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Spreadsheet Implementation of Numerical and Analytical Solutions to
Some Classical Partial Differential Equations

Abstract

This paper presents the implementation of numerical and analytical solutions of some of the classical partial
differential equations using Excel spreadsheets. In particular, the heat equation, wave equation, and Laplace’s
equation are presented herein since these equations have well known analytical solutions. The numerical
solutions can be easily obtained once the differential equations are discretized via finite differences and then
using cell formulas to implement the resulting recursive algorithms and other iterative methods such as the
successive over-relaxation (SOR) method. The graphing capabilities of spreadsheets can be exploited to
enhance the visualization of the solutions to these equations. Furthermore, using Visual Basic for Applications
(VBA) can greatly facilitate the implementation of the analytical solutions to these equations, and in the
process, one obtains Fourier series approximations to functions governing initial and/or boundary conditions.
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Heat equation, wave equation, Laplace equation, partial differential equations, finite differences, successive
over-relaxation (SOR) method
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Lau: Spreadsheet Solutions to Some Classical PDEs

1. Introduction

In science and engineering the dynamical behavior of systems in space
and time is modeled by ordinary differential equations or partial
differential equations. Systems in which the variable of interest (e.g.,
temperature) depends on more than one independent variable (e.g.,
location and time) are mathematically modeled by partial differential
equations (PDEs). The vast majority of PDEs require the use of computers
for their numerical solution. Only a handful of PDEs are amenable to
analytical solutions through methods such as separation of variables,
characteristics, or change of variables.

This paper presents some of the classical PDEs that appear in
numerous science and engineering applications. More specifically, the
heat equation, wave equation, and Laplace’s equation are presented
herein. These equations have well known analytical solutions which are
obtainable through the method of separation of variables (Greenberg, 1998;
Kreyszig, 2011, O’Neil, 2011). Moreover, because of linearity and
homogeneity in the boundary conditions, the solutions to these equations
naturally give rise to Fourier series.

Electronic spreadsheets have been used to model many PDEs
arising from science and engineering. For instance, Arganbright (1985)
used VisiCalc to create an animated model of the two-dimensional heat
flow on a plate by using circular references; Orvis (1997) discusses heat
flow, along with a broad range of other science and engineering
applications; Neuwirth and Arganbright (2004) present both one- and
two-dimensional heat flow problems via animated discrete Excel models
that display the flow through graphs and the spreadsheet grid display
with conditional formatting.

This paper presents the implementation of both numerical and
analytical solutions of the heat equation, wave equation, and Laplace’s
equation using Excel spreadsheets. The presentation is inspired largely on
online Excel tutorials used in classroom instruction at the University of
British Columbia in Canada (Piccolo, n.d., a,b). In this sense, the author
does not claim a great deal of originality; nevertheless the author believes
that this paper presents a new perspective insofar as it expands on the
work of Piccolo (n.d., ab) by accommodating slight generalizations
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whenever feasible and, more important, using Visual Basic for
Applications (VBA) to implement the analytical solutions and the Fourier
series that represent initial and/or boundary conditions. The spreadsheet
implementation of the solution to the Laplace equation presented in this
paper draws from standard discretization models and uses the successive
over-relaxation (SOR) method to iteratively find approximate solutions to
the resulting system of linear algebraic equations (Gutierrez, 2009).

The paper is organized as follows. Section 2 presents the one-
dimensional heat equation with two illustrative examples (a heat
conducting bar with fixed temperatures at both ends, and a heat
conducting bar with insulated ends); the numerical solution of the
discretized heat equation is implemented using simple cell formulas, and
the analytical solution is implemented using VBA. Following the same
structure, Sections 3 presents the one-dimensional wave equation along
with two examples (a string with clamped ends, and a string with zero-
derivative constraints at both ends). Section 4 discusses spreadsheet
implementations of numerical and analytical solutions, including the SOR
method, to the two-dimensional Laplace equation in Cartesian coordinates;
a rectangular, heat conductive plate with Dirichlet boundary conditions is
presented as an illustrative example. Finally, concluding remarks are
given in Section 5.

2. One-dimensional heat equation

Case 1. Heat conducting bar with fixed temperatures at both ends

Consider a bar of length L whose cross sectional area is negligible
compared to its longitudinal dimension. Then, the temperature u of the
bar at a distance x from the left end of the bar (x = 0) and at time t is
governed by the heat equation (Greenberg, 1998; Kreyszig, 2011, O’Neil,
2011)
2
To2lt 0<x<L t>0 (1a)

subject to the boundary conditions

http://epublications.bond.edu.au/ejsie/vol9/iss3/1
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u(0,t) = U, and u(L,t) =U, Vt>0 (1b)
and the initial condition
u(x,0) = f(x), 0<x<L. (1c)

In (1a)—(1c), ¢? denotes the thermal diffusivity, U, the temperature
at the left end of the bar, U, the temperature at the right end of the bar,
and f(x) the initial temperature distribution along the bar. In some sense,
the heat equation being discussed here represents a slight generalization
of the work done by Piccolo (n.d., a), where both ends of the bar are kept
at zero temperature.

Numerical solution of (1a)—(1c)

The idea is to obtain a discretized version of the heat equation (1a). This
can be achieved by approximating the partial derivatives with difference
quotients and establishing the relationships between u at (x,t) and its
neighboring values a distance Ax apart and at a time At later (Piccolo, n.d.,
a). In particular, the derivative with respect to time will be approximated
with a forward difference, i.e.,

u(x, t +At) —u(x,t)
At
and the derivative with respect to space will be approximated with a

central difference, i.e.,

62_u(x D~ u(x + Ax, t) — 2u(x, t) + u(x — Ax, t)
dx2 ™"’ Ax? |

Substituting (2) and (3) into (1a), and rearranging terms, yields the
heat equation in discretized form

()

Jdu .
ot O~

()

ulx, t +At) = ul(x,t) + ylulx + Ax, t) — 2u(x, t) + u(x — Ax, t)] (4)

At
where y = ¢? (A—xz)
To propose an algorithm suitable for computer implementation, the
spatial interval and the time interval are subdivided into increments of
size Ax and At, respectively. That is, each sample point in the spatial

interval is obtained from
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Xp = Xp_q + Ax, for n=1,2,...,N, with x, =0 and xy =L
and each sample time in the time interval [0,T] is obtained from
ty = trp—1 + At, for k=1,2,..,M, with t, =0 and t,, =T

where T is the length of the time interval of interest.

With the spatial and time interval partitioning described above,
and denoting the value of u at the nth sample point x,, and at the kth
sample time t; as u(x,, t;) = uk, and noting that

U(Xn + Ax, tk) = u(xn+1' tk) = ufl+1'

ulx, — Ax, ty) = ulxy_q, ty) = uk_,,

u(xy, b + AL) = ulxp, tyyq) = ukt?

the discretized heat equation in (4) can be rewritten in the more compact
form

untt = g+ y[une — 2un +un ). (5)

Equation (5) gives the approximate value of u at point x,, and at
time ty4,, which is calculated from the values of u at three adjacent points
Xn+1, Xn, Xn—1 at the preceding sample time ¢j.

An important consideration in the implementation of any
algorithm for numerical computation is convergence. To ensure the
convergence of (5), the user must choose Ax and At sufficiently small for
reasonable resolution and verify that the quantity y = c?(At/Ax?) be
much less than unity.

EXAMPLE 1. Solve the heat equation
ou d%u

— = 025—— 1
o = 0.255—, 0<x<1 t>0

subject to the boundary conditions
u(0,t) = 10 and u(1,t) = 30, Vt>0
and the initial condition

10 + 60x, 0<x<0.5;
u(x,0) =f(x) = {50 —20x, 05<x<1.
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Here, ¢2 = 0.25,L =1, U, = 10, and U, = 30. Choosing Ax = 0.05
and At = 0.005 will givey = 0.5 < 1. To obtain a numerical solution to
this example using an Excel spreadsheet, follow these steps:

1) Enter the values of c¢?, Uy, U, Ax, and At. The value of y can be
computed with a cell formula according to c*(At/Ax?). The initial
setup might look like the portion of the spreadsheet shown in
Figure 1. In this case, the value of c? has been entered in cell H10,
U, in D5, U, in G5, Ax in B10, and At in E10. The value of y is
located in cell L10 and contains the formula =H10*(E10/B10/2).

L10 - fi || =H107(E10/R10%2)
A B C D E F G H ] K L
1 | One-dimensional heat equation
: au—OZSazu D<x<1, t=0
3 ac 7T ax?’ ’
4
5 | B.C. u(0t)= 10  and u(Lt)=| 30
6
10 + 60x 0<x<05
7 | LC. = !
. u(x, 0) {50 —20x, 05<x<1
g9

At
10 Ax = 0.05 At = | 0.005 c* = 025 Y= c? (E) =| 0.5 |
L}

Figure 1: Initial setup for the numerical solution of Example 1.

2) Generate the sample points of the spatial interval. Enter 0 (zero) in
cell C13. In cell D13, type the formula =C13+5B$10 (note the absolute
reference to cell B10 that contains Ax). Copy the formula in cell D13
onto the cell range E13:W13. The result might resemble that of
Figure 2.
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D13 M S| =cizsasio
A 8 c ) E F G H 1 ) K L M N o P Q R s T u
1 | One-dimensional heat equation
6u_02537u 0<x<1, t>0
o e i ]
5 | B.C. “(04)= 10  and u(Lt)= 30
5
B 10 +60x, 0<x<05
7 LC. = 4
ulx.0) Eso—zox, 05<x<l
9
1 2 — =2 (8=
o Ax=| 005 at=| 0.005 =] 0% v=e(gz)= o
2| Numerical solution
13 x o [oos ] 01 o015 02 o025 03 03 04 045 05 055 06 065 07 075 08 085 03 095 1

Figure 2: Spreadsheet after constructing the space interval.

3) Generate the sample times of the time interval. Enter 0 (zero) in
cell A15. In cell A16, type the formula =A15+SES10 (note the absolute
reference to cell E10 that contains At). Copy the formula in cell A16
onto the cell range A17:A670. The result might resemble that of
Figure 3. Only the first 20 rows are shown in the figure; cell A670
will display 3.275. The time t = 3.275 simply means that the length
T of the time interval of interest is 3.275 (the reason for this choice
will become apparent in step 6).

A16 - Jr | =n1s+sesi0

A B C D E F G H J K L M N ] P Q R S T u
1 One-dimensional heat equation
: au—nzsazu 0<x<1, t>0
3 3 = B =5
5| BC. w(©0)= 10 and k(Lt)= 30
6
N 10+60x, 0<x<05
7 LC. = .
. u(x,0) {sn—znx, 05<x<1
9

2 oAty _
o ax=| 00s at - 0.005 2= 025 r=ec(5z)= os
2| Numerical solution
x 0 005 01 015 02 02 03 035 04 045 05 05 06 065 07 075 08 08 09 0% 1

t
50
16[ 0.005 |
17 001
18 0.015
12 002

20 0.02%

Figure 3: Spreadsheet after constructing the time interval.

4) Impose the boundary conditions located in cells D5 and G5. This is
accomplished by typing the formula =SDS5 (note the absolute
reference) in cell C15 and copying it onto the cell range C16:C670;
this accounts for the (fixed) temperature at the left end of the heat
conducting bar. Similarly, typing the formula =$GS5 in cell W15

http://epublications.bond.edu.au/ejsie/vol9/iss3/1
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and then copying it onto the cell range W16:W670 will account for
the temperature at the right end of the bar. After completing this
step, the spreadsheet will look like Figure 4 (again, only the first 20
rows are shown).

wis - fr | =sess

A B c D E F
1| One-dimensional heat equation
2 e B
3 at | Uax
5 | B.C. u0t)= 10 and u(Lt)=
6
S 10 + 60x,
7| LC. = "
. ulx,0) {50 —20x,
9
10 Ax=| 005 At=| 0.005

12| Numerical solution

x 0 0.05 01 0.15
4 t
i5( o 10
16 0.005 10
700 10
18 0.015 10
19 0.02 10
20 0.025% 10

Figure 4: Spreadsheet after imposing the boundary conditions.

