid digressions, all cell formulas for the Excel worksheet in Figure 2 are listed in Appendix

C instead.

As shown in B35:E38, the fourth leading principal minor of A; which is also its determinant,

is zero for practical purposes, thus ruling out its positive de�niteness. Such an outcome is as

expected, because the four eigenvalues have been set at 0; 1; 2; and 3; for which A�1 does not

exist. The same set of eigenvalues also ensures that A be positive semide�nite. However,

without knowing these eigenvalues in advance, one cannot make such a conclusion before �rst

checking the signs of all principal minors. The task can easily be performed by copying the

values of the cells in B30:E33 of the worksheet for Figure 2 to B1:E4 of the worksheet for Figure

1. As expected, the lowest value of the 15 principal minors in H6 of Figure 1 will become 0;

thus con�rming the positive semide�niteness of this symmetric matrix A:

5 Conclusion

Sylvester�s criterion is an excellent analytical tool for verifying the positive de�niteness of real

symmetric matrices. Its misapplications have also been noted across various academic �elds;

so have its remedies. However, the corresponding illustrative examples from various published

works have been con�ned to only a few 2 � 2 or 3 � 3 matrices. Indeed, there are not many

available examples that instructors of courses covering Sylvester�s criterion can use as additional

examples, exercises, and examination questions for students. This paper has used self-contained

Excel worksheets for the core computations to generate suitable 4 � 4 matrices for pedagogic
purposes, intending to improve the depth of coverage of Sylvester�s criterion in the courses

involved.
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This paper has replicated those materials in linear algebra that are essential for properly

understanding Sylvester�s criterion and remedies for its misapplications. Thus, this paper is

also intended to help students connect directly the analytical tools involved and the underlying

concepts. An e¤ective approach to help students make the connection is via some Excel-based

exercises. Such exercises will involve generating small-scale matrices of various dimensions, as

well as performing positive de�niteness and positive semide�niteness tests for matrices provided

by others, by using those analytical materials as replicated in this paper. The experience

that students will gain from such exercises does go beyond learning the technical detail of the

tasks involved; it also helps students appreciate more fully the usefulness and the limitations of

Sylvester�s criterion as an analytical tool.

Appendix A: Determinants, Eigenvalues, Eigenvectors, and
Four Matrix Properties

The materials in this appendix is part of the standard coverage of introductory linear algebra

courses. After brie�y introducing determinants, eigenvalues, and eigenvectors, we identify four

matrix properties pertaining to Sylvester�s criterion and remedies for its misapplications. For

each property, if the detail of a proof is directly related to the materials in the main text, it is

included; otherwise, references are provided instead.

A Brief Introduction to Determinants, Eigenvalues, and Eigenvectors: Formally,

the determinant of an n � n matrix A; denoted as jAj; where aij is its (i; j)-element, for
i; j = 1; 2; : : : ; n; is

jAj =
X
(�1)a1i1a2i2 � � � anin ; (A1)

where the summation is over all n! permutations of i1; i2; : : : ; in: The n di¤erent integers that

i1; i2; : : : ; in represent can be any permutation of 1; 2; : : : ; n: If it takes an even number of

interchanges, involving an adjacent pair of integers for each interchange, to rearrange these

integers as 1; 2; : : : ; n; then we use the multiplicative factor (+1) for a1i1a2i2 � � � anin : If it takes
an odd number of interchanges, then we use the multiplicative factor (�1) instead.
The determinant of A and the inverse of A; denoted as A�1; are related by

A�1 =
1

jAj adj A; (A2)
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where adj A; known as the adjoint of A; is the transpose of an n � n matrix of cofactors of
A: Here, the (i; j)-element of the matrix of cofactors of A is (�1)i+j times the determinant of
the (n � 1) � (n � 1) matrix resulted from the deletion of row i and row j of A: The latter

determinant is also known as the (i; j) minor, and principal minors pertain to cases where i = j:

The existence of A�1; therefore, requires that jAj be non-zero. A non-zero jAj ensures that

A�1A = AA�1 = I; (A3)

where I is an n� n identity matrix.
There is a non-zero n-element column vector x; which satis�es the equation

Ax = �x (A4)

for some scalar �: To ensure that x be a vector where not all n elements are zeros, the following

equation, known as the characteristic equation, must hold:

jA� �Ij = 0: (A5)

For the n-th order polynomial function

P (�) = jA� �Ij ; (A6)

which is also known as the characteristic polynomial, the n roots of �; denoted as �1; �2; : : : ; �n;

are the n eigenvalues of A:

In

Axi = �ixi; for i = 1; 2; : : : ; n; (A7)

the n eigenvectors corresponding to the n eigenvalues �1; �2; : : : ; �n are x1;x2; : : : ;xn: Eigen-

vectors are not unique. Of special interest are those that are linearly independent; that is, none

of x1;x2; : : : ;xn can be replicated by a linear combination of the remaining eigenvectors.

First Property: The n eigenvalues of an n � n real symmetric matrix A are all real.

This property can be proven by �rst assuming that they are complex instead. A proof by

contradiction in the context here is to rule out such an assumption at the end of the proof. The

corresponding detail of the proof, which is omitted here, is available in Kwan [2010, Appendix

B]. This property has provided an important �rst step to connect Sylvester�s criterion and
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symmetric matrices. It allows us to work with real eigenvalues and real eigenvectors for the

tasks involved.