5) Impose the initial condition u(x,0) = f(x).

0<x<1, t=0

30

0<x<05
05<x<1

2 = (7) =
c 0.25 r=c(z (X3

SSSSSIEI =

To accomplish this,

type the formula =IF(D13<0.5,10+60*D13,50-20*D13) in cell D15, and
copy it onto the cell range E15:V15. The result is shown in Figure 5
(only the first 20 rows are displayed).

DI5 - fr | =IF(D13<0.5,10+60°D13,50-20"D13)
A B c D £ F G H 1 J K L M N o P Q R s

1| One-dimensional heat equation
2 au—ﬂzsazu O<x<1, t>0
3 ar Erel o il
5 | BC. u(0i)= 10 and x(Lt)= 30
6

10 +60x, 0<x<05
7| LC. = .
- u(x,0) {50 —20x, 05<x<1
9

At

10 ax=| 005 at= .00 = 025 y=¢ (E) ~h

Numerical solution

13 x 0 0.05 0.1 0.15
T
15 o 10 13 16 19

16 0.005 10 i

7001 10

18 0.015 10
19 0.02 10
20 0.025 10

Figure 5:

Published by ePublications@bond, 2016
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6) Implement the discretized heat equation (5). To do this, type the

formula =D15+SL$10*(E15-2*D15+C15) in cell D16 (note the absolute
reference to cell L10 for the value of y). Copy the formula onto the
cell range D16:V670. Figure 6 shows the final result (rows 18
through 664 have been hidden to prevent the figure from being too
unwieldy). For the choice of t = 3.275, it can be seen that the
numerical solution has converged to two exact decimal places for
all sample points in the x interval.

M Je | =p1s+sis10*(E15-2*D1SHCIS)
A B C D E F G H | J K L M N o P Q R S T u
One-dimensional heat equation
N a5 0<x<1, t>0
ET el Pok ol
B.C. u(@1)=20"" and u(ir)=[ 30
10+60%, 0<x<05
LG ux0 = {so—znx, 05=x <1
&
Ax = 0.05 At = 0.005 cr= 025 Y= c? A_:z) = 05

Numerical solution

t
o

7001

665
666
667
668
669
670

325
3.255
3.26
3.265
3.27
3.275

x o 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

N

10 13 16 19 22 25 28 31 34 37 40 39 38 37 36 35 34 33 32 31
10 13 J 16 19 22 25 28 3 34 37 38 39 38 37 36 35 34 33 32 3
10 13 16 19 22 25 28 31 34 36 38 38 38 37 36 35 34 33 32 31

10 11.001 12.002 13.002 14.003 15.004 16.004 17.005 18.005 19.005 20.005 21.005 22.005 23.005 24.004 25.004 26.003 27.002 23.002 29.001
10 11.001 12.002 13.002 14.003 15.004 16.004 17.005 18.005 19.005 20.005 21.005 22.005 23.005 24.004 25.004 26.003 27.002 23.002 29.001
10 11.001 12.002 13.002 14.003 15.004 16.004 17.004 18.005 19.005 20.005 21.005 22.005 23.004 24.004 25.004 26.003 27.002 23.002 29.001
10 11.001 12.002 13.002 14.003 15.004 16.004 17.004 18.005 19.005 20.005 21.005 22.005 23.004 24.004 25.004 26.003 27.002 23.002 29.001
10 11.001 12,002 13.002 14.003 15.003 16.004 17.004 18.005 19.005 20.005 21.005 22.005 23.004 24.004 25.003 26.003 27.002 28.002 29.001
10 11.001 12.001 13.002 14.003 15.003 16.004 17.004 18.005 19.005 20.005 21.005 22.005 23.004 24.004 25.003 26.003 27.002 23.001 29.001

g8888888 8

Figure 6: Numerical solution to Example 1.

The graphing capabilities of Excel can be used to visualize the

solution just obtained. For example, Figure 7 shows the temperature
distribution along the heat conducting bar at three different instants,
namely, t =0, t = 0.25, and t = 3.275. The graph for t = 0 corresponds to
the initial condition u(x,0) = f(x). The Fourier series representation of
f(x) will be discussed shortly in the analytical solution of the heat
equation.

http://epublications.bond.edu.au/ejsie/vol9/iss3/1
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Bar with fixed temperatures at both ends
50
R\ 5
\S/ /
?5’ 0
§ 0 01 02 03 04 05 06 07 08 09 1
o]
g* Distance from left end, x
(o))
=

—_—t=0 —t=025 —t=3.275

Figure 7: Temperature distribution in heat conducting bar.

Analytical solution of (1a)—(1c)
The analytical solution of (1a)—(1c) is given by (Greenberg, 1998; Kreyszig,

2011; O’Neil, 2011)
u(x £) = v(x) + wix, 1) (6a)
where
v(x) = Uy + Ui Z Yo, (6b)
w(x,t) = i B, sin ("T"x) ot (4 = ”Tcn) (60)
-
Bo=7 | 16 - vl (6d)

In (6a), v(x) represents the steady-state solution and w(x,t) the
transient solution to the heat equation problem defined in (1a)—(1c).

To implement the analytical solution (6a)-(6d) on an Excel
spreadsheet, a user-defined function can be created using Visual Basic for
Applications (VBA). By doing so the user can greatly simplify the typing
of cell formulas and streamline the presentation of the spreadsheet;
otherwise, auxiliary worksheets would be required to compute the Fourier

Published by ePublications@bond, 2016
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coefficients B,, and the series solution w(x, t) with somewhat cumbersome
cascading cell referencing.

In what follows the key steps for implementing the analytical
solution to the problem in Example 1 are given.

1) Launch the Excel VBA editor (accessible from the Developer tab in
the ribbon; if not visible, add it by customizing the ribbon from the
Excel options of the File menu in Excel 2010 or later). Create the
user-defined function heateql by typing the code shown in Figure 8.
The function requires two input parameters, x and t, which
represent a sample point in the space interval and a sample time.
The function computes the Fourier coefficients B, given in (6d) and
the series w(x,t) in (6c); these quantities correspond to the
variables Bn and S in the code. For this example, the Fourier

coefficients were computed manually from Equation (6d) to yield
B — 160 sin(0.57n) n=12
n — ) - ) ) nan

nZn2

Public Const PI = 3.14159265358979, Hmax = 25
Public Function heateql (x, t)
c = 5gr(0.25)
= 0
For m = 1 To Nmax
Bn = 160 # 5in(0.5 * PI * m) / (PI ™~ 2 * m =~ 2)
lambhda = PIL * © * n
5=5+Bn # 5in(PI * n * x) * Exp(-lambda ™~ 2 * t)
Hext n
heategqgl = 5
End Function

Figure 8: VBA code for the user-defined function heateq1.

2) Retaining the same structure of the numerical solution shown in
Figure 6, create a new table on another part of the worksheet,
preferably maintaining the same row numbers and the values of Ax
and At used in the numerical solution for easy side-by-side
comparison between solutions. For instance, creating the table in
the cell range Y13:AU670 will suffice (AA13:AU13 would contain the
sample points x,, Y15:Y670 would contain the sample times t;, and

http://epublications.bond.edu.au/ejsie/vol9/iss3/1
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AA15 would be the first programmed cell). To populate the table
with sample values of the analytical solution, type the formula
=5DS5+($SGS5-SDS5)*AAS13+heateql(AAS13,5Y15) in cell AA15. Then
copy the formula onto the cell range AA15:AU670. The result is
shown in Figure 9 (again, rows 18 through 664 have been hidden
for easy viewing).

AALS - fr | =5D85+($6%5-5D85)* AAS13+heateq (AASI3,SV1S)

z AA AB AC AD AE AF AG AH Al Al AK AL AM AN AD AP AQ AR AS AT AU

12| Analytical solution
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
15 o 10 1299 16.012 18.996 21.991 25.017 27.99 30.989 34.037 36.965 39.688 38.965 38.037 36.989 35.99 35.017 33.991 32.996 32.012 30.99 30
16 | 0.005 10 " 13 16 19 22 25 28 30.998 33.966 36.667 38.404 38.667 37.966 36.998 36 35 34 33 32 31 30
7| 0.01 10 13 16 19 22 25 27.996 30.966 33.799 36.201 37.743 38.201 37.799 36.966 35.996 35 34 33 32 31 30
665 3.25 10 11.001 12.002 13.002 14.003 15.004 16.004 17.005 18.005 19.005 20.005 21.005 22.005 23.005 24.004 25.004 26.003 27.002 28.002 29.001 30
666| 3.255 10 11.001 12.002 13.002 14.003 15.004 16.004 17.005 18.005 18.005 20.005 21.005 22.005 23.005 24.004 25.004 26.003 27.002 28.002 29.001 30
667 3.26 10 11.001 12.002 13.002 14.003 15.004 16.004 17.005 18.005 19.005 20.005 21.005 22.005 23.005 24.004 25.004 26.003 27.002 28.002 29.001 30
668| 3.265 10 11.001 12.002 13.002 14.003 15.004 16.004 17.005 18.005 19.005 20.005 21.005 22.005 23.005 24.004 25.004 26.003 27.002 28.002 29.001 30
669| 3.27 10 11.001 12.002 13.002 14.003 15.004 16.004 17.005 18.005 19.005 20.005 21.005 22.005 23.005 24.004 25.004 26.003 27.002 28.002 29.001 30
670| 3.275 10 11.001 12.002 13.002 14.003 15.004 16.004 17.004 18.005 19.005 20.005 21.005 22.005 23.004 24.004 25.004 26.003 27.002 28.002 29.001 30

Figure 9: Analytical solution of Example 1.

The analytical solution shown in Figure 9 agrees well with the
numerical solution given in Figure 6. However, comparing the rows
corresponding to t = 3.275 (row 670) in both figures, it can be said that the
analytical solution converges more slowly than the numerical solution; a
closer inspection of row 670 in Figure 9 reveals that not all temperatures at
the sample points in the space interval have attained the same level of
precision when rounded to two decimal places, as was the case in the
numerical solution at this very same iteration step (t = 3.275).

In addition, observe that the analytical solution (6a) implemented
by the formula =SDS$5+(SGS5-SDS5)*AAS13+heateql(AAS13,5Y15) in cell
AA15 has two parts: SDS5+(SGS5-SDS5)*AAS13 implements the steady-state
solution v(x) in (6b), and heateq1(AA$S13,5Y15) implements the transient
solution w(x, t) in (6c) — these two contributions produce the desired
analytical solution (6a). Also notice that the boundary conditions did not
have to be copied directly from cells D5 and G5 onto AA15:AA670 (for x = 0)
and AU15:AU670 (for x = 1), as was the case in the numerical solution;
likewise, the initial condition f(x) did not have to be programmed
directly in the cell range AA15:AU15 (for t = 0). The reason that the
boundary conditions and the initial condition were not entered directly
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from the input data is due to the fact that these conditions are already
incorporated in the analytical solution (6a)—-(6d). That is why a single
formula in cell AA15 could be replicated to fill the entire table (AA15:AU670)
with sample values of the analytical solution. As Figure 9 shows, the
boundary conditions are met exactly; the initial condition, however, is met
approximately due to the truncation in the series (6c) when evaluated by
the function heateql. Indeed, the values in the cell range AA15:AU15 of
Figure 9 constitute a Fourier series approximation to the initial condition
f(x) in the cell range C15:W15 of Figure 6; this comparison is illustrated in
Figure 10 and it shows that the Fourier series approximates the initial
condition very well.

Bar with fixed temperatures at both ends

__60

240

=

> 20 /\
2 0

(4]

g 0O 01 02 03 04 05 06 07 08 09 1
5

= Distance from left end, x

—Fourier —f(x)

Figure 10: Fourier series approximation to the initial condition f(x) of Example 1.

Caution. A couple of remarks are in order:

e Although the term analytical solution is used in the present
discussion, it is not meant to imply exact. As mentioned before, the
series in (6¢) had to be truncated to 25 terms (see the constant Nmax
in the header of the code shown in Figure 8) for computer
evaluation.

e The temperatures in cells D5 and G5 can be changed by the user and
the numerical solution can still be correct. This would not be the
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case in the analytical solution because the expressions that appear
in the VBA code given in Figure 8 were programmed after manual
computation of the Fourier coefficients B, given by Equation (6d).
Thus, the formulas in the VBA code are somewhat ad hoc. To make
the code more flexible at handling other user-supplied
temperatures would require a more parametric style of
programming at the expense of readability; in this paper the author
opted for clarity of exposition and simple coding.

Case 2. Heat conducting bar with insulated ends

Instead of having fixed temperatures at both ends of the bar, now consider
the bar with both ends perfectly insulated (no heat escapes to the external
environment). This situation is modeled by (Greenberg, 1998; Kreyszig,
2011; O’Neil, 2011)

ou 0%u
— = 2 — 7a
5 = < 0<x<L, t>0 (7a)

subject to the boundary conditions
ou ou
—(0,t) =0 and —(,t) =0, Vt>0 (7b)
Ox ox
and the initial condition
u(x,0) = f(x), 0<x<L. (7¢)

Compared with Equations (la)—(1c), the boundary conditions are
changed in (7a)-(7c). The problem being presented here is a slight
variation of the one proposed by Piccolo (n.d., a), where the left end of the
bar is kept at zero temperature and the right end is insulated.

Numerical solution of (7a)—(7c)

Equation (5) is still the key formula for computing sample values of the
solution to the heat equation problem (7a)—(7c). At the boundaries, where
xo = 0 and xy = L, evaluation of (5) produces the following equations:

uftl = uf + y[uf — 2uk +uk,] (8a)

and
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uktt = uf +ylul, — 2uf +uf] (8b)

Unfortunately, the preceding equations require estimates of u¥;
and uk,, which fall outside the domain of definition (i.e., x_;, Xy, &
[0,L]). To circumvent this difficulty, the values of u*; and uf, will be
inferred from the derivatives (not actual temperatures) at the boundaries.
These derivatives may be approximated by a forward difference or a
central difference. Approximating the derivatives by a central difference
may prove to be more convenient for spreadsheet implementation as no
extra columns would be required to insert the cell formulas for the
boundaries. More specifically, the derivatives at x, = 0 and xy = L will be
approximated by the central differences

a—u(x £) ~ u(xg + Ax, ty,) — u(xg — Ax, ty) B u(xy, ty) — u(x_q, ty)
0x 20x 20x
_uf —uly
T 2Ax
and
(’)_u(x N uCey +4x,ti) —ulew — A% t) _ ulXne, i) — uln-y, &)
ax Nk ] , 20x A%
_ Un+1 —UN-—1
2Ax '

Using the preceding central differences and taking into account the
given boundary conditions, it can be deduced that

ou u uk —uk
a(xo,tk)=a(0,tk)=0%% - ufl=u’1‘
and
Ju Ju uk. —uk_,
a(xzv: ty) = a(lu ty) =0~ +2T > Uf = uf g

Having determined that u*;, = u¥ and u,; = uf_;, Equations (8a) and
(8b) can now be rewritten for the boundaries to obtain

ug* = ug + 2y[uf — ug] (9a)
and

uktt = uf + 2yful_ —uk]. (9b)
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With Equation (5) for the interior points of the space interval and
(9a)—(9b) for the boundary points, together with the given initial condition,
all elements are in place to construct a spreadsheet model for the
numerical solution of (7a)—(7c), as illustrated by the following example.

EXAMPLE 2. Solve the heat equation
62
ot oxz’

subject to the boundary conditions

0.25 0<x<1 t>0

u ou
—(0,t) =0 and —(1,t) =0, Vt>0
0x 0x

and the initial condition

10, 0<x<0.5;
wx0) =f(x) = {30, 0.5<x<1.
The basic steps for finding the numerical solution to this example
using a spreadsheet are outlined below.

1) Create a table with the space and time intervals. For instance, the
table can span the cell range A13:W1040 (see Figure 11; only the first
20 rows are shown). The range C13:W13 contains the sample points
in x with Ax = 0.05; the range A15:A1040 contains the samples in t
with At = 0.004. To enter the initial condition u(x,0) = f(x), type
=IF(C13<0.5,10,30) in cell C15 and then copy the formula onto
D15:W15.

To insert the boundary conditions into the spreadsheet, type
=C15+2*SL$10*(D15-C15) in cell C16 to code Equation (9a), and in cell
W16 type =W15+2*S5L$10*(V15-W15) to code Equation (9b). The
initial setup is shown in Figure 11.
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3 B [ o E F G H 1 Jd K L M M o F a R = T u W W
1 | One-dimensional heat equation
: L i 0sx<l t30
3 ar 7 aRr *T -
4 o a
l = Lu, —

5 | B.C. 2:00=0 and wLH=0
&

10 0<x<05
R ux0) = [30‘ 05 sx<l.
: =
9 A

- . 2 YA

1 Ar= 0.05 At = 0.004 = 0.25 y=c (Azz) = 0.4

2 Numerical solution

13 x 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
L3 t

B o 10 10 10 10 10 10 10 10 10 10 30 30 30 30 30 30 30 30 30 30 30
5 0.004 10 30
17 0.008

1’ 0.012

13 0.016

20 0.02

Figure 11: Initial setup for the numerical solution of Example 2.

2) Code Equation (5) for the interior points of the space interval. To
do this, type =D15+5L$10*(E15-2*D15+C15) in cell D16, and then copy
it onto the cell range E16:V16. This will generate the numerical
approximation at the next sample time (values in range C16:W16).
To propagate the solution in time, copy the cell range C16:W16 onto
C17:W1040. The final result is shown in Figure 12 (rows 18 through
1034 have been hidden).

A B [ [a) E F G H J K L M N o P =] R S T u W L

1 | One-dimensional heat equation

2 au a%u

3 3 = 0255 0<x<1 t>0

+ Bu du

5 | B.C. 0.9=0 and SLh=0

B

10, 0<x <05

71 ulz0) = {30‘ 05 <x<1.

? A

0 Ax= 0.05 At = 0.004 = | 035 Y= & (;'z) = 04

1

© | Numerical solution

k<l x o 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

L} i

Ll 0 10 10 10 10 10 10 10 10 10 10 30 30 30 30 30 30 30 30 30 30 30
16 | 0.004 10 10 10 10 10 10 10 10 10 18 22 30 30 30 30 30 30 30 30 30 30
7 0.008 10 10 10 10 10 10 10 10 13.2 16.4 23.6 26.8 30 30 30 30 30 30 30 30 30
035 4.08 20499 20499 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20501 20.501
1035 | 4.084 20499 20499 205 20.5 20.5 20.5 20.5 205 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 205 20501 20.501
1037 | 4.088 20.499 20.499 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20501 20.501
03E | 4.002 20499 20499 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20501 20.501
1033 | 4.096 20499 205 20.5 20.5 20.5 20.5 20.5 205 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 205 20.5 20.501
040 41 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5

Figure 12: Numerical solution of Example 2.

Observe that the numerical solution converges to a constant
temperature of u = 20.5 (see row 1040 of the spreadsheet in Figure 12). As
will be discussed shortly, the actual steady-state temperature is ug; = 20.
That is, for the chosen values of Ax and At there is a 2.5% approximation
error in the steady-state temperature. The reader can try to refine the
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numerical solution by decreasing the values of Ax and At, say Ax = 0.02
and At = 0.0005 (recall that y = ¢?(At/Ax?) must be much less than unity
for convergence); for this new choice of Ax and At, the reader would
obtain an approximate steady-state temperature of u=20.2 (a 1%
approximation error at the expense of having a table with more than 50
columns and 8,000 rows!).

Figure 13 shows temperature distributions in the bar at three
different times (strictly speaking, the blue line representing the initial
temperature distribution u(x,0) = f(x) at t =0 should look like a
piecewise constant function; however, because of the value of the spatial
resolution Ax = 0.05 and the graphical rendition of the XY Scatter line chart,
the jump discontinuity at x = 0.5 is not visible since Excel attempts to
interpolate smooth lines between points). It can be clearly seen that as
time progresses, the temperature in the bar reaches a uniform value (20.5
in this example).

Bar with insulated ends

T
(@)

(O8]
e}

Temperature, u(x,t)
=N
(@) (@)

e}

0 0.2 0.4 0.6 0.8 1

Distance from left end, x

t=0 t=02 —t=4.1

Figure 13: Temperature distribution in heat conducting bar of Example 2.
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Analytical solution of (7a)—-(7c)

The analytical solution to the heat equation problem (7a)—(7c) is given by
(Greenberg, 1998; Kreyszig, 2011; O’Neil, 2011)

ulx,t) = A, + z A, cos (HLE) gt (/1,1 = ”Lﬂ)’ (10a)
n=1
1 L
Ay = —f f(x)dx, (10b)
L 0
A —sz (5%)d = 1,2 10
n_L Of(x)cos L X, n=144.. ( C)

Evaluating the Fourier coefficients given by Equations (10b) and
(10c) with the given f(x) results in

40 sin(0.57n)
Ag=20 and A= - ————, n=12,.

With these Fourier coefficients, one can proceed to program the
analytical solution in the VBA editor of Excel as shown in Figure 14. The
tigure shows the code for the user-defined function heateq2, which can be
appended to the existing code shown in Figure 8.

Public Function heateqZ(x, t)
c = S5qgr(0.25)

A0 = 20
S =20
For n = 1 To Nmax
BAn = —-40 *# 3in(0.5 * PI * n) / (PI * n)

lambda = PI * ¢ * n
5 =5+ An * Cos(PI *# n * x) * Exp(-lambda ~ 2 * t)
Next n
heateq2 = A0 + |5
End Function

Figure 14: VBA code for the user-defined function heateq2.

Taking a cue from Figure 9, the analytical solution can be obtained
as follows:
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1) Lay out a table that spans the cell range Y13:AU1040. Distribute the
sample points x,, along AA13:AU13, and the sample times t; along
Y15:Y1040.

2) In cell AA15 type =heateq2(AAS$13,5Y15) and copy the formula onto
AA15:AU1040. The result is shown in Figure 15 (rows 18 through
1034 have been hidden). Although the solution is being referred to
as “analytical”, the values displayed in the figure are just
approximations as a result of the truncation of the series in
Equation (10a) when coded in VBA.