Second Property: The determinant of an n � n real matrix A; which need not be sym-
metric, is the product of its n eigenvalues. To prove this property, we start with expressing the

polynomial function P (�) in equation (A6) as

P (�) = (��)n + bn�1(��)n�1 + bn�2(��)n�2 + � � �+ b1(��) + b0

= (�1)n(�� �1)(�� �2) � � � (�� �n); (A8)

where b0; b1; : : : ; bn�2; bn�1 are coe¢ cients. It follows directly that

jAj = P (0) = b0 = �1�2 � � ��n; (A9)

which is the product of the n eigenvalues.

Third Property: The trace of an n � n real matrix A; which need not be symmetric, is
the sum of its n eigenvalues. Here, the trace of A; usually denoted as tr(A); is the sum of the

n diagonal elements of A: It is also the coe¢ cient bn�1 in equation (A8). That is,

tr(A) = bn�1 = �1 + �2 + � � �+ �n: (A10)

To prove this property requires an explicit expansion of jA� �Ij ; with special attention to the
bn�1(��)n�1 term in equation (A8). The detail of a proof, which draws on properties of the

determinant of the sum of two matrices, is available in Marcus [1990].

Fourth Property: If the n eigenvalues of an n�n real symmetric matrixA are all positive

(non-negative), it must be positive de�nite (positive semide�nite). To prove this property, we

start with equation (A4), which leads to

x0Ax = �x0x: (A11)

As the n elements of x in equation (A4) are not all zeros, the scalar that x0x represents is

always positive. Thus, x0Ax and � must be of the same sign. If �1; �2; : : : ; �n are all positive

(non-negative), A must be positive de�nite (positive semide�nite). Notice that, if any of

�1; �2; : : : ; �n is zero, as jAj = 0; A�1 does not exist. The positive de�niteness of A requires

the existence of A�1; however, the existence of A�1 does not imply that A is positive de�nite.

If any of �1; �2; : : : ; �n is negative, A must be neither positive de�nite nor positive semide�nite.
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Appendix B: Orthonormalization of Linearly Independent
Eigenvectors

Given equation (17) in the main text, we can write

A =X�X�1: (B1)

However, the symmetry of the n�n matrixA thus generated is not guaranteed. To ensure that

A be symmetric and that the original set of eigenvalues be retained, the original set of linearly

independent eigenvectors must �rst be transformed into a set of orthonormal vectors.

The Gram-Schmidt process for such a task starts with the eigenvector that corresponds to

�1: We go through the process iteratively, by removing the part of each eigenvector that is not

orthogonal to the previous ones, until all eigenvectors become orthogonal to each other. The

�nal step of the process is to normalize the resulting eigenvectors, so that each one is of a unit

length.

For the original set of n linearly independent eigenvectors, denoted as v1;v2; : : : ;vn; we �rst

obtain the orthogonal set w1;w2; : : : ;wn iteratively, by letting

w1 = v1

w2 = v2 �
hv2;w1i
hw1;w1i

w1;

w3 = v3 �
hv3;w1i
hw1;w1i

w1 �
hv3;w2i
hw2;w2i

w2;

...

wn = vn �
hvn;w1i
hw1;w1i

w1 �
hvn;w2i
hw2;w2i

w2 � � � � �
hvn;wn�1i
hwn�1;wn�1i

wn�1: (B2)

Here, hvj;wki and hwk;wki are scalars captured by the 1�1 matrices v0jwk and w0
kwk; respec-

tively, for j = 2; 3; : : : ; n and k = 1; 2; : : : ; n� 1: The set of n orthonormal vectors, denoted as
x1;x2; : : : ;xn; is obtained by letting

xi =
wip
hwi;wii

; for i = 1; 2; : : : ; n: (B3)

Appendix C: Cell Formulas in the Worksheet for Figure 2

The cell formulas in Figure 2 are as follows:
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� B6, =SQRT(MMULT(TRANSPOSE(B1:B4),B1:B4)), copied to B6:E6 and B13:E13.

� C8:C11, =C1:C4-(MMULT(TRANSPOSE(C1:C4),B8:B11))/(MMULT(TRANSPOSE

(B8:B11),B8:B11))*B8:B11.

� D8:D11, =D1:D4-(MMULT(TRANSPOSE(D1:D4),B8:B11))/(MMULT(TRANSPOSE

(B8:B11),B8:B11))*B8:B11-(MMULT(TRANSPOSE(D1:D4),C8:C11))/(MMULT(

TRANSPOSE(C8:C11),C8:C11))*C8:C11.

� F8:F11, =E1:E4-(MMULT(TRANSPOSE(E1:E4),B8:B11))/(MMULT(TRANSPOSE

(B8:B11),B8:B11))*B8:B11-(MMULT(TRANSPOSE(E1:E4),C8:C11))/(MMULT(

TRANSPOSE(C8:C11),C8:C11))*C8:C11-(MMULT(TRANSPOSE(E1:E4),D8:

D11))/(MMULT(TRANSPOSE(D8:D11),D8:D11))*D8:D11.

� H15:K18, =TRANSPOSE(B15:E18).

� B20:E23, =MMULT(H15:K18,B15:E18).

� B30:E33, =MMULT(B15:E18,MMULT(B25:E28,H15:K18)).

� B35, =MDETERM($B$30:B30) copied to C36, D37, and E38.

� H35, =B30/2+H30 copied to H35:K38.
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