AA15

-

e

=heateq2(AAS$13,5Y15)

Y z

AA AB

12 Analytical solution

13 E
14 t

[} 0.05

15 0 9.7555 ! 10.144

16 0.004

17  0.008
1035 4.08
1036 4.084
1037 4.088
1038 4.092
1029 4.096
1040, 4.1

9.9997 10
10 10
19,999 19.999
19.999 19.999
19.999 19.999
19.999 19.999
19.999 19.999
19,999 19.999

AC

0.1

AD AE AF

0.15 0.2 0.25

AG AH Al Al AK AL AM AN AO AP AQ AR AS AT AU

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

10.082 9.7376 10.239 10.013 9.6526 10.495 9.8441 8.9082 20 31.092 30.156 29.505 30.347 29.987 29.761 30.262 29.918 29.856 30.244

10
10
19,999
19.999
19.999
20
20
20

9.9997 10 10

9.9997 10.008 10.254 12.635 20 27.365 29.746 29.992 30 30 30 30 30 30 30

10 10 10.001 10.016 10.177 11.138 14.292 20 25.708 28.862 29.823 29.984 29.999 30 30 30 30 30

20 20 20
20 20 20
20 20 20
20 20 20
20 20 20
20 20 20

Figure 15:

20 20 20 20 20 20 20 20 20 20 20 20 20.001 20.001 20.001
20 20 20 20 20 20 20 20 20 20 20 20 20.001 20.001 20.001
20 20 20 20 20 20 20 20 20 20 20 20 20.001 20.001 20.001
20 20 20 20 20 20 20 20 20 20 20 20 20 20.001 20.001
20 20 20 20 20 20 20 20 20 20 20 20 20 20.001 20.001
20 20 20 20 20 20 20 20 20 20 20 20 20 20.001 20.001

Analytical solution of Example 2.

Once again, notice that the initial condition u(x,0) = f(x) was not
programmed directly on the spreadsheet (the cell rage AA15:AU15
corresponding to t = t, = 0). The initial condition is already incorporated
by the Fourier coefficients Ay and 4,,, as shown by Equations (10b) and
(10c). Doing so will allow the user to obtain a Fourier series
approximation to f(x), as illustrated in Figure 16. It can be seen that the
Gibbs phenomenon is more apparent (see the overshoot at the point of
discontinuity x = 0.5 in the blue curve; ideally, the red curve representing
f(x) should look like a step function but the limitation of the graphical
rendering of the XY scatter plot of Excel impedes the appropriate display of
the jump discontinuity).
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Bar with insulated ends

35
<30
Na)
S 25
ig 20
g 15 Gibbs phenomenon at point of
% 10 discontinuity x = 0.5
g 5

0
0 0.2 0.4 0.6 0.8 1

Distance from left end, x

—Fourier =——f(x)

Figure 16: Fourier series approximation to the initial condition f(x) of Example 2.

3. One-dimensional wave equation

Case 1. Taut string clamped at endpoints

The transverse displacement of a stretched vibrating string, clamped at
both ends, is governed by the wave equation (Greenberg, 1998; Kreyszig,

2011; O’Neil, 2011)
0%u 0%u
37 = Cz_axz' 0<x<L, t>0 (11a)

subject to the boundary conditions
u(0,t) =0 and u(L,t) =0, Vt>0 (11b)
and the initial conditions
u(x,0) = f(x) and Z—Iz(x, 0) =gx), 0<x<L (11c)

where
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(transverse) displacement,

distance from the left end of the string,
time,

wave velocity,

length of the string,

f(x) initial displacement,

g(x) = initial velocity.

N & R
1 V| |

Numerical solution of (11a)—(11c)

To obtain a numerical solution, the partial derivatives in Equation (11a)
can be approximated by their central differences, namely,

0%u  u(x,t + At) — 2u(x, t) + u(x, t — At)

otz At2

and
0%u  u(x + Ax,t) — 2u(x,t) + u(x — Ax, t)
ax2 Ax? '

Substituting the preceding finite differences into Equation (11a)

and rearranging terms will result in
u(x, t + At) = 2ulx,t) —ulx, t — At) + nulx + Ax, t) — 2u(x, t) + u(x — Ax, t)] (12)
2
where nn = (%t) .
Alternatively, rewriting Equation (12) in terms of sample points in

space and time yields

Uy, trrr) = 2uxp, t) — Uy, te—1) + N[U(xnir, t) — 2u(xy, ty) + u(xy—q, t)]

or, after rearranging terms,
U, tepr) = MU, B + 2(1 = Muloxy, tr) + nulen-1, tie) — u(xn, te—q)- (13)
Equation (13) gives approximate values to the solution of the wave
equation (11a). The boundary conditions in (11b) can be entered directly
into a spreadsheet. The same can be said of the initial displacement f(x)
in (11c) — this will give the first row of values corresponding to t, = 0.
The initial velocity g(x) in (11c) requires approximation of the derivative
at t = 0. Using a central difference to approximate this derivative, i.e.,

ou u(x,t+At) —u(x, t —At)
at 20t
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which evaluated at t = 0 will result in

u(x, At) — u(x, —At)
2At

= g(x)
or
u(x, —At) = u(x, At) — 2Atg(x).

In the preceding equation At =t;, while —At =t_;. The sample
time t_; may be regarded as a fictitious time occurring exactly one step At
prior to to = 0. Thus, in terms of space-time samples, the preceding
equation can be written in the alternative form

u(xy, t_q) = ulxy, t;) — 2Atg(xy,). (14)

Equation (13) is also valid when t, = 0 (i.e., kK = 0) resulting in

u(xy, t1) = Mu(xny1, 0) + 2(1 = ulxn, 0) + Nuxy-1,0) — ulxy, t4) (15)

and taking into account (14), after rearranging terms, Equation (15)
becomes

UGt 6) = 3 UCtni1, 0) + (1 = MGy, 0) +JuCtn1,0) + Atg(xy). (1)

Equation (16) produces the second row of values for t; = At by
incorporating the initial velocity g(x) from (11c). With the discretized
equations (13) and (16) in place, the following example outlines the steps
for constructing a spreadsheet model for the numerical solution of (11a)-
(11c).

EXAMPLE 3. Solve the wave equation

(')Zu_462u 0<x<1 t>0
9tz ~ " ox?’ e
subject to the boundary conditions
u(0,t) = 0 and u(1,t) =0, Vt>0
and the initial conditions

ou
u(x,0) = f(x) = 0.1 —0.2|x — 0.5| and E(x, 0) =gx)=x(1—x), 0<x<l1.

To construct the spreadsheet model, perform the following steps:
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Lay out a table on the cell range A13:W421 with the samples of the
space interval in C13:W13 and the time interval in A15:A421 (see
Figure 17). Enter the boundary conditions by typing 0 (zero) in
C15:C421 for x = 0, and 0 (zero) in W15:W421 for x = 1. For the
initial displacement f(x), type the formula =0.1-0.2*ABS(D13-0.5) in
cell D15 and copy it onto the cell range E15:V15 (the first row for
to = 0 is now completed). To account for the initial velocity g(x),
code Equation (16) by typing the formula =($L$10/2)*E15+(1-
SL$10)*D15+(5L$10/2)*C15+5ES10*D13*(1-D13) in cell D16 and then
copying it onto E16:V16 (the second row for t; = At = 0.01 is now
completed). After completing all of these preliminary steps, the
initial setup should look like the one shown in Figure 17 (only the
tirst 20 rows are displayed).

C D E F G H 1 J K L M N o P Q R S T u A w

One-dimensional wave equation

%u _ a%u

el 0<x<1, t>0

u(0,0 =0 and u(l.y=0

IC. ulx0) = 01 —0.2)v —05]  and %(X'D) —x1-1)

cary?
10 Av=| 0.05 At=| 0.01 =] 4 n:(,) = 0.16

12 Numerical solution

13 x
14 t

15 ]

16 0.01

17 0.02

18 0.03

19 0.04

20 0.0

2)

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01
0.0105 0.0209 0.0313 0.0416 0.0513 0.0621 0.0723 0.0824 0.0925 0.1009 0.0925 0.0824 0.0723 0.0621 0.0519 0.0416 0.0313 0.0209 0.0105

©cooooo o
©eoe0 0 =~

Figure 17: Initial setup for the numerical solution of Example 3.

To fill in the rest of the table, code Equation (13) by typing the
formula =SLS10*E16+2*(1-SLS10)*D16+SL$10*C16-D15 in cell D17,
and then copying it onto the cell range D17:V421. The end result is
shown in Figure 18 (rows 18 through 415 have been hidden).
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D17 - Jfe =SLS10*E16+2*(1-SL$10)*D16+5L510%C16-D15
A B c D E F & H | ] K L ™ N 0 P a R s T u v w
1 One-dimensional wave equation
2 u_ du ) .
B S Dex<l  t>0
4
5 B.C u(0.5=0 and u(lLf=10
[
7 1C u(x,0) = 0.1 —0.2]x — 05| and E(,,g) =x(1-x)
at
2 any?
7 o

10 av=| 0.0S at =] 001 =4 n=()'= o1

11

12 Numerical solution

13 x ] 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
14 t

15 o o 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 ]
16 0.01 o 0.0105 0.0209 0.0313 0.0416 0.0519 0.0621 0.0723 0.0824 0.0925 0.1009 0.0925 0.0824 0.0723 0.0621 0.0519 0.0416 0.0313 0.0209 0.0105 (]
17 o0.02 o IU.UJW 0.0218 0.0325 0.0432 0.0537 0.0642 0.0745 0.0848 0.0947 0.0991 0.0947 0.0848 0.0745 0.0642 0.0537 0.0432 0.0325 0.0218 0.0109 0
416 4.01 o 0.0056 0.0141 0.0286 0.0416 0.0559 0.065 0.0753 0.0853 0.0885 0.0876 0.0885 0.0853 0.0753 0.065 0.0559 0.0416 0.0286 0.0141 0.0056 (]
417 4.02 o 0.0064 0.0148 0.0297 0.0427 0.0569 0.0662 0.0761 0.0869 0.0924 0.0911 0.0924 0.0869 0.0761 0.0662 0.0569 0.0427 0.0297 0.0148 0.0064 o
418 4.03 o 0.0075 0.0165 0.0305 0.0439 0.0572 0.0675 0.0771 0.0877 0.0952 0.0949 0.0952 0.0877 0.0771 0.0675 0.0572 0.0439 0.0305 0.0165 0.0075 ']
419 4.04 o 0.0088 0.0191 0.0312 0.0452 0.057 0.0687 0.0782 0.0879 0.0968 0.0989 0.0968 0.0879 0.0782 0.0687 0.057 0.0452 0.0312 0.0191 0.0088 o
420 4,05 0 00104 0.0219 0.0322 0.0461 0.0568 0.0695 0.0794 0.088 0.0873 0.1022 0.0973 0.088 0.0734 0.0695 0.0568 0.0461 0.0322 0.0219 0.0104 0O
421 4.06 o 0.0121 0.0246 0.0337 0.0465 0.0569 0.0699 0.0803 0.0883 0.0971 0.1039 0.0971 0.0883 0.0803 0.0699 0.0569 0.0465 0.0337 0.0246 0.0121 ]

Figure 18: Numerical solution of Example 3.

Figure 19 shows the transverse displacement of the vibrating string
at three different times. The oscillatory nature of the string displacement
can be discerned from the figure.

Displacement of string with clamped ends

02

0
-0.1 ——

-0.2
0 0.2 0.4 0.6 0.8 1

Distance from left end of string, x

Displacement, u(x,t

—t=0 =—t=025 —t=0.54

Figure 19: Transverse displacement for the vibrating string of Example 3.

Analytical solution of (11a)—(11c)

The analytical solution to the wave equation (1la)-(11c) is given by
(Greenberg, 1998; Kreyszig, 2011; O’Neil, 2011)
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u(x, t) = i [B,, cos(A,t) + B;; sin(A,t)] sin (T[Lﬂ) (An = T[Lﬂ) (17a)
n=1

_ %fo(x) sin (”Lﬂ) dx, n=12,.. (17b)

ncn,f gx) sm( )dx n=12,.. (17¢)

The bulk of the work is to determine the Fourier coefficients B,, and
By in accordance to Equations (17b) and (17c). For the given initial
conditions, namely, f(x) = 0.1 —0.2]x —0.5] and g(x) = x(1 —x), it is
straightforward to find that

0.8(—1)"+1 4

= — 7 d B =——— =1,2,..
" m2(2n—1)2 an " ort(2n—1)* "

and that the series solution given by Equation (17a) is

u(x,t) = Z

n=1

0. 8( 1)n+1
n?(2n —1)?

> cos(2r(2n — 1)t)

4 ) _
+ mSIH(Zﬂ(Zn — 1Dt)|sin(m(2n — 1)x)

The preceding equations will be used to write a VBA code for
implementing the analytical solution of Example 3. Figure 20 shows the
VBA code for the user-defined function waveeql.

Public Function waveeql (x, t)

c = Sgr(4)
5=0
For n = 1 To Nmax
Bn = (0.8 * (-1) ~ (n 4+ 1)) / (PT ~ 2 * (2 * n - 1) ~ 2)
Bns =4 / (PI ~ 4 * (2 * n - 1) ™ 4)
lambda = PI * ¢ * (2 * n - 1)
Bncos = Bn * Cos(lambda * t)
Bnsin = Bns * Sin(lambda * t)
S =5+ (Bncos + Bnsin) * Sin(PI * (2 * n - 1) * x)
Next n
waveeql = S

End Function

Figure 20: VBA code for user-defined function waveeq1.
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With the user-defined function in hand, one can proceed to
construct a spreadsheet model for the analytical solution to the vibrating
string problem of Example 3. For instance, one can create a table that
occupies the cell range Y13:AU421 (see Figure 21). Then, distribute the
sample points of the space interval along AA13:AU13 and the sample times
along Y15:Y421. Finally, type the formula =waveeq1(AA$13,5Y15) in cell
AA15 and copy it onto AA15:AU421. Figure 21 shows the end result (rows
18 through 415 have been hidden).

AALS - fe| =waveeql(AAS13,5Y15)

Y z AA AB AC AD AE AF AG AH Al Al AK AL AM AN A0 AP AQ AR AS AT AU
12 Analytical solution
13 x 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
14 t
15 0 0 0.01 0.02 0.03 0.0a 0.05 0.06 0.07 0.08 0.0901 0.0992 0.0901 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 1E-16
16 0.01 0 'o.mos 0.0209 0.0313 0.0416 0.0519 0.0621 0.0723 0.0824 0.0924 0.0986 0.0924 0.0824 0.0723 0.0621 0.0519 0.0416 0.0313 0.0209 0.0105 2E-16
17 0.02 0 0.011 0.0218 0.0325 0.0432 0.0538 0.0642 0.0745 0.0848 0.0951 0.097 0.0951 0.0848 0.0745 0.0642 0.0538 0.0432 0.0325 0.0218 0.011 2E-16
416 4.01 0 0.0105 0.0209 0.0313 0.0416 0.0519 0.0621 0.0723 0.0824 0.0924 0.0986 0.0924 0.0824 0.0723 0.0621 0.0519 0.0416 0.0313 0.0209 0.0105 2E-16
417 4.02 0 0.011 0.0218 0.0325 0.0432 0.0538 0.0642 0.0745 0.0848 0.0951 0.097 0.0951 0.0848 0.0745 0.0642 0.0538 0.0432 0.0325 0.0218 0.011 2E-16
418 4.03 0 0.0114 0.0227 0.0338 0.0448 0.0556 0.0663 0.0768 0.0871 0.0955 0.0955 0.0955 0.0871 0.0768 0.0663 0.0556 0.0448 0.0338 0.0227 0.0114 2E-16
419 4.04 0 0.0118 0.0235 0.035 0.0463 0.0574 0.0683 0.079 0.0896 0.0938 0.0939 0.0938 0.0896 0.079 0.0683 0.0574 0.0463 0.035 0.0235 0.0118 2E-16
420 4.05 0 0.0122 0.0243 0.0362 0.0478 0.0592 0.0703 0.0813 0.0914 0.0922 0.0923 0.0922 0.0914 0.0813 0.0703 0.0592 0.0478 0.0362 0.0243 0.0122 2E-16
421 4.06 0 0.0126 0.0251 0.0373 0.0493 0.061 0.0723 0.0833 0.0902 0.0905 0.0907 0.0805 0.0902 0.0833 0.0723 0.061 0.0493 0.0373 0.0251 0.0126 2E-16

Figure 21: Analytical solution of Example 3.

Notice that neither of the boundary conditions (zero) nor the initial
conditions has been hard coded on the spreadsheet; these conditions are
already accounted for by the series solution in Equation (17a). It can be
seen from Figure 21 that the entries in column AU are in the order of 1076,
which may be regarded as zero for the boundary condition at x = 1. The
rest of the values in the table agree very well with those found in the
numerical solution shown in Figure 18.

The analytical solution also provides Fourier series approximations
to the initial conditions, as illustrated in Figure 22.
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Displacement of string with clamped ends

Distance from left end of string, x

=

§ 0

g 0 0.2 0.4 0.6 0.8 1
©

o

A

A

—Fourier f(x) — Actual f(x) =———Fourier g(x) = Actual g(x)

Figure 22: Fourier series approximations to the initial conditions
f(x) and g(x) of Example 3.

The initial displacement f(x) is very well approximated by its
Fourier series. The initial velocity g(x) , however, shows small
discrepancies between the actual function and its Fourier series, especially
about the midpoint x = 0.5 where the derivative changes sign (the values
for the green curve were obtained by approximating the derivative by a
forward difference). A better approximation to g(x) would have resulted
if the user implemented the Fourier series directly, namely,

g(x) = i B:A,sin ("T"x) (A = "Lﬂ) (18)

which was not pursued here as this would have required additional
programming of more formulas in the spreadsheet or another VBA macro.
The author opted for exploiting the available data in Figure 21 to find a
quick, but reasonable Fourier series approximation to g(x).

Case 2. String with freely sliding ends

Consider a rigid string with its two ends allowed to freely slide in the
vertical direction such that the slope of the displacement curve is
constrained to be zero. This situation is modeled by
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0%u 0%u
ﬁzczm, 0<X<L,t>0 (19&)

subject to the boundary conditions

0 0
—u(O, t) =0 and —u(L, t) =0, Vt>0 (19b)
0x 0x

and the initial conditions
0
u(x,0) = f(x) and a—ltt(x, 0)=gx), 0<x<L. (19¢)

Numerical solution of (19a)—(19c)

The recursive equation (13) remains valid at interior space-time nodal
points; the initial displacement f(x) can be coded directly on a
spreadsheet, while the initial velocity g(x) can be incorporated via
Equation (16). As for the boundary conditions only the spatial derivatives
at the endpoints are known (but not the values). To deduce formulas for
the derivatives at the boundaries, substitute x, =0 and xy =L in
Equation (13) to obtain approximate values of the string displacement at
the endpoints, i.e.,

‘U,(O, tk+1) = rlu(xp tk) + 2(1 - 7])”(0' tk) + Tlu(x—p tk) - u(O! tk—l) (203)
and
UL, tir1) = Mulxyea, ti) + 2(0 —mulL, ty) + nulxy-1, t) —u(Ll, ty-1)-  (20b)

Notice that x_; in (20a) and xy,; in (20b) are outside the space
interval. To circumvent this difficulty consider central difference
approximations to the spatial derivatives at the boundaries, namely,

— du N u(xy, ) —u(x_q,t) B
0= a(o' t) =~ P Ax u(x_q,t) = ulxq, t) (21a)
and
du ulxys,t) —ulxy_q,t)
0= a(l" t) =~ N+1 o N-1 - u(xN+11t) = u(xN—llt) (21b)

which hold for any value of time t and, in particular, t = t;. Substituting
(21a) and (21b) into (20a) and (20b), respectively, will result in

u(0, tgr1) = 2nu(xy, ty) + 2(1 — n)u(0, &) — u(0, ty—1) (22a)
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and
u(L, tyr) = 2nulxy_q, ty) + 2(1 —u(l, tg) — u(L, ty—q). (22b)

Equations (22a) and (22b) give approximate values to the string
displacement at the endpoints by enforcing the zero slope condition at the
boundaries as required by (19b). Only one more detail needs to be
addressed and it is how to reconcile the initial velocity constraint in
Equation (16) and the zero slope constraint at the boundaries. More
specifically, if one lets x,, = xy = 0 or x,, = xy = L in (16) then the sample
points x_; and xy;; will appear, but taking into account (21a) and (21b)
the equations for the initial velocity at the boundaries will take the form

u(L, ty) = nuxy-1,0) + (1 = nu(lL, 0) + Atg(L). (23b)

Notice that Equations (16), (23a), and (23b) give the values of the
displacement at t =t; (i.e, the second row of the solution table).
Equations (13), (16), (22a), (22b), (23a), and (23b) form a complete set from
which a spreadsheet model can now be constructed as shown by the
following example.

EXAMPLE 4. Solve the wave equation

(')Zu_4(')2u 0<x<1 t>0
9tz ~ " ox?’ e
subject to the boundary conditions
ou ou
—(0,t) =0 and —(1,t) =0, Vt>0
Ox ox

and the initial conditions
du
u(x,0) = f(x) = 0.2cos(2mx) and E(x, 0) =g(x)=0.5, 0<x<1.

Follow these steps to find the numerical solution to this example.

1) Lay out a table on the cell range A13:W180 with the samples of the
space interval in C13:W13 and the time interval in A15:A180 (see
Figure 23). Enter the initial displacement f(x) by typing the
formula =0.2*COS(2*PI()*C13) in cell C15 and then copying it onto
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the cell range D15:W15. To incorporate the initial velocity g(x) at
interior points of the space interval, code Equation (16) by typing
the formula =(5L$10/2)*E15+(1-5L$10)*D15+(5L$10/2)*C15+SES10*0.5
in cell D16 and then copying it onto the cell range E16:V16. To
account for the initial velocity g(x) at the boundaries (x = 0 and
x = 1), code Equation (23a) by typing the formula =5L510*D15+(1-
SL$10)*C15+SES10*0.5 in cell C16, and (23b) by typing the formula
=5L510*V15+(1-SLS10)*W15+SES$10*0.5 in cell W16. The second row
for t; = At = 0.01 is now completed and the initial setup should
look like the one shown in Figure 23 (only the first 20 rows are

A B C D E F G H I J K L M N 0 P Q R S T u v w
1 One-dimensional wave equation
2 o _ otu 0 s )
3 o e pren e
4
5 B.C ®op=0 and 1H=0
6 Bx Bx
@
7 IC u(x0) = 02cos(2mx)  and  3(x0) =05
8
9 an?
- - 2 _ 2
10 Ax= 0.05 at = 0.01 = 4 n= (M) = 0.16

12 Numerical solution

13 x [} 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
14 t

15 ] 0.2 0.1902 0.1618 0.1176 0.0618 1E-17 -0.062 -0.118 -0.162 -0.19 -0.2 -0.19 -0.162 -0.118 -0.062 1E-16 0.0618 0.1176 0.1618 0.1902 0.2
16 0.01 0.2034 0.1937 0.1655 0.1216 0.0663 0.005 -0.056 -0.112 -0.156 -0.184 -0.193 -0.184 -0.156 -0.112 -0.056 0.005 0.0663 0.1216 0.1655 0.1937 0.203
17 0.02

18 0.03

19 o0.04

20 0.05

Figure 23: Initial setup for the numerical solution of Example 4.

2) To fill in the rest of the table, code Equation (13) by typing the
formula =SLS10*E16+2*(1-5L$10)*D16+5L$10*C16-D15 in cell D17,
and then copying it onto the cell range E17:V17. To implement the
zero slope constraint at the boundaries, code Equation (22a) by
entering the formula =2*$L$10*D16+2*(1-5L$10)*C16-C15 in cell C17,
and (22b) by entering =2*SLS10*V16+2*(1-SL$10)*W16-W15 in cell
W17. Finally, select the cell range C17:W17 and copy the contents to
C18:W180. The end result is shown in Figure 24 (rows 18 through
174 have been hidden).
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10 Ox= 0.05

12 Numerical solution

A B c D E F 6
1 One-dimensional wave equation

2 u_ dtu

5 W,A,W, 0<x<1, t>0
4

5 BC B0 = and Q=

£ Z0H=0 Zy=0
7 1C u(x,0) = 0.2cos(2mx) and

8

ot =] 0.01 =

13 x (1] 0.05 0.1 0.15 0.2
14 t

15 0 0.2 0.1902 0.1618 0.1176 0.0618
16 0.01 0.2034 0.1937 0.1655 0.1216 0.0663
17 0.02 0.2038 0.1943 0.1668 0.1239 0.0699
175 16 0.8749 0.8712 0.8606 0.844 0.8231
176 1.61 0.8561 0.8536 0.8463 0.835 0.8208
177 1.62 0.8366 0.8353 0.8315 0.8256 0.8182
178 1.63 0.8166 0.8165 0.8163 0.8159 0.8155
179 1.64 0.7966 0.7977 0.8011 0.8062 0.8128
180 1.65 0.777 0.7793 0.7861 0.7968 0.8102

Figure 24: Numerical solution of Example 4.

0.25

1E-17
0.005
0.01
0.8
0.805
0.81
0.815
0.82
0.825

au
o (x,0) =05

EE

0.3 0.35

-0.062 -0.118
-0.056 -0.112
-0.05 -0.104
0.7769 0.756
0.7892 0.775
0.8018 0.7944
0.8145 0.8141
0.8272 0.8338
0.8398 0.8532

0.4

-0.162
-0.156
-0.147
0.73%4
0.7637
0.7885
0.8137
0.8389
0.8639

0.16

0.45

-0.18
-0.184
-0.174
0.7288
0.7564
0.7847
0.8135
0.8423
0.8707

0.5 0.55 0.6 0.65

-0.2 -0.19 -0.162 -0.118
-0.193 -0.184 -0.156 -0.112
-0.184 -0.174 -0.147 -0.104
0.7251 0.7288 0.7394 0.756
0.7539 0.7564 0.7637 0.775
0.7834 0.7847 0.7885 0.7944
0.8134 0.8135 0.8137 0.8141
0.8434 0.8423 0.8389 0.8338

0.873 0.8707 0.8639 0.8532

0.7

-0.062
-0.056
-0.05
0.7769
0.7892
0.8018
0.8145
0.8272
0.8398

0.75

1E-16
0.005
0.01
0.8
0.805
0.81
0.815
0.82
0.825

0.8 0.85 0.9

0.0618 0.1176 0.1618
0.0663 0.1216 0.1655
0.0699 0.1239 0.1668
0.8231 0.844 0.8606
0.8208 0.835 0.8463
0.8182 0.8256 0.8315
0.8155 0.8159 0.8163
0.8128 0.8062 0.8011
0.8102 0.7968 0.7861

0.95

0.1902
0.1937
0.1943
0.8712
0.8536
0.8353
0.8165
0.7977
0.7793

1

0.2
0.2034
0.2038
0.8743
0.8561
0.8366
0.8166
0.7966

0.777

The transverse displacement of the vibrating string at three
different times is shown in Figure 25. The displacement curves show that
the string drifts upwards because of the initial upward push (g(x) = 0.5
for 0 < x < 1); also observe that because of the inflexibility of the string at
the endpoints (zero slope constraint at the boundaries), the string tends to

adopt a flat profile as time progresses.

Displacement, u(x,t)

e
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o
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Vibrating string with inflexible ends
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—t=0 =—t=075 —t=1.65

0.8

Figure 25: Transverse displacement for the vibrating string of Example 4.
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Analytical solution of (19a)—(19c)

The analytical solution to the wave equation problem (19a)-(19c) can be
obtained by the method of separation of variables (Greenberg, 1998;
Kreyszig, 2011; O’'Neil, 2011). The solution can be shown to be

- nx en
u(x, t) = Ag + Apt + Z [4,, cos(1,.t) + Aj, sin(A,t)] cos (T) (An = —),

L (24&)

n=1

1 L
Ay = i f f(x)dx, (24b)
0

1

Ao =1 L g(x)dx, (24c)

2 (- nx
A, = Zf f(x) cos (T) dx, n=12,.. (24d)
0

=2 ) (mlx)d 1,2 24
”_ncno‘gx cos I X, n=1,2,.. (24e)

In this example, c = 2,L = 1, f(x) = 0.2 cos(2rx), g(x) = 0.5. Thus,
evaluating the Fourier coefficients in Equations (24b)—(24e) yields 4, =
0,4; =05, A, =02, A, =0(n#2), A, =0(n=1,2,..) and, from (24a),
the transverse displacement is given by

u(x,t) = 0.5t + 0.2 cos(2mx) cos(4mt), (25)

which is simple enough to code directly as a cell formula. Hence, if the
solution is to occupy the cell range Y13:AU180 (see Figure 26), then one
would type the formula =0.5*$Y15+0.2*COS(2*PI()*AAS13)*COS(4*PI()*SY15)
in cell AA15 and then copy it onto AA15:AU180, producing the final table
shown in Figure 26 (rows 18 through 174 have been hidden).

AALS - f-| =0.5*SY15+0,2*COS(2*PI()*AAS13)*COS(4*PI()*$Y15)

Y r4 AA AB AC AD AE AF AG AH Al Al AK AL AM AN AO AP AQ AR AS AT AU
12| Analytical solution
13 x 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
14 t
15 o 0.2 .0.1502 0.1618 0.1176 0.0618 1E-17 -0.062 -0.118 -0.162 -0.19 -0.2 -0.19 -0.162 -0.118 -0.062 1E-16 0.0618 0.1176 0.1618 0.1902 0.2
16 0.01 0.2034 0.1937 0.1655 0.1216 0.0663 0.005 -0.056 -0.112 -0.156 -0.184 -0.193 -0.184 -0.156 -0.112 -0.056 0.005 0.0663 0.1216 0.1655 0.1937 0.2034
17 0.02 0.2037 0.1942 0.1667 0.1239 0.0699 0.01 -0.05 -0.104 -0.147 -0.174 -0.184 -0.174 -0.147 -0.104 -0.05 0.01 0.0699 0.1239 0.1667 0.1942 0.2037
175 1.6 0.8618 0.8588 0.85 0.8363 0.8191 0.8 0.7809 0.7637 0.75 0.7412 0.7382 0.7412 0.75 0.7637 0.7809 0.8 0.8191 0.8363 0.85 0.8588 0.8618
176 1.61 0.8425 0.8406 0.8353 0.827 0.8166 0.805 0.7934 0.783 0.7747 0.7694 0.7675 0.7694 0.7747 0.783 0.7934 0.805 0.8166 0.827 0.8353 0.8406 0.8425
177 1.62 0.8226 0.8219 0.8202 0.8174 0.8139 0.81 0.8061 0.8026 0.7998 0.7981 0.7974 0.7981 0.7998 0.8026 0.8061 0.81 0.8139 0.8174 0.8202 0.8219 0.8226
178 1.63 0.8024 0.8031 0.8048 0.8076 0.8111 0.815 0.8189 0.8224 0.8252 0.8269 0.8276 0.8269 0.8252 0.8224 0.8189 0.815 0.8111 0.8076 0.8048 0.8031 0.8024
179 1.64 0.7825 0.7844 0.7897 0.798 0.8084 0.82 0.8316 0.842 0.8503 0.8556 0.8575 0.8556 0.8503 0.842 0.8316 0.82 0.8084 0.798 0.7897 0.7844 0.7825
180 1.65 0.7632 0.7662 0.775 0.7887 0.8059 0.825 0.8441 0.8613 0.875 0.8838 0.8868 0.8838 0.875 0.8613 0.8441 0.825 0.8059 0.7887 0.775 0.7662 0.7632

Figure 26: Analytical solution of Example 4.
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Because of the choice of initial displacement for this example there
is no difference between f(x) and its Fourier series approximation, as it
can be seen by substituting t = 0 in Equation (25). However, the initial
velocity g(x) = 0.5 and its Fourier series approximation will exhibit some
differences as shown in Figure 27.

Vibrating string with inflexible ends

1

e
ol

)

0 0.2 0.4 0.6 0.8 1

Distance from left end, x

Displacement, u(x,t)

—Fourier ——g(x)

Figure 27: Fourier series approximation to the initial condition g(x) = 0.5 of Example 4.

4. Two-dimensional Laplace equation

This section presents the problem of determining the steady-state
temperature in a thin, thermally conductive rectangular plate of length a
and width b, with the edges of the plate having temperature distributions
f(x),g(x),r(y), and s(y) impressed upon them, as shown in Figure 28.

y
gx)
r() (%) s()
0 f(x) a *

Figure 28: Thermally conductive rectangular plate showing dimensions and
boundary conditions.
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The steady-state temperature u at an interior point (x,y) of the
rectangular plate is governed by the two-dimensional Laplace equation
(Greenberg, 1998; Kreyszig, 2011; O’Neil, 2011)

°u  0%u
WJra_yZ:O’ 0<x<aqa, 0<y<b (26a)
subject to the boundary conditions
u(x,0) = f(x), 0<x<a, (26b)
u(x,b) = g(x), 0<x<aq, (26¢)
u(0,y) = r(y), 0<y<hb, (26d)
u(a,y) = s(y), 0<y<bh. (26€)

Numerical solution of (26a)—(26e)

To discretize the Laplace equation (26a), the x and y intervals are
subdivided to create a rectangular mesh of points x; = iAx (i = 0,1, ..., N)
and y; =jAy G=01,..,M), as illustrated in Figure 29. Observe that xy =
NAx =a and yy, = MAy =b. Nodes with coordinates of the form
(xo,yj), (xN, yj), (x1,¥0), and (x;,yy) are boundary nodes, while the rest
are interior nodes.

j=M
j=1 (C))
Ay
j=o0 LA
i=0 i=1 i=N

Figure 29: Rectangular mesh of points.

The derivatives at an interior nodal location (x;,y;) in Equation
(26a) can be approximated by central differences to obtain

u(xi+1,y].) — Zu(xl-,yj) + u(xl-_l,yj) 4 u(xi;}’j+1) - Zu(Xi;yj) + u(xi:y}'—l) —0. (27)
Ax?2 Ayz
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If the temperature at (x;y;) is denoted by u(xi,yj) =u;;, and
assuming equal increments Ax = Ay = h, then the preceding equation
becomes

ui_ljj + ui,j_l - 4ui,j + ui_,_l,j + ui‘j+1 = 0. (28&)

For the boundary nodes, the equations are

Ui = f(x;), i=12,..,N—1, (28b)
uiy = g(x;), i=12,..,N—1, (28¢)
u;j=r(y;), Jj=12..,M-1, (28d)
uyj=s(y;), Jj=12..,M-1. (28e)

Equations (28a)—(28e) yield a system of (N —1)(M — 1) linear
algebraic equations whose solution provides the approximate values of
the temperatures at the interior nodes. The system of equations is sparse.
If N and M are small, the system can be solved directly by Gaussian
elimination or matrix inversion. If N and M are large, iterative techniques
such as Jacobi, Gauss-Seidel, or relaxation methods are employed. In this
paper, an iterative technique referred to as successive over-relaxation (SOR)
method is illustrated.

Before introducing the SOR method, it is instructive to display the
system of linear equations (28a) in the matrix form Ax = b, where

M I
Azl M - '
-1 -~ -1 (29a)
= MIiv-1yu-1yx -1 -1
4 -1
_|1-1 4 -1 _
M= R | ' I
-1 4ln-pxw-1)
1 (29b)
1
Unw-1)xw-1)
x' = [ul,l Uz1 0 Un—q1| U2 Uz uN—1,2| |u1,M—1 Uz m-1 " uN—l,M—l]: (29C)
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b"=[b] b} - bj_, by_il (29d)

bl =[uo1 U0 Uzo Uze v Un—z0 Un-10t Una], (29%e)

b =[uo; 0 - 0 uy;] (j=23,..,M-2), (29f)

bl = [Uom-1+Um Upm Usm - Un-2m  Unm-1 T Un-1m]. (29g)

As can be seen from Equation (29a), the coefficient matrix A is
banded. If N and M are not too large, A and b can be easily constructed
according to (29a)—(29g) and the temperatures at the interior nodes of the
mesh grid obtained as x =A"'b using the matrix functions MMULT and
MINVERSE of Excel. If N and M are too large then the SOR method can be
employed. The SOR method represents an improvement over the Gauss-
Seidel method and can be formulated as (Gutierrez, 2009)

(k+1) (k+1) (k) (k) k)
n) _ 00 Yic1) tugy — Ay gt

Lj T T 4 ’

u

=0,1,.. (30)

u

which follows from Equation (28a). In Equation (30), the superscripts
denote the iteration number, and values with zero superscript correspond
to the initial guesses; the quantity w is the over-relaxation parameter and
is such that 1 < w <2 (when w =1 the SOR reduces to Gauss-Seidel).
Also observe that because the interior nodes are visited from left to right

and from bottom to top, the most recent k + 1st iterates for ul(’_cﬁ) and
uf’;ti) would be available to compute the next iterate for ui(,';).

The following example shows how to implement the SOR method
for solving a Laplace equation numerically.

EXAMPLE 5. Solve the Laplace equation

62u+62u_0 0<x<1 0<y<1
axz  ay? s b Y
subject to the boundary conditions
u(x,0) = 1, 0<x<l1,
u(x,1) = 3, 0<x<l1,
u(0,y) = 4, 0<y<1],
u(l,y) = 2, 0<y<l1.

To solve the Laplace equation numerically, follow these steps:
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1) Divide the x and y intervals in steps of size, say Ax = Ay = 0.05 (for
a total of NXM =19%x19 = 361 unknown temperatures at the
interior nodes in the mesh grid). Write the corresponding
coordinates of the (x,y) points thus generated and their associated
(i,j) indices for ease of reference. Also enter the boundary
conditions, using cell formulas if necessary (in case the boundary
conditions are given as functions of x or y). The initial setup may
resemble Figure 30.

] B C o E F (E] H | J K L M \] o P o R =1 T u W ol
1 Two-dimensional Laplace equation
z o + Tu_ 0, 0 1, o 1
3 e <x <l <<
4
5 | B.C. u(x0) = [ and w(zl)= | 3 . 0<x<i
]
T w(iyy= | 4 and u(1) = 2 . o=y<1
=]

0| As=ap = 005

12 Humerical solution
13 * 0 o005 01 015 02 025 03 035 04 045 05 055 06 065 07 075 08 085 039 095

-

b4
5 1 ;-20035 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
B 095 ;=19
70048 ;=18
B 085 ;=17
W 08 ;=16
20 075 ;=15
21 07 ;=14
22 065 ;=13

ro[re

p-db]

Se

fa
-
"

=
SR

ra
]
=
1]
-
™~
NNNRMRMRMNNNNNNNNNNNNN G

Wowowom o ww
WPRRARAARRAAARRRRRRRA

«

]

Y]
s
S e ML &N - B

M

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 15
36 F=0 =1 F=2 §=3 7=4 s=5 7=6 i=7 F=8 /=9 7i=0/;i=MNi=R;=1B3;=Ms=157=16s=11;=187=197=20

Figure 30: Initial setup for the numerical solution of Example 5.

2) On another section of the spreadsheet, implement the SOR
algorithm given in Equation (30) as follows:

a) Create a column with labels that identify the temperatures at
interior nodes. For example, write the temperatures u ;, uy 1, ...,
Ugg,1, oy Ug 19, Up 105 -, Urg 19 (listing nodal temperatures from left
to right and from bottom to top) so as to occupy the cell range
A50:A410 as shown in Figure 31 (only the top section of the table
is shown in the figure).
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D50 hd Je | =C50+SHS45*(SCS34+SD$35-4*C50+C51+C69)/4

& B [5 3] E F G H T d K L ] ] [x] F a 3] s T I]
Succesive over-relaxation (SOR) method with (0 = 16
Temper- Iteration (£ = Ois the initial guess)

ature A =0 k=1 k=2 k=3 k=4 k=5 k=6 k=7 A=8 £=9 k=10 £=T k=12 £=13 4=1 £-=-12 £=-13 Diff
ull 25 [[25 ] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 [
w2l 25 19 1924 19152 1911 190924 190876 190823 190798 190776 190763 1.90752 1.90744 190738 1.90733 190729 190726 -3E-05
w31 25 166 16648 164502 163975 163576 163372 16323 163138 163071 163024 162987 16296 162938 162921 162907 162896 -0.0001
u 4l 25 1564 153424 150986 149776 149126 1487 148432 148241 148107 148006 14793 147871 147824 147787 147756 147731 -0.0003
u51 25 15256 146502 143521 141697 140731 140072 139645 139337 139115 138947 138818 138717 138637 138572 138518 1.38473 -0.0005
u_b1 25 151024 142826 139158 13686 135546 134663 134061 133627 133305 133061 13267 132719 132598 132499 132415 132339 -0.0008
w7l 25 15041 140884 136536 133872 132229 131134 130358 129796 129371 129044 128786 12858 128413 128271 128144 1.28038 -0.0011
u 81 25 150164 139881 134343 131987 130066 128774 127839 127151 126624 1.26214 125888 125623 125393 125201 125041 12454 -0.0013
u a1 25 150066 139374 133399 130785 128644 127174 126089 125293 12467 12418 123784 123446 123152 122927 1.22745 1.22574 -0.0017
u 10,1 25 150026 139122 1.33438 130016 1.27705 126082 124886 123975 123265 122694 122202 121788 121488 121233 1.20899 1.2081 -0.009
PRIk} 25 15001 139 13375 1.29525 127083 125337 124037 123035 122234 121536 120984 120601 120254 119348 119707 119502 -0.002
uwi21 25 150004 138941 132932 129215 126673 124629 123443 122332 121362 120668 120196 119733 119355 119056 118805 118601 -0.002
w131 25 150002 138913 132831 129023 126402 124483 122945 121624 120822 120243 119648 119203 118844 11855 118312 118116 -0.002
PR 25 150001 1389 1.32776 128905 126226 124045 122303 12488 120759 120037 119536 11979 11879 118523 118306 11813 -0.0018
u 151 25 15 138894 132747 128834 125509 123478 122808 121846 121044 120493 120036 119684 119399 119971 118986 118836 -0.0015
u_i6.1 25 15 138891 132732 127513 125474 125092 123812 123019 122427 121963 121606 121321 121094 120911 120764 120644 -0.0012
u_t7.1 25 15 13889 120524 129281 129037 127489 126792 126191 125766 125420 125168 12496 124795 124662 1.24554 124466 -0.0009
u_18.1 25 15 130889 13752 136506 135084 134501 133986 133641 133365 133157 132931 13286 132756 132671 1.32603 132547 -0.0006
u_19.1 25 13 156489 153429 152776 15234 152023 151804 151643 151518 15M22 151346 151285 151237 151198 15166 15114 -0.0003
w12 25 31  3.076 3.08848 3.0889 3.09076 3.09124 3.09177 3.09202 3.09224 3.09237 3.09248 3.09256 3.09262 3.09267 3.09271 3.09274 3.2E-05
u22 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 (1]

d)

Figure 31: Portion of spreadsheet showing iterations in SOR method.

Create a table that contains the iterations resulting from the
application of the SOR method. Start by entering the initial

(0
guesses u; ;

shows all initial guesses of 2.5 (the average of the four
temperatures at the boundaries of the square plate), but they
could have taken on any values and not necessarily equal to one
another for the SOR to converge.

in the cell range C50:C410. In this case, Figure 31

Implement the SOR method as given in Equation (30). For
example, in cell D50 (first iterate of u;;) type the formula
=C50+SHS45%(SCS34+5DS$35-4*C50+C51+C69)/4, in cell D51 type
=C51+SHS$45*(D50+SES35-4*C51+C52+C70)/4 and so on. The user
can copy and paste these formulas and edit them accordingly so
as to make the appropriate cell references. Observe that the
formulas make reference to the over-relation parameter w = 1.6
stored in cell H45.

Add as many columns as needed to continue the SOR iterative
process until successive iterations are within a prescribed
precision level. Optionally, the user can create an additional
column, say U50:U410, that shows the difference between the
last two iterations to ascertain convergence.
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3) Copy the values from the last iteration of the SOR in the cell range
$50:5410 to fill the cell range D16:V34 with the internal nodal
temperatures. The final result will resemble Figure 32. The
temperature at the corners of the plate were manually adjusted to
be the average of their closest neighboring nodal temperatures; for
instance, the temperature at (x,y) = (0,0) in cell C35 was adjusted
with the formula =(C34+D35)/2 and so on.

A E B [3] E F G H J K C M N [a] P [F] A & T U v W
2 Numerical solution
B x 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 0.45 0.5 0.55 (X3 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
14 #
B 1 35 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 25
6 095 4 34886 3.27994 317651 3.TI505 3.07368 3.04299 3.01879 2.99854 298094 296501 2.9439 293478 2.91861 2.89391 287626 28432 279129 269782 25 2
w08 4 367453 345450 331012 3.2103 313651 3.0794 3.03331 2.99435 296008 292912 289976 2.87057 2.83972 280474 276194 270524 262413 25 230218 2
B 085 4 375534 355406 3.39855 3.27839 3.1833 310499 3.0403 298517 293602 28945 2.8494 2.80798 276491 271739 26615 253168 25 237587 220871 2
B 08 4 379356 3.60849 3.45159 332082 321162 3.11871 3.03791 2.96902 2.90763 2.85108 2.79843 2.74693 269454 263838 257497 25 240832 229476 21568 2
20 075 4 381164 363595 347301 3.3417 3.22257 311855 3.0268 294456 287351 2.80742 2.74595 2.68684 2.62793 256656 25 242503 23385 223806 212374 2
21 07 4 3.8187 364633 3.48785 3.34503 3.21797 3.10501 3.00431 291377 283155 2.75972 2069089 2.62672 256359 25 243344 236162 228261 2.19526 210009 2
22 065 4 331834 3564498 348262 3.33385 3.19943 3.07877 2.97047 287301 278486 270455 26332 256469 25 243641 2.37207 2.30546 223509 216028 208133 2
23 08 4 331399 363467 346595 3.31006 3.16823 3.04027 2.97525 282198 272907 264516 2.56913 25 243531 237328 231316 225307 219202 212943 206522 2
24 085 ;=T 4 380498 361664 3.43894 327443 312454 298948 2.86835 276018 266358 257724 25 243087 23668 230911 225405 220157 21506 210024 2.0501 2
% 05 /-1 4 3.7919 359092 340154 3.22669 3.06793 292571 2.79998 2.68679 256759 25 242276 2.35404 220545 2.24028 219258 214892 210855 207088 203499 2
2% 045 /-9 4 377426 355666 3.35254 3.1654 29969 284753 271505 260063 25 241241 233642 2.27093 221514 2.16845 212649 209237 2.06398 203992 2.01906 2
27 04 /-8 4 375086 3.5T164 3.28926 3.08789 2.90904 275274 261705 25 239937 2.31321 223982 217802 2.12699 2.09623 2.05544 203098 2.07483 200565 2.0046 2
8 035 ;=7 4 371962 345248 320764 298994 280043 263803 25 238295 228415 220102 213165 2.07475 202953 199569 19732 196209 19597 196669 198121 2
23 03 /-6 4 367661 337279 310084 28656 266633 25 236191 224726 215247 207429 2.01052 195973 192123 189499 188145 188129 189501 19206 195701 2
0 025 =5 4 361527 326261 295853 270591 25 233361 219957 209096 20031 193207 187546 183177 180051 178203 177743 178838 18167 186349 192632 2
A 02 =4 4 352269 310488 276576 25 229409 21344 201006 19121 18346 177331 172557 168934 166615 165497 16583 167918 172161 17897 188495 2
2 01 =3 4 337108 286894 25 223424 204147 189916 179236 171074 164746 159846 156106 153405 151738 151215 152099 154841 160145 166988 182343 2
301 =2 4 309274 25 213106 189512 173733 162721 154752 148835 144334 140908 138336 136533 135502 135367 136405 139151 144594 154541 172006 2
W 005 F=1 4 25 190726 162896 147731 138473 132339 128038 124914 122574 12081 119502 118601 118116 11813 118836 120644 124466 1.32547 15114 2
) 0 F=0 25 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 15

Figure 32: Numerical solution of Example 5.

The temperature distribution in the square plate can be graphically
displayed as a filled contour plot as shown in Figure 33.
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Temperature distribution on square plate
1
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Figure 33: Temperature distribution in heat conducting plate of Example 5.

Analytical solution of (26a)—(26e)

The analytical solution to the Laplace equation (26a) subject to the
boundary conditions (26b)—(26e) can be obtained by the method of
separation of variables and superposition (Greenberg, 1998; Kreyszig,
2011; O’Neil, 2011) and can be shown to be

u(x,y) = Z {[An sinh (@) + B,sinh (?)] sin (?)
n=t (31a)

+ [Cn sinh (@) + D,sinh (nTnx)] sin (nTny)}
Ay =—— 2 f " F()sin (FD)dx, n=12,. (31b)

a sinh(nbn/a) J, a
B, = — - jag(x) sin (ﬁ) dx n=12,.. (31c)
" asinh(nbn/a) J, a ’ »
C, = 2 fbr(y) sin (ﬂ) dy n=1,2 (31d)
" bsinh(man/b) J, b ’ SR
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" = bsinhGran/b) J, SO0S G ) e m=tte Gl

In this example, a=1,b=1,f(x) =1,9(x) =3,7r(y) =4, and
s(y) = 2. Thus, it can readily be found that the Fourier coefficients are
2(1—cos(mtn)) 6(1—cos(mtn)) 8(1—cos(mtn)) 4(1—cos(mn))
Ay =——F—= B =——7"7"3,,=—————, and D, =——=

With these coefficients in hand, one can code Equation (31a) to evaluate

nnsinh(rn) ’ nn sinh(tn) nn sinh(zn) ’ nn sinh(tn)

the temperature at an interior point (x,y). The user-defined function
lapleq in Figure 34 serves this purpose.

Public Function lapleq(x, v)

5=0

For n = 1 To Nmax
BAn =2 * (1 - Cos(PI * n)) / (PI * n * WorksheetFunction.Sinh(PI * n))
Bn = 3 * An
Cn =4 *# An
Dn = 2 * An
Tl = An * 5in(PI * n * x) * WorksheetFunction.Sinh(PI * n * (1 - y))
T2 = Bn * 5in(PI * n * x) * WorksheetFunction.Sinh(PI * n * y)
T3 = Cn * WorksheetFunction.Sinh(PI * n * (1 - x)) * Sin(PI * n * y)
T4 = Dn * WorksheetFunction.Sinh(PI # n * %) * Sin(PI * n * y)
S =S5 +T1l + T2 + T3 + T4

Next n

lapleq = 5

End Function

Figure 34: VBA user-defined function lapleq for solving Laplace’s equation.

With the function thus defined, the analytical solution may be
implemented in another section of the spreadsheet, say AA15:AU35. One
can then enter the formula =lapleq(AB$13,5Y15) in cell AB15 and copy it
onto the cell range AA15:AU35. As with the numerical solution, the
temperature at the corners of the plate are manually adjusted to match the
average of their closest neighboring nodal temperatures; for instance, the
temperature at (x,y) = (0,0) in cell AA35 was adjusted with the formula
=(AA34+AB35)/2 and so on. The final result is shown in Figure 35.
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AB15 - F =lapleg(AB$13,$Y15)

Y z AR ~B A AD AE AF AG AH A A AR AL A AN A0 AP A0 AR AS AT Al
2 Analytical solution
Le] x 0 0.05 01 015 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 07 0.75 0.8 0.85 09 0.95 1
L) ra
B 1 3.88215 I 3,32755! 3.04677 28516 3.10422 2.99607 2.92824 3.07873 2.97526 2.95672 3.07335 295672 297526 3.07873 292824 2.99607 3.10422 28516 3.04677 3.32755 2.77296
B 0.95 4.43674 350058 3.27275 3.1705 3.115T1 3.07268 3.04181 3.02017 2.99825 2.98043 29665 294955 293474 292053 2.89974 287741 2.84759 279389 2.70433 250823 221837
v 09 4.06237 3.68194 3.45619 3.30923 3.20943 3.13651 3.07994 3.03392 2.9949 296073 2.92975 2.90041 2.87132 2.84069 2806 276368 270757 262649 2.49997 2.29458 2.03118
8 0.85 3.80213 3.75928 3.55943 3.4016 3.28007 3.18446 3.1069 3.04207 2.98636 2.93719 2.89247 2.85035 2.80891 2.76592 2.71892 2.66272 2.5927 25 2.37347 2.20286 1.90107
3 0.8 4.13896 3.80155 3.61549 3.45759 3.32536 3.2148 3.12139 3.04127 297138 29092 2.8526 2.73954 2.74793 2.69541 2.63913 2.5755 25 24073 2.29248 2.1955 2.06948
20 078 3.99476 3.81672 3.64413 3.48738 3.34897 3.22811 3.12271 3.03035 2.94872 2.87567 2.80917 2.74724 2.68779 2.62855 2.56693 25 2.4245 233728 2.23631 2.12206 1.9973%
2 07 3.90432 3.82324 3.6558 3.49834 335483 3.22594 3.11101 3.00874 2.91751 2.83558 2.76T17 2.69242 262738 2.56399 25 2.43307 236087 2.28148 2.19398 2.09848 1.95216
22 0.65 410497 3.82717 3.65574 3.49498 3.34587 3.20969 3.08662 2.97608 287699 2.78797 2.70749 2.63386 2.56531 25 2.43601 2.37145 230459 223408 215935 2.08168 2.05248
23 06 3.96702 3.82045 3.64641 3.47975 3.32379 3.1802 3.04962 293192 2.82635 2.73182 2.64694 25702 25 2.43469 2.37262 231221 2.25207 219109 212867 2.06448 1.98351
24 0.55 3.94229 381144 362897 3.45362 3.28918 313756 2.99966 287555 2.76465 266597 257823 25 24298 236614 230758 2.25276 2.20046 214965 2.09957 2.0493 197114
25 05 4.0978 3.80093 3.60341 3.41639 3.24158 3.08106 29358 2.80589 26907 258917 25 242177 235306 2.29251 2.23883 219083 2.1474 210753 2.07028 2.03552 2.0489
26 0.45 3.94229 37805 356865 3.36678 3.17952 3.00913 28565 272143 2.60304 25 2.41083 233403 2.26818 2.21203 2.16442 212433 2.0908 2.06281 2.03925 2.01836 197114
27 0.4 3.96702 3.75694 352283 3.30229 3.0035 291927 27595 262024 25 2.39696 2.3093 223535 2.17365 212301 2.08249 2.05128 202862 2.01364 2.00509 2.00097 198351
28 0.35 410497 3.72753 3.46251 3.21883 3.00001 2.80788 2.64187 25 2.37976 2.27857 219411 2.12445 206808 2.02392 199126 1.96965 195873 195793 1.96612 198204 2.05248
29 03 3.90432 368117 3.38185 3.10996 287258 267016 25 235813 22405 21435 20642 2.00034 195038 191338 188899 187729 187861 18931 192003 195641 195216
30025 3.99476 3.62145 3.2713 2.96563 2.70968 25 2.32984 2.19212 2.08073 1.99087 1.91894 1.86244 1.8198 1.79031 1.77406 177189 17852 181554 1.86348 192679 199738
3 0.2 4.13896 3.53403 3.11364 2.77022 25 2.29032 2.12742 199999 1.89365 1.82048 175842 171082 167621 165413 164517 165103 167464 171393 179062 188798 2.06948
32 0.15 3.80213 3.38268 2.87669 25 222978 2.03437 189004 178117 169771 163322 158361 154638 152025 1.50502 150166 151262 154241 15984 169073 182626 1.90107
33 01 4.06237 3.11351 249997 212328 188641 172869 161812 153753 147716 143134 139663 137101 135357 134429 134418 1.35586 138456 144053 154374 172615 2.03118
34 0.05 4.43674 250823 1.88539 16107 146906 137803 131705 127468 124228 121835 120109 118741 117877 117504 117498 118275 120154 123747 131696 151588 221837
35 0 277296 1.10918 101559 095053 103474 0.99869 0.97608 102624 099175 0.98557 102445 098557 0.99175 1.02624 0.97608 0.99869 103474 095053 101553 110918 166378

Figure 35: Analytical solution of Example 5.

Notice how the analytical solution exhibits the Gibbs phenomenon
at the boundaries, which are manifested by the fluctuating values about
the constant temperatures at the edges of the plate. The temperatures at
the interior nodes displayed in Figure 35 compare fairly well with those
obtained numerically in Figure 32; the maximum discrepancy between
both sets of values is about 0.44 occurring at the left edge of the square
plate due to the Gibbs phenomenon.

5. Conclusions

This paper presented some of the classical partial differential equations
(viz., the heat equation, wave equation, and Laplace’s equation) with
illustrative examples that make use of Excel spreadsheets for the
implementation of the numerical and analytical solutions to these
equations. The basis for the numerical solutions is the discretization of the
equations which result in recursive algorithms that can be coded with
spreadsheet cell formulas. The equations for which analytical solutions
are known were implemented using VBA. Of particular interest is the
successive over-relaxation (SOR) method used in the numerical solution to
the Laplace equation. The graphing capabilities of Excel were exploited to
enhance the visualization of the solutions to these equations by displaying
their behavior as functions and Fourier series approximations to initial
and/or boundary conditions.

http://epublications.bond.edu.au/ejsie/vol9/iss3/1
